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ABSTRACT Deep learning-based computer vision models are typically data-hungry, resulting in the rise
of dataset sizes. The consensus for computer vision datasets is that larger datasets lead to better model
performance. However, the quality of the datasets is often not considered. Annotating datasets for fully
supervised object detection and instance segmentation tasks requires a significant investment in time, effort,
and cost. In practice, due to the large sample sizes needed, this often leads to inaccuracies in the annotation
process. This research aims to understand and quantify the impact of annotation quality and quantity on
the performance of object detection and instance segmentation models. Specifically, the research aims to
investigate how introducing additional data with varying levels of annotation quality affects mean average
precision (mAP) performance. To investigate the relationship between annotation quality and quantity,
subsets of the COCO and ADE20K datasets are used. For each of the datasets, three types of annotation
uncertainty are added to the annotations, which are localization uncertainty, incorrect class labels, and
missing annotations. Mask-RCNN, YOLACT, and Mask2Former models are trained on a variety of sample
sizes for varying levels of annotation uncertainties. The results indicate there is utility in adding additional
data of lesser annotation quality. The extent of the benefits of the additional data is directly related to how
degraded the annotations’ are. Furthermore, the results show that all three annotation uncertainties negatively
affect mAP performance, with incorrect class labels degrading mAP performance the most, followed by
missing annotations and lastly localization uncertainty.

INDEX TERMS Annotation uncertainty, computer vision, instance segmentation, object detection,
supervised learning.

I. INTRODUCTION
The size of datasets used for training computer vision
models is steadily rising, influenced by the prominence
of data-hungry deep learning-based architectures [1]. This
is illustrated by a dataset size of 11,540 images for the
Pascal Visual Object Classes (VOC) dataset [2] published in
2012, 164,000 images for the Common Objects in Context
(COCO) dataset [3] in 2014 and finally 2 million images for
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the Objects365 dataset released in 2019 [4]. The Segment
Anything 1 Billion (SA-1B) dataset released in 2023 [5]
contains 11 million images. However, class labels are not
provided as the dataset uses class-agnostic mask annotations.
The use of larger datasets provides models with more diverse
training examples which in turn result in better representation
learning [6] along with reducing the effect of overfitting [7].

On large-scale benchmark datasets for object detection
and instance segmentation, fully supervised approaches have
produced impressive results [8], [9]. The performance of
fully-supervised object detection and instance segmentation
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models relies on the dataset used to train the model [10],
including the annotations that are utilized for the ground truth.
For object detection, the ground truth annotation consists
of a bounding box, which is used to locate the object in
the image along with a class label to identify the object
category. Polygon masks are used in place of bounding boxes
to outline the boundary of an object for instance segmen-
tation. The process of annotating datasets for supervised
learning tasks in computer vision can be time-consuming
and reaching dataset sizes of the scale of COCO requires
significant investment in both time and money. To illustrate,
annotation of the COCO dataset took approximately 60,000
worker hours, with an estimated 79.2 seconds per polygon
mask [3]. The median time for each annotation within the
ImageNet Visual Recognition dataset [11] was 42.4 seconds
to complete when utilizing a crowd-sourcing approach that
has been specifically designed for bounding box annotation
purposes [12].

Research has shown that, as the quantity of the training
dataset grows, performance on mAP [13] for computer vision
tasks increases logarithmically [6]. This has motivated the
rise in dataset sizes along with methods to increase the size
and diversity of the training dataset, such as data augmen-
tation [14], semi-supervised learning [15], and generating
synthetic data using generative adversarial networks (GANs)
[16]. Foundation models, which often utilize self-supervised
and semi-supervised learning techniques on large quantities
of data, have shown improvements in the pretext task
in computer vision. Utilizing a vision foundation model,
Wang et al. set a new COCO test-dev benchmark mean
average precision (mAP) of 0.654 [9]. Whilst there have
been improvements with foundation models in computer
vision tasks, there is still the need for annotations for the
downstream tasks.

The literature has established the significance of
high-quality ground truth annotations for computer vision
tasks [10]. Research has also been conducted on methods
attempting to identify and correct noisy labels for both
image classification [17], [18], [19], [20], [21] and object
detection [22], [23], [24]. However, to the authors’
knowledge, there is limited research attempting to investigate
the tradeoff in mAP performance between annotation
quality and quantity for object detection and instance
segmentation.

The main contribution of this paper is the investigation
of the relationship between annotation quality and quantity
for object detection and instance segmentation on mAP
performance. This is accomplished by creating subsets of
the COCO and ADE20K datasets and introducing annotation
uncertainty into a selection of the ground truth annotations
to varying degrees of severity. The main contributions are
summarised as follows:

• An investigation into the relationship between anno-
tation quality and quantity on mAP performance is
undertaken for both object detection and instance
segmentation.

