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ABSTRACT Focal cortical dysplasia type II (FCD II) is an epileptogenic lesion often associated with
pharmacoresistant epilepsy. Yet, owing to their subtle appearance, identifying these lesions via 3DMagnetic
Resonance Image (MRI) remains a complex challenge, rendering them susceptible to evasion by conven-
tional visual analysis. In this study, we consider advancing a novel extraction featuring a volumetric approach
dubbed Volumetric Decimal Descriptor Pattern (V-DDP), whereby, data volumetric representations can be
effectively captured, providing a comprehensive depiction of the spatial relationships and structural nuances
within the dataset. Thus, by applying this unique feature extraction approach, we have been able to decipher
more significant information and unlock a relatively rich context, paving the way for a greater recognition
scope of such nuanced patterns. This approach has been upheld by three classifiers, namely, the k-nearest
neighbors (KNN), the Linear Discriminant Analysis (LDA) and the Support Vector Machine (SVM). Our
experimental results demonstrate the significant effectiveness of the proposed approach with the nonlinear
SVM classifier. We significantly outperform the state-of-the-art models, especially, in complex volumetric
data bound areas.

INDEX TERMS Focal cortical dysplasia, 3D magnetic resonance image, volumetric decimal descriptor
pattern.

I. INTRODUCTION
Focal cortical dysplasia type II (FCD II) stands as a sig-
nificant factor in pharmacoresistant epilepsy, particularly in
cases where surgery intervention is imposed [1]. In this
respect, magnetic resonance imaging (MRI) findings usually
involve cortical thickening, indistinct grey and white matter,
increased signal intensity on T2 or FLAIR sequences, and
with the persistence of transmantle sign [2], [3]. Despite
significant progress in MRI resolution, some FCD type II
lesions might be undetected by conventional MRI scans’
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visual analysis [4], particularly when noninvasive data fail
to pinpoint a specific brain region. Hence, retrieving already
overlooked lesions holds considerable clinical importance
enhancing postoperative seizure outcomes. Indeed, patients
with positive MRI findings usually demonstrate somewhat
effective postoperative seizure outcomes, compared to those
demonstrating negatives MRI results [1].

For individuals with focal FCD lesions, epilepsy relating
surgery is a promising treatment option. In this regard, the
authors in [5] document that achieving complete removal
of FCD lesions and surrounding epileptogenic areas is most
often associated with improved prognoses and lower compli-
cations. Hence, accurately identifying of the epileptogenic
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lesions’ location and scope throughout the pre-surgical
assessment stage is crucial. In effect, a thorough deter-
mination of such factors is critically essential in surgical
decisions, and in formulating the intracranial electroen-
cephalogram (iEEG) implantation strategy, mainly when
lesions are discovered to affect the speech or motor skill
functional areas [6]. Despite significant progress in neu-
roimaging and computational methods, identification process
of several lesions remains a highly challenging task, with
a sensitivity rate of around 70% recorded in FCD affected
patients [7], [8]. Such a challenge represents a considerable
obstacle, 30% of these patients end up registeringMRI results
that are visually negative, leading to inherent difficulties in
tracking the epileptogenic zone (EZ). Moreover, MRI imag-
ing reevaluation often reveals lesions initially overlooked
during primary interpretation. The pre-operative evaluation
task is also a time-consuming process, heavily dependent
on the interpreters’ experiments, which can impede the EZ’s
accurate localization, thereby, hampering surgical treatment
progress.

To address the challenges of FCD radiological assessment,
several studies have integrated quantitative computational
analyses and machine learning techniques. These approaches
consider incorporating a set of feature measures into identifi-
cation algorithms, in a bid to enhance detection rates (e.g. [9]
and [10]).

In [9], an automated classifier was applied using
surface-based FCD morphology and intensity features to
exploit their covariance. As to the classification proce-
dure, it was performed using Fisher’s linear discriminant
analysis (LDA). The method’s effectiveness was tested on
a 19 patients, including 15 with confirmed FCD, who
underwent scans at 3.0T. The classifier’s performance
was cross-validated using a leave-one-out strategy. Speci-
ficity was evaluated on twenty-four healthy control cases
and eleven disease control cases exhibiting temporal lobe
epilepsy. The classifier’s performance was also assessed
on different datasets including twenty healthy controls and
fourteen patients with histologically proven FCD scanned at
1.5T. The reached results appeared to reveal a sensitivity rate
of 74% and a specificity rate of 100%.On initially training the
classifier on 3.0T data applied to the 1.5T dataset, however,
a comparable performance was noticed, demonstrating a
sensitivity rate of 71% and a specificity of the rate of 95%.