• This research investigates and quantifies the effects of
introducing additional data of lesser annotation quality
to the training dataset.

• The effect of localization uncertainty, incorrect class
labels, and missing annotations are quantified on mAP
performance.

The paper is structured as follows. An overview of the
related work is presented in Section II. In Section III,
an explanation of the annotation uncertainty used is given.
This is followed by a description of the experiment in
Section IV. Then, in Section V, a presentation of the results
is given, with the results being analyzed and discussed in
Section VI. Finally, Section VII summarizes this work’s
conclusions.

II. RELATED WORK
Sun et al. investigated the impact of data on deep learning
methodology [6]. As part of this research, the effect of
pre-training sample size and performance was studied for
object detection and semantic segmentation. The authors built
upon the datasets used in [25] and [26], and created the
JFT-300M dataset. This dataset consists of 300M images
with 375M labels, containing 18,291 categories. The authors
estimated there is approximately 20% category label noise
in the JFT-300M dataset as the labels were automatically
generated using an algorithm that made use of raw web
signals, user feedback, and connections between web pages.
Faster-RCNN models [27] were trained on three randomly
selected subsets of the JFT-300M of size 10M, 30M, and
100M images. The weights from the three trained models
were then used to initialize the model weights for training
on the COCO and Pascal VOC datasets. It was found that
as the pre-training dataset increases, performance increases
logarithmically for both object detection and semantic
segmentation. Whilst this research investigated the effects of
pre-training sample size, the results do not directly extend to
the effects of the training set size for the downstream task.

Shahinfar et al. investigated the relationship between
sample size and per-class performance for autonomous
wildlife monitoring [28]. To explore the effect of the
number of training images and the performance of the
image classification models, the authors created 7 subsets
of the training dataset containing 10, 20, 50, 150, 500,
and 1000 images per class. The authors trained 6 image
classification models as part of their study using the ResNet
architecture [29] with 18, 50, and 152 layers along with the
DenseNet architecture [30] with 121, 161, and 201 layers.
The experiments were conducted for each of the datasets
collected from Africa, Australia, and North America, and
the findings were consistent across each of the geographical
datasets. The authors concluded there was a logarithmic
relationship between the number of training images and
model performance, along with a logarithmic relationship
between the false positive rate and the inverse of the number
of training images. Whilst the study provides insight into
the effects of training sample size for image classification,

VOLUME 12, 2024 140959



C. Agnew et al.: Annotation Quality Versus Quantity for Object Detection and Instance Segmentation

this research does not investigate the effects of annotation
uncertainty.

In our previous work [10], the effect of localization
uncertainty was quantified for various levels and types
of induced noise to investigate the relationship between
localization uncertainty and mAP performance for object
detection and instance segmentation. A subset of the COCO
dataset along with the Cityscapes dataset [31] was used to
investigate the relationship between localization uncertainty
and mAP performance. For the COCO dataset, a strong linear
relationship was found between both noise types and mAP
performance. When investigating the per-class performance
for both object detection and instance segmentation the
degradation across classes varied, suggesting that localization
annotation quality and mAP performance is class-dependent.
Whilst this work highlights the importance of localization
annotation quality, the entire datasets were induced with
annotation uncertainty. These results would not fully extend
to the relationship between annotation quality and quantity.
Furthermore, the effects of incorrect class labels and missing
annotations were not considered in this work.

Whilst there exist works in the literature that investigate the
effects of annotation uncertainty for image classification [17],
[18], [19], [20], [21], object detection [22], [23], [24],
[32], [33], instance segmentation [10], [34] and semantic
segmentation [35], the relationship between annotation
quality and quantity is relatively unexplored. The aim of
this study is to examine the relationship between the quality
and quantity of annotations and their influence on mAP
performance for object detection and instance segmentation.
Furthermore, this research aims to analyze the effects of
incorporating additional data with lower annotation quality
into the training dataset and its subsequent impact on mAP
performance.

III. ANNOTATION UNCERTAINTY
This work investigates the effect of different aspects of
annotation uncertainty as outlined in this section. An example
for each annotation type and the degradation used are shown
in Fig. 1.