In [10], an automated detection method was implemented
to identify FCD lesions, integrating quantitative multimodal
surface-based features and machine learning. The study used
neuroimaging data from 74 participants, including 40 cases
demonstrating histologically confirmed FCD type II. Accord-
ingly, FCD lesion features were computed on each cortical
surface and applied to an ANN. The neural network classi-
fier using multimodal surface-based features demonstrated
superior accuracy (70.5%), sensitivity (70.0%), and speci-
ficity (69.9%) rates, compared to the unimodal classifier.
No significant difference was observed regarding the FCD

subtype detection rates (Pearson’s chi-square = 0.001, p =

0.970). As for Cohen’s kappa score, indicating the agreement
between automated detection results and postoperative resec-
tion areas; it recorded a rate of 0.385, which is considered
fair.

The study by [11] advances a unique innovative approach
to address pediatric epilepsy FCD detection associated chal-
lenges. The research involved the implementation of a
surface-feature based classifier. Established measures such as
cortical thickness, grey-white matter hyperintensity, FLAIR
signal intensity, sulcal depth, and curvature were incorpo-
rated, alongside a selection of novel features including local
cortical deformation and the ‘‘doughnut’’ method. The lat-
ter is used to help in assessing local variability in cortical
morphometry/MRI signal intensity and per-vertex interhemi-
spheric asymmetry. Using a neural network classifier trained
on twenty-two focal epilepsy pediatric patients and 28 healthy
controls related data, the study indicated that incorporating
such novel features in the analyses proved to help signifi-
cantly in enhancing the FCD identification sensitivity (73%),
as compared to the exclusive use of established features
(59%). Such findings suggest the possibility of applying such
methods for the potential identification of subtle lesions in
medication-resistant pediatric epilepsy, as well as for struc-
tural analysis of healthy and abnormal cortical development.

The study by [12] aimed to evaluate the diagnostic
effectiveness ofmorphometric analysis compared to the expe-
rienced neuroradiologist performing visual analysis, concern-
ing a cohort of ninety-one histologically confirmed FCD
II patients. Accordingly, morphometric analysis revealed an
increased FCD II a detection rate (82%) compared to visual
analysis (65%), while no significant difference was observed
in FCD IIb (92% versus 91%). On combining visual and
morphometric analyses, the FCD detection rate reached 98%,
exhibiting a noticeable increase in diagnostic sensitivity (94%
versus 65% for FCD IIa; 99% versus 91% for FCD IIb). The
study’s results highlight the importance of introducing mor-
phometric MRI analysis to enhance sensitivity in identifying
FCD II, thus, maintaining its implementation in patients’
diagnoses already classified as MRI-negative by ordinary
visual analysis.

In [13], however, the Morphometric Analysis Program
(MAP) diagnostic value was assessed concerning focal
drug-resistant epilepsy (DRE) with pathologically confirmed
focal FCD. The automated MAP analysis program generated
z-score maps from T1 images referenced to healthy adult or
pediatric controls for each of the 39 FCD pathology con-
firmed cases. The administered MAP identified abnormal
grey matter extension into white matter (MAP-E) and blurred
grey-white matter junction (MAP-J) independently of clini-
cal data and other imagery modalities. Regarding sensitivity
and specificity, they were computed for MRI, MAP, scalp
EEG, PET, and SISCOM about the resection area (RA).
In this cohort of 39 histologically confirmed FCD cases, the
MAP-J (64% and 96%) andMAP-E (74% and 94%) recorded
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sensitivity and specificity rates were higher than those scored
via qualitative MRI review, SISCOM, and FDG-PET.