A. LOCALIZATION UNCERTAINTY
The localization of the annotation, that is, the coordinates of
the bounding boxes and polygonmasks, will have uncertainty
introduced following the same algorithms as set out in our
previous research [10]. Gaussian radial noise was introduced
to each vertex of the polygon masks and bounding boxes
to simulate annotation uncertainty. For the bounding boxes,
this was introduced following Equation (1) from [10].
In Equation (1) the terms w and h represent the width
and height of the bounding box respectively while x and y
correspond to the most upper left-hand point following the
COCO bounding box format. σ is the standard deviation used
for the normally distributed (N ) noise used to degrade the
annotation with xr , yr ,wr , hr representing the new datapoints
with radial noise for the bounding box. For xr , yr , the

normally distributed noise has a standard deviation of 1,
as this was found to better represent localization uncertainty
observed in datasets. As for the polygon masks, the full
method for adding radial noise is described in [10]. For
the experiments, integer values of 2 and 5 were used to
replicate a small and moderate amount of noise. Fig. 1 (d)
can be considered in the context of our previous work [10],
which shows the impact of localization uncertainty on mAP
performance is considerable. For a one-unit increase in σ ,
we predict a decrease of 0.0241 and 0.0135 for object
detection and instance segmentation respectively on mAP
performance when expressed as a decimal. As seen in
Fig. 2, when σ = 5, the model struggles to detect small
objects.

xr = x − |N (0, 12)|

yr = y− |N (0, 12)|

wr = w+ |N (0, σ 2)|

hr = h+ |N (0, σ 2)| (1)

B. INCORRECT CLASS LABELS
An investigation into the effect of incorrect class labels
is undertaken for this work. We consider incorrect class
labels when the category label given for the annotation is
not the true label for the object. This is shown in Fig. 1
(f) when one of the elephants is given the class label
spoon. The COCO detection dataset consists of a total of
80 classes. For each class label, an integer value is assigned
to map the class label to the integer representation. For
each annotation, a uniformly distributed float between the
ranges of 0-1 inclusive is generated. If the float is below
a defined threshold value, the integer representing the class
label for the given annotation was randomly sampled from
a list of the class label integers, ensuring the correct class
label was not selected. This results in an approximate amount
of incorrect class labels controlled by the threshold value
chosen. To investigate the impact of incorrect class labels,
four levels of class label noise were used: 25%, 50%,
and 75%.

C. MISSING ANNOTATIONS
The effect of missing annotations for objects of interest
in the dataset was investigated. We consider a missing
annotation when an object of interest in an image is
not annotated. This is shown in Fig. 1 (e), where only
one of the elephants is annotated. Following the same
randomization process used to generate incorrect class labels,
annotations were randomly selected to be omitted from the
dataset with three levels of approximate missing annotations
used: 25%, 50%, and 75%. A breakdown of the number
of annotations per missing annotations dataset is given
in Table 3. This informs and allows us to compare the
number of annotations present for each of the missing
percentage thresholds along with each of the datasets’
sizes.
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FIGURE 1. Example of annotations. (a) Original Image, (b) Bounding Boxes, (c) Polygon Masks, (d) Radial Noise σ = 5, (e) Missing Annotation,
(f) Incorrect Class Label. Image from the COCO Dataset [3].

FIGURE 2. Results of the effect of localization uncertainty on the COCO
Dataset, from our previous research [10].

IV. EXPERIMENTAL DESIGN
A. DATASET
A selection of subsets of the COCO2017 detection dataset [3]
was created for the experiments in this work. The COCO
2017 detection training dataset has approximately 118,000
images. Four datasets of randomly selected images of sizes
10,000, 25,000, 50,000, and 100,000 from the COCO training
dataset were used for the investigation into the relationship
between annotation quality and quantity. The subsets remain
fixed throughout each of the experiments, as they are created
as individual datasets. The sample sizes were chosen to
investigate a 2.5x, 5x, and 10x relationship relative to the
baseline dataset size of 10,000. Starting with 100,000 images,
each subset is used to generate the next. For example, in the

50,000 images dataset, these images were randomly selected
from the 100,000 images dataset. This helps ensure a fairer
comparison when investigating the relationship between
sample size and mAP performance, as the datasets are
dependent and contain an overlap of shared images.

These subsets will have induced annotation uncertainty
as described in Section III. We explore two scenarios in
this work. Firstly, a percentage of annotations are randomly
selected to have annotation uncertainty introduced. This
results in a random selection of annotations having annotation
uncertainty introduced rather than each of the annotations
in the image. In this scenario, we may have one annotation
of a class induced with annotation uncertainty while the
remaining annotations of the same or other classes remain
untouched for the given image.

Secondly, we investigate the effect of merging a clean
dataset, that is, the original ground truth annotations, and
a second dataset of lesser annotation quality to create a
new dataset. This results in a selection of images whose
annotations all have annotation uncertainty introduced within
the dataset, whilst the remaining images remain with the
ground truth annotations. To create the clean and second
dataset of lesser quality, the individual subsets are further
split into two datasets, with the split ratio dependent on the
percentage of degradation being introduced. The first split
will be the clean dataset, whose annotations will remain
untouched. The second dataset will introduce annotation
uncertainties. This ensures the clean dataset and the second
dataset of lesser quality are independent of one another.
Finally, these two datasets, the clean dataset and the second
dataset of lesser quality, are then merged to create the
final dataset. The ADE20K dataset [36] was also used to
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provide results for a reduced experiment set to lessen the
computational workload. The ADE20K dataset has finer
scale annotations in comparison to COCO, as ADE20K is
a semantic segmentation dataset with pixel-wise labels. The
same process as outlined for the COCO dataset was used for
creating the subsets of the ADE20k, with the subsets being of
size 2,000, 5,000, 10,000, and 20,000. The original validation
dataset of 2,000 images was split into 1,020 images used for
validation and 980 images used as the hold-out test dataset for
the experiments. As for the COCO experiments, the original
COCO validation and test-dev datasets were used.