In a more recent study, morphometric analysis of
T1-weighted images, applying the Morphometric Analysis
Program (v2018; MAP18), was implemented to boost visual
detection [14]. In a retrospective investigation, a feed-forward
artificial neural network (ANN)was developed to detect focal
cortical dysplasia (FCD). The ANN network was trained and
cross-validated concerning 113 patients through manually
segmented FCDs and 362 healthy controls administered by
thirteen scanners. Sensitivity and specificity rates of 87.4%
and 85.4% were scored throughout the cross-validation pro-
cess. Further performance on an independent dataset of sixty
FCD patients and seventy healthy controls yielded sensitivity
and specificity rates of 81.0% and 84.3%, respectively. Such
results highlight well the potential of incorporating morpho-
metric and ANN analyses for FCD detection purposes, owing
to the highly promising sensitivity and specificity scores they
could record.

However, an urgent need to develop innovative mechanism
simultaneously integrating machine learning and quantita-
tive imaging features for effective identification of poten-
tial epileptogenic foci is still perceived. In this respect,
it is interesting to draw benefits from various application
domains proved methods, as demonstrated by the successful
application of biomedical signal classification for epileptic
seizure detection [15], [16], [17] and image processing tech-
niques [18], [19], [20] for feature extraction ends on both
2D and 3D images [20]. In [20], a novel feature extraction
design has been introduced and effectively applied to 2D
images for multiple sclerosis (MS) detection and progression
analysis purposes. In this context, and given the absence of
a comparable approach in the existing relevant literature,
we consider pioneering a new feature extraction architecture,
based on the idea developed in [20], which fit for implemen-
tation with 3D imagery. Hence, a novel design, useful for
applications to detect FCD, based on the newly developed 3D
feature extraction approach and integrative machine learning
techniques, is put forward within the scope of the present
study.

II. METHODS AND MATERIALS
A. DATABASE
For an effective testing of our advanced architecture, we con-
sidered applying the Open Presurgery MRI Dataset for Focal
Cortical Dysplasia and Control Individuals, a freely avail-
able database [21]. The observed dataset, drawn from the
EpileptologyDepartment, of theUniversity Hospital of Bonn,
Germany (2006-2021), involves individuals with epilepsy
associated with focal cortical dysplasia (FCD) and healthy
controls. The relevant selections criteria included histologi-
cally confirmed FCD type II or radiologically suspected FCD
type II regarding participants over eighteen-years old at the
time of study conduction or data collection. Demographi-
cally, among the eighty-five epilepsy-affected participants,

41.2% were female and 58.8% were male, displaying a first-
epileptic-seizure mean age of 10 years, and an MRI-scan
mean age of 28.9 years.

The data set includes detailed clinical information regard-
ing FCD classification, site distribution, drug resistance,
and surgical outcomes. The imaging data, made avail-
able from the Life & Brain Center in Bonn, Germany,
through the application of a 3-Tesla MRI scanner, con-
sist of fluid-attenuated inversion recovery (FLAIR) and T1
sequences. The FCD affected individuals underwent high-
resolution 3D T1-weighted MRI with varying voxel sizes,
while control subjects underwent the same imaging protocol
with isotropic T1-weighted and FLAIR sequences.

B. THE DDP APPROACH
In the area of texture analysis, the Decimal Descriptor Pattern
(DDP) has emerged as a formidable pattern characterization
tool in digital imagery [18], [19], and [20]. DDP rests on
encoding the correlation binding a pixel and its neighbor-
ing pixels, relying on their respective intensity values. The
method aims to depict the texture by creating a feature vector.
For an effective feature vector to be achieved, the minimum,
maximum, and mean values are computed based on the intri-
cate patterns within the image. At this level, the operator
labels every pixel in an image by calculating the mean, max-
imal, and minimal values drawn from the 3 × 3 surrounding
pixels. The resultant features, drawn from the entirety of the
image born patterns, are concatenated into an initial vector, V.

While the highest value reflects the most noticeable char-
acteristics identifying the peaks within patterns, the lowest
value depicts the most delicate features or details marking the
troughs, i.e., the least prominent aspects. Besides, the average
value is a central tendency measure, recognizing the over-
all concentration distribution. This feature set, drawn from
the image’s maximum, minimum and mean values, robustly
characterizes the various persistent patterns, promoting a
thorough understanding that underpins further analysis and
interpretation.