B. TRAINING SETUP
Mask-RCNN [37], YOLACT [38], and Mask2Former [39]
were the model architectures chosen for the experiments due
to their abilities to predict both object detection and instance
segmentation outputs. The Mask-RCNN architecture is a
two-stage convolutional neural network (CNN) detector,
whereas the YOLACT architecture is a single-stage CNN
detector. Mask2Former, on the other hand, is a transformer-
based detector. The MMdetection framework [40] was used
to train each of the models for the experiments. Unless
otherwise stated, all models utilized a ResNet-50 [29]
backbone, pre-trained on Imagenet [41], with the remainder
of the model weights randomly initialized. All experiments
used the same training parameters for the respective models.
Mask-RCNN models were trained for 12 epochs with an
effective batch size of 32. A stochastic gradient descent
(SGD) optimizer with a learning rate of 0.02, a weight decay
of 0.0001, and a momentum of 0.9 was utilized. At epochs
8 and 11, a learning rate scheduler was utilized to drop the
learning rate by a factor of 10. Mask-RCNN models that
utilized a Swin-T [42] or ConvNeXt-T [43] backbone were
trained for 12 epochs with a batch size of 16. An AdamW
optimizer was utilized with a learning rate of 0.0001 and
a weight decay of 0.05. The YOLACT models trained for
55 epochs with an effective batch size of 32, utilizing an
SGD optimizer with a learning rate of 0.001, a weight decay
of 0.0005, and a momentum of 0.9, with a learning rate
scheduler dropping the learning rate by a factor of 10 at
epochs 20, 42, 49 and 52.

The Mask2Former models were trained for 50 epochs,
utilizing an AdamW optimizer with a learning rate of
0.00005 and a weight decay of 0.05. Early stopping was
implemented for the Mask2Former models, with a patience
of 10 epochs monitoring the validation mAP score in
decimals, with a minimum change of 0.005 in the mAP score
required to continue the training. A learning rate scheduler
was not used since the Mask2Former models used early
stopping. If a learning rate scheduler had been utilized,
certain models could have converged before reaching the
epoch number for which the learning rate scheduler would
have reduced the learning rate, thus resulting in different
training parameters. Maintaining a consistent learning rate
guaranteed fair comparisons across all experiments involving

Mask2Former models. All experiments used distributed
training between two NVIDIA A100 40Gb GPUs. The
Mask-RCNN models were used to investigate the effect of
merging a clean and second dataset of lesser quality on
the COCO dataset; however, for computational workload
reasons, YOLACT andMask2Former were not used for these
experiments. Lastly, again for reasons of computational load,
only Mask-RCNN models were trained on the ADE20K
dataset.

V. RESULTS
The results from the experiments were obtained from the
official test-dev set of the COCO dataset and the created
hold-out test dataset for ADE20k. COCO’s primary metric
mAP0.50:0.05:0.95 (mAP) [13] is the metric of interest for
the experiments and is expressed in decimal format. The
experiments are divided into 3 subsections: localization
uncertainty, incorrect class labels, and missing annotations.
A second metric, τ , is calculated by normalizing each of
the degraded models’ test scores to the model trained on the
original ground truth annotations for each given sample size.
This gives insight into the relationship between annotation
degradation and sample size. τ can be interpreted as the
percentage remaining of the chosen reference mAP score.
A comparison across the annotation error types and τ is
shown in Table 2, with the scores being averaged across
all three model architectures and each of the four dataset
sizes: 10,000, 25,000, 50,000, and 100,000. Finally, the
inference results for varying Mask2Former models trained
on 100k images can be seen in Fig. 22 to understand model
performance further.