Once the feature vector is constructed, the maximum value
(max), minimum value (min), and average value (mean) are
calculated. Using (max), (min) and (mean), each value in the
vector V is assigned a figure within the range of {0, 1, 2, 3,
4, 5, 6, 7, 8, 9, 10}. The vector V is then converted into its
codes.

Such a process serves to generate decimal patterns,
predominantly encapsulating textural information.

C. THE PROPOSED APPROACH: VOLUMETRIC DECIMAL
DESCRIPTOR PATTERN (V-DDP)
In a data analysis process of varying nature, a grow-
ing need for methods enabling to drawing insights from
three-dimensional datasets is usually perceived.

This study is designed to provide a novel volumet-
ric method, called Volumetric Decimal Descriptor Pattern
(V_DDP), involving spatial comprehension in 3D datasets.
(V_DDP) is enhanced by implementing of an interconnected
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voxel grid representing volumetric data, which helps extract
features with exceptionally accurate precision. Concerning
our volumetric data analysis case, and for spatial accuracy
to be highly enhanced, we consider implementing a system-
atic approach, whereby, 3D images can be subdivided into
smaller, more manageable units. The process is initiated by
subdividing the 3D space into a grid of window volumes,
wherein, each window encloses a particular subset of voxels.
The window specified dimensions are set to 3∗3∗3 voxels
(Figure 1).

Suppose, for instance, that a set of Nz (windows) are to
be analyzed, with nx pixels in the horizontal direction and ny
pixels in the vertical direction, and that each pixel’s respective
digital value is quantized to ng gray levels.

Let: LX=(lx1,lx2,lx3), LY=(ly1,ly2,ly3) and LZ=lz1,lz2,
lz3) be the x, y and Z domains; and let W=[V1(lx1,ly1,lz1),
V2(lx1,ly1,lz2), . . . ,V27(lx3,ly3,lz3)] be the a window set
englobing 27 voxels V1,V2,. . . ,V27.

Worth recalling, at this level, is that in the original
definition of DDP, as figuring in [1], three pixels (maxi-
mum, minimum and mean values) were identified in each
neighborhood of 3∗3 pixels.

FIGURE 1. V_DDP approach.

With respect to our set V-DDP construct, however, three
pixels (maxv, minv and meanv values) have been identified
for each neighborhood of 3∗3∗3 voxels, so that a total of
27 voxels are considered, wherein:

maxv = Maximum(V1,V22 . . . ,V27) (1)

FIGURE 2. Feature extraction from 3∗3∗3 pixels.

minv = Minimal(V1,V22 . . . ,V27) (2)

meanv = mean(V1,V22 . . . ,V27) = (V1,V22,V27)/27

(3)

The entirety of the image windows drawn features are then
jointly concatenated into a single feature vector (fV).

In a last stage, the feature vector (fV) associated max-
imum, minimum and mean values (maxim-fv, minim-fv
and mean-fv) are computed. As it is the case with the
2D- DDP [18], [19], [20], a decimal code is assigned to the
established feature vector (fV). For example, the minimal
value is coded by 0 and values that are in this interval
]minim-fv (mean-fv+minim-fv)/4 ] are coded by 1.

TABLE 1. The V-DDP relevant codes.

D. CONSIDERED CLASSIFIERS
1) SUPPORT VECTOR MACHINES (SVM)
Initially introduced in [22], the SVM classifier belongs to
the kernel-based family of classifiers, and is designed to con-
struct a hyperplane that separates two classes of data, while
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maximizing the distance span separating them. It provides
enough flexibility to handle both linear and nonlinear clas-
sifications, depending on the applied kernel type. For cases
wherein relevant data is linearly separable, a linear kernel is
used to map the data space into the feature space.

For nonlinear classification tasks, such as seizure detec-
tion [16], and automatic sleep stage classification [23],
however, a nonlinear kernel, such as the Gaussian-type Radial
Basis Function (RBF) kernel, is applied. This procedure
serves to transform the data space into a high-dimensional
feature space, liable to effective linear separation. It is
actually this process that has rendered the SVM gain
popularity as a versatile machine learning architecture, use-
ful for implementation in a wide range of application
fields.