A. LOCALIZATION UNCERTAINTY
A total of 136 (72 for Mask-RCNN, 32 for YOLACT, and
32 for Mask2Former) models were trained to investigate the
relationship between the training sample size and the effect
of localization uncertainty on mAP performance. The results
on the COCO dataset can be seen in Fig. 3. The legend for
the respective figures can be interpreted as follows: 100%
Clean refers to the original ground truth annotations being
used, 75% Clean 25% σ = 5 refers to 75% of the original
ground truth annotations being used with the remaining 25%
of the annotations having localization uncertainty introduced
with a σ = 5. Lastly, 100% σ = 5 refers to all the annotations
having localization uncertainty introduced with a σ value =
5. The comparison between the randomly selected percentage
of annotations degraded and merging a clean and a second
dataset of lesser quality is seen in Fig. 19. Finally, the
results on the ADE20K datasets can be seen for both
object detection and instance segmentation in Fig. 4. The
results suggest that perfectly labeled bounding boxes and
polygon masks yield the highest scores per sample size,
nonetheless, some minor levels of localization uncertainty
do not have a significant detrimental impact on model
performance.
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FIGURE 3. COCO results for varying localization uncertainty (σ is the standard deviation used for generating Gaussian radial noise) on mAP Performance.

FIGURE 4. Mask-RCNN model results on ADE20K subsets for varying localization uncertainty on mAP performance.

B. INCORRECT CLASS LABELS
A total of 96 (72 for Mask-RCNN, 12 for YOLACT, and
12 for Mask2Former) models were trained to investigate the
relationship between the training sample size and the effect of
incorrect class labels onmAP performance. The results on the
COCOdataset are seen in Fig. 5. The legend for the respective
figures can be interpreted as follows: 100%Clean refers to the
original ground truth annotations being used, 25% incorrect
class labels refer to 25% of the annotations with induced
class labels errors. Due to the JSON submission file being
too large for the evaluation server to handle, the validation
results are used for the instance segmentation results for
Mask2Former in this section. The results for merging a clean
and a second dataset of lesser quality are seen in Fig. 17,
with direct comparisons seen in Fig. 20. Finally, the results

on the ADE20K datasets can be seen in Fig. 6. The results
from this experiment indicate that annotating class labels
requires careful consideration as it can severely impact mAP
performance.

C. MISSING ANNOTATIONS
A total of 84 (60 for Mask-RCNN, 12 for YOLACT, and
12 for Mask2Former) models were trained to investigate the
relationship between the training sample size and the effect of
missing annotations on mAP performance. The results on the
COCOdataset are seen in Fig. 7. The legend for the respective
figures can be interpreted as follows: 100%Clean refers to the
original ground truth annotations being used, 25% missing
annotations refer to 25% of the annotations being dropped
from the dataset. The results between the randomly selected
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FIGURE 5. COCO results for varying incorrect class labels on mAP performance.

FIGURE 6. Mask-RCNN model results on ADE20K subsets for varying incorrect class labels on mAP performance.

percentage of annotations degraded and merging a clean and
a second dataset of lesser quality is seen in Fig. 18. Finally,
the results on the ADE20K datasets can be seen in Fig. 8.
The findings from this experiment indicate the quantity of
annotations is more important than the quantity of images in
the dataset. This demonstrates the importance of annotating
every object of interest in the dataset before gathering further
data.

D. EFFECT OF BACKBONE
A total of 80 Mask-RCNNmodels were trained to investigate
the relationship of the backbone used on each annotation
uncertainty. Three backbones were considered for this work,
ResNet-50, Swin-T, and ConvNeXt-T, which focused on
Mask-RCNN models and the COCO dataset to reduce the

computational workload. The backbones have approximately
26M, 28M, and 28M parameters, respectively. The results of
the localization uncertainty on the COCO dataset can be seen
in Fig. 9. The results of the incorrect class labels can be seen
in Fig. 10. Finally, the results for the missing annotations can
be seen in Fig. 11. The results suggest that regardless of the
backbone used, the trends are still apparent across each of the
annotation uncertainties.

E. COMBINED ANNOTATION UNCERTAINTIES
A total of 36 (24 for Mask-RCNN, and 12 for YOLACT)
models were trained to investigate the relationship between
the training sample size and the effect of combining
the annotation uncertainties on mAP performance. The
combined annotation uncertainties were created as follows.
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FIGURE 7. COCO results for varying missing annotations on mAP performance.

FIGURE 8. Mask-RCNN model results on ADE20K subsets for varying missing annotations on mAP performance.

Firstly, a fixed degradation amount is used across all three
annotation uncertainties, with 25%, 50%, and 75% being
the chosen degradation amounts. Missing annotations are
first introduced into the dataset, following this, class labels
are changed and finally, localization uncertainty is added
to the given degradation amount. Only Mask-RCNN and
YOLACT models were used for this experiment to reduce
the computational workload on the COCO dataset, with only
Mask-RCNN used for the ADE20K dataset. The results
of the combined annotation uncertainties on the COCO
dataset are seen in Fig. 12. The legend for the respective
figures can be interpreted as follows: 100% Clean refers
to the original ground truth annotations being used, 25%
combined refers to 25% of the annotations being dropped
from the dataset followed by 25% of the dataset being

introduced with incorrect class labels and finally 25% of
the annotations with induced localization uncertainty. Finally,
the results of the ADE20K datasets can be seen in Fig. 13.
The findings from this experiment highlight the importance
of ground truth annotations, as when annotation uncertain-
ties are combined the degree of degradation recorded is
severe.

VI. DISCUSSION
The results enable us to investigate the relationship between
annotation quality and quantity on mAP performance for
object detection and instance segmentation for varying
annotation qualities. As the training size increases for COCO
and ADE20K’s original ground truth annotations so does
mAP performance as seen in Table 1. However, collecting
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FIGURE 9. Per backbone Mask-RCNN COCO results for varying localization uncertainty on mAP performance.

FIGURE 10. Per backbone Mask-RCNN COCO results for varying missing annotations on mAP performance.

and annotating object detection and instance segmentation
datasets is a labor-intensive task that carries both a time
and cost investment. In practice, due to the large dataset
sizes needed for fully-supervised computer vision tasks, this
commonly leads to suboptimal quality of bounding box and
polygon mask annotations.

A. LOCALIZATION UNCERTAINTY
Results of the localization uncertainty experiment as shown
in Fig. 3 & 4, suggest the utility of additional data is directly
related to its annotation quality. Increasing the percentage
of the annotations with degradation introduced results in
a drop in mAP performance. This is also true for the
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FIGURE 11. Per backbone Mask-RCNN COCO results for varying missing annotations on mAP performance.

FIGURE 12. COCO results for varying combined annotation uncertainties on mAP performance.

level of uncertainty introduced. As the standard deviation
of the introduced noise (σ ) increases, the annotations
experience greater degradation, leading to a more significant
decrease in mAP. For reference, increasing the training
dataset size by a factor of 10 when using the original

ground truth COCO annotations, from 10,000 training
images to 100,000, has resulted in an increase in mAP
performance of 0.142 and 0.129 for object detection and
instance segmentation, respectively, when averaging across
all models. However, the quality of the data is important.
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FIGURE 13. Mask-RCNN model results on ADE20K subsets for varying combined annotation uncertainties on mAP performance.

TABLE 1. mAP performance per training sample size.

TABLE 2. Comparison of τ across all 3 annotation uncertainty types on the COCO dataset.

Training on a dataset of 100,000 images with the maximum
degradation used for all annotations that is σ = 5 for
100% of the annotations, results in an average gain in mAP
performance across the 3 models used of 0.044 for object
detection and 0.049 for instance segmentation, relative to
10,000 images with the original ground truth annotations.
The results for varying the backbones can be seen in Fig. 9,
with the trends being consistent across all 3 backbones
used. The relationship between mAP degradation when
considering sample size, τ , can be seen in Fig. 14. The
results allow for amore direct comparison of how degradation

amounts affect mAP performance per sample size. While
the degradation amounts are introduced as percentages of
the sample size, increasing the sample size does not drown
out the effect of degradation annotations for localization
uncertainty. This is reflected by the degradation amount
remaining approximately constant throughout each sample
size for both object detection and instance segmentation. The
results from the localization uncertainty experiment suggest
that perfectly labeled bounding boxes and polygon masks
achieve the best scores per sample size. However, some small
levels of localization uncertainty are not detrimental to model
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TABLE 3. Breakdown of number of annotations for missing annotations datasets.

FIGURE 14. COCO results for varying localization uncertainty on τ .

performance. This is reflected by an average decrease in
mAP performance across all models and the four subsets of
0.003 and 0.0003 for 75% of the original dataset untouched
and 25%with σ = 2 introduced into the annotations for object
detection and instance segmentation, respectively.

B. INCORRECT CLASS LABELS
Results of the effect of incorrect class labels as shown
in Fig. 5 & 6 show that, as the number of incorrect
class labels increases, the degradation in the models’ mAP
performance becomes more pronounced. Training on the
dataset of 100,000 images with the three incorrect class label
percentages of 75%, 50%, and 25% results in a decrease
of mAP performance of 0.12, 0.05, and 0.024 respectively,
for object detection when averaged across all 3 models on
the COCO dataset. For instance segmentation the decreases
in mAP performance are 0.117, 0.048, and 0.026. These
results suggest that incorrect class labels degrade model

performance approximately the same for object detection and
instance segmentation. The degradation in mAP performance
is also not linear as the difference in mAP performance
from 75% to 50% is 0.069 while the difference from 50%
to 25% is 0.024 when averaging the differences between
object detection and instance segmentation. The results for
varying the backbones can be seen in Fig. 15, with the trends
being consistent across all 3 backbones used. The relationship
between mAP degradation when considering sample size, τ ,
can be seen in Fig. 15. For incorrect class labels, it appears
increasing the sample size has the ability to reduce the effect
of degraded annotations for 50% and 75% of incorrect class
labels. This is reflected by an upward trend in τ as sample size
increases in Fig. 15. However, the effect is not as strong for
25% of incorrect class labels. The results from the incorrect
class labels experiment suggest due diligence is required
when annotating class labels as this can significantly degrade
mAP performance.
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FIGURE 15. COCO results for varying incorrect class labels on τ .