2) K-NEAREST NEIGHBORS (KNN)
The k-Nearest Neighbors (KNN) algorithm is a nonparamet-
ric method simultaneously useful for implementation with
classification as well as regression tasks. It helps in making
predictions by considering the majority class or the average
of the k-nearest neighbors in the feature space. Known for
its versatility, KNN supports different distance metrics and
is adept at handling data persistent non-linear relationships.
Despite its simplicity and interpretability, users should be
mindful of computational efficiency, particularly regarding
large dataset involving scenarios. In sum, the KNN stands out
as a valuable and broadly applicable machine-learning tool,
capable of providing robust solutions within a wide range of
applications.

3) LINEAR DISCRIMINANT ANALYSIS (LDA)
The Linear Discriminant Analysis (LDA) is a classification
and dimensionality reducing technique widely used in areas
of machine learning and statistics.

As a supervised learning algorithm, it entails labelled
training data to execute prediction making and perform
dimensionality reduction tasks. In what follows, is a brief
overview of the Linear Discriminant Analysis.

The LDA’s primary goal consists in retrieving a linear
combination of features, characterizing or separating two
or more classes. The idea of LDA lies in the assumption
that features are normally distributed, and that classes have
identical covariance matrices. It also involves transforming
the original features into a newer set of features, dubbed
discriminant functions, by linearly combining the original
features. This transformation process is designed tomaximize
the class means separating span, while minimizing spread
within each class.

Based on the data associated covariance matrix, the
LDA undertakes to compute the relevant eigenvalues and
eigenvectors, wherein, the eigenvectors mark the maximum
variance trend directions (the discriminative power), and the
eigenvalues display the variance magnitude.

Further to the linear transformation process, the LDA
is also applicable for classification maintaining purposes.

Alternatively, it can also be used as a dimensionality reducing
technique, enabling to reduce the number of features while
retaining the most discriminative data.

III. RESULTS AND DISCUSSION
The experiment has been performed in two phases; a training
phase followed by testing one. During the training phase, the
proposed model is exposed to a labeled dataset, enabling it to
learn its underlying patterns and relationships. This process is
essential for constructing a sturdy and flexible model capable
of effectively predicting outcomes for the new data sets.

In the testing phase, the trained model’s performance is
assessed on a distinct and previously unnoticed or over-
looked dataset, thus, providing a crucial evaluative process
of the model’s accuracy level in making predictions on novel
instances, while testing its overall capacity. In effect, the
thoroughly detailed separation of the training and testing pro-
cedures should ensure that our model does not merely commit
the training data into memory but detects and highlights any
crucial aspects likely to be implemented in novel and undis-
covered cases, acknowledging the practical circumstances
targeted by our approach.

In this study, we harnessed the power of 161 T1 and 163
Flair sequences obtained by 3D MRI. Given their ability
to capture detailed structural information within the imaged
subject, the choice to use T1 and Flair sequences in our
experiments was deliberate. This information is invaluable
for various medical applications, including but not limited to
disease diagnosis and treatment planning [19], [20].

The data set was split into two subsets: a training set
comprising 80% of the data and a test set comprising 20%.
This division was crucial to assess the generalization ability
of our model. The 80-20 split was chosen based on estab-
lished best practices in machine learning. It strikes a balance
between providing the model with sufficient data to learn and
reserving an independent set for rigorous evaluation. This
methodology increases the likelihood that the model will
performwell on unseen data, thereby increasing the reliability
and applicability of the model in real-world scenarios.

The classification aims to identify the provided image’s
attachment category and nature (Figure 3). Therefore, extract-
ing a series of features from the image is necessary to draw a
relevant thorough description. The image classification pro-
cess is executed fusion the features’ descriptor, wherein, the
texture classification procedure depends on comparing two
feature vectors.

The analysis technique involves selecting representative
samples and marking different categories, before executing
the analysis process. The extracted features are then used to
define a vector of parameters regarding each image. The test
feature vectors are computed for every sample following the
same approach as illustrated in Figure 4.

The system is comprised of two principal phases: feature
extraction and classification. The initial phase entails the
application of the V_DDP feature extraction method to the
three-dimensional (3D) images. The extraction