FIGURE 16. COCO results for varying missing annotations on τ .

C. MISSING ANNOTATIONS
Results of the effect of missing annotations, as shown in
Fig. 7 & 8, show that, as we remove more of the annotations
from the dataset, this results in a decrease in mAP perfor-
mance. Training on the dataset of 100,000 images with the
three missing annotation percentages of 75%, 50%, and 25%

results in a decrease inmAP performance of 0.093, 0.043, and
0.016 respectively, for object detection when averaged across
all 3models on the COCOdataset. For instance segmentation,
the differences in mAP performance are 0.083, 0.039, and
0.017. These results suggest that missing annotations degrade
model performancemarginally more for object detection than
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FIGURE 17. COCO mask-RCNN results for varying incorrect class labels when merging.

instance segmentation. The degradation in mAP performance
is also not linear as the difference in mAP performance
from 25% to 50% is 0.026, whilst the difference from 50%
to 75% is 0.048 when averaging the differences between
object detection and instance segmentation. The results for
varying the backbones can be seen in Fig. 11, with the trends
consistent across all 3 backbones used. The relationship
between mAP degradation when considering sample size, τ ,
can be seen in Fig. 16. For missing annotations, it appears
increasing the sample size has the ability to reduce the
effect of degraded annotations for 75% and 50% of missing
annotations. This is reflected by an upward trend in τ

as sample size increases in Fig. 16. The results from
the effect of missing annotations suggest the number of
annotations is more critical than the number of images in
your dataset. This reinforces the need to utilize your dataset
fully, annotating each object of interest before collecting
more data.

D. COMBINED ANNOTATION UNCERTAINTIES
The results of combining the annotation uncertainties can be
seen in Fig. 12 & 13. The results show that as we compound
the annotation uncertainties, this further degrades mAP
performance in comparison to their individual parts, with
75% of combined annotation uncertainties for each sample

size scoring an approximate mAP < 0.07 for both models
used. The results highlight the importance of annotation
quality given the degradation amounts when combining the
uncertainties.

E. INTRODUCTION OF ERRORS
The results of comparing a percentage of annotations
having annotation uncertainty introduced in comparison to
merging a clean and second dataset of lesser quality can
be seen in Fig. 19 & 20. The results show that for both
object detection and instance segmentation, the difference in
mAP performance between these two methods is negligible
when considering localization uncertainty and incorrect class
labels. For the models, it appears degraded annotations have
the same effect on mAP performance regardless of how they
were introduced into the dataset. To illustrate, consider a
scenario with 100 annotations distributed over 10 images,
with each image containing 10 annotations. The situation in
which each of the 10 images has one degraded annotation
is equivalent to having 9 images with correct annotations
and one image with all annotations incorrect. As merging a
dataset with no annotations adds no value to the dataset, there
is no direct comparison between a percentage of annotations
having missing annotations and merging a clean and second
dataset of lesser quality.
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FIGURE 18. COCO mask-RCNN results for varying missing annotations when merging.

FIGURE 19. Mask-RCNN - Comparison of thresholding & merging a second dataset with localization uncertainty on mAP performance.

F. DEGRADATION OF mAP PERFORMANCE
As expected, for all 3 types of annotation uncertainty
introduced into the datasets, there is a reduction in mAP
performance as shown in Table 2. However, each type of
annotation uncertainty has varying impacts on the magnitude
of the degradation of mAP performance. Table 2 suggests
incorrect class labels have the highest degradation effect on

mAP performance followed bymissing annotations and lastly
localization errors. Whilst annotation errors have a negative
effect on mAP performance, the results from each of the
experiments show that gains can be made from the use of
additional data of lesser annotation quality. One potential
reason as to why localization errors retain high τ values is
due to the metric chosen. As mAP is calculated over a range
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FIGURE 20. Mask-RCNN - Comparison between thresholding and merging a second dataset with incorrect class labels on mAP performance.

FIGURE 21. Learning curves for various mask-RCNN models trained on 100,000 images.

of intersection over union values ranging from 0.5 to 0.95,
small localization uncertainties may not be detrimental to the
overall performance. Furthermore, these results are in line
with our previous paper [10], which showed when the entire
dataset has localization uncertainty introduced, we observe a
degradation in mAP score of 0.0241 & 0.0135 for each unit
increase in σ for object detection and instance segmentation
respectively. For this work, since the localization uncertainty
is introduced as a percentage of the dataset, we expect the
degradation amount to decrease.

The learning curves for the various Mask-RCNN models
trained on 100k images can be seen in Fig. 21. The training

losses are higher for models trained with incorrect class
labels and localization uncertainties in comparison to the
model trained with the original ground truth annotations.
In contrast, the models with missing annotations can achieve
lower training errors. This is possible as models can better fit
the smaller training datasets. However, all models follow the
same trends for convergence.

G. QUALITATIVE ANALYSIS
From inspection of the inference results as seen in Fig. 22,
missing annotations and incorrect class labels both reduce the
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FIGURE 22. Inferences of various Mask2Former models trained on 100,000 images.

confidence scores of predictions in comparison to the base-
line model, which was trained with the original ground truth
annotations. The results suggest that missing annotations
and incorrect class labels in your dataset hinder the model’s
ability to converge on the optimal weights. This, in turn,
reduces the confidence scores of each inference, resulting in
predictions being filtered out due to confidence scores being
lower than the allowable threshold. One potential reason
for incorrect class labels degrading mAP performance the
most is due to the confusion they introduce, an outcome

that is supported by [44]. As the model is trained, the same
class object is shown with multiple class labels throughout
the dataset. This prevents the model from converging on
the understanding of the objects of interest. As for missing
annotations, the induced missing annotations in the dataset
only affect the class objectness score, resulting in objects
of interest being considered the background class during
training [45]. This may bias the model into predicting the
class only in certain circumstances; however, there is no
confusion with other classes. Concerning data collection and
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annotation, the results suggest that for optimal performance
for both object detection and instance segmentation, the
dataset should be perfectly labeled. However, considering
the investment needed for annotating large-scale datasets,
a trade-off between quality and quantity may be of interest.
Annotating a larger dataset with small levels of annotation
uncertainty may yield better performance than a smaller
dataset that is perfectly labeled.

H. LIMITATIONS & FUTURE WORK
The findings of this study have to be seen in light of
some limitations. The use of a discrete space of 10,000,
25,000, 50,000, and 100,000 training images for the COCO
dataset and 2,000, 5,000, 10,000, and 20,000 for the
ADE20K dataset along with the degradation percentages
of 25/50/75/100 were used to limit the number of models
that had to be trained and thus limit compute resources.
A finer scale for both dataset size and degradation amounts
could provide more detailed insight as to when the data
of lesser annotation quality begin to negatively affect mAP
performance. Experiments on further object detection and
instance segmentation datasets along with different model
architectures should be conducted in the future to further
develop and validate these initial findings and determine
whether the results from these experiments generalize. In
addition to this, an investigation into the relationship between
annotation quality and quantity for further computer vision
tasks, such as image classification or semantic segmentation,
would be of interest to further develop the understanding of
this relationship. Furthermore, it is important to acknowledge
that the methods used to introduce annotation uncertainties
may in themselves carry biases. Lastly, it would be of interest
to investigate the effects of data augmentation and its ability
to add diversity to the dataset in comparison to adding
new data.

VII. CONCLUSION
In this paper, the relationship between annotation quality and
quantity and their effects onmAP performance for both object
detection and instance segmentation is studied. Datasets
of training image sizes of 10,000, 25,000, 50,000, and
100,000 were created from the COCO 2017 detection dataset
for these experiments, in addition to 2,000, 5,000, 10,000,
and 20,000 from the ADE20K dataset. To investigate the
effect of suboptimal annotations along with the relationship
between annotation quality and quantity, three different types
of annotation uncertainties were introduced to the ground
truth annotations of the datasets: localization uncertainty,
incorrect class labels, and missing annotations. Mask-RCNN,
YOLACT, and Mask2Former models were trained on the
induced error datasets. In total, 456 models were trained to
investigate the relationship between annotation quality and
quantity for varying levels of annotation uncertainty over the
four dataset sizes.

The results show that all three annotation uncertainties
negatively affect mAP performance. The degree to which

each type of annotation uncertainty degrades mAP differs
as seen in Table 2, with incorrect class labels degrading the
mAP performance the most, followed by missing annotations
and lastly, localization uncertainty. While the results show
that perfectly labeled data outperforms degraded annotations
for a fixed sample size, there is utility in adding additional
data of lesser annotation quality. The extent of the benefits
of the additional data is directly related to how degraded
the annotations’ are. The results also suggest that degraded
annotations have the same impact on mAP performance
irrespective of how the annotations were introduced into the
dataset.

This study has investigated the relationship between
annotation quality and quantity for mAP performance for
the tasks of object detection and instance segmentation,
on four subsets of the COCO and ADE20K datasets.
The reduction in mAP performance for all three anno-
tation uncertainties reinforces the importance of accurate
annotations for both fully supervised object detection and
instance segmentation tasks. Furthermore, the results inform
us of how each type of annotation uncertainty impacts
mAP performance in addition to providing insight into
the relationship between annotation quality and quantity
on mAP performance for object detection and instance
segmentation.
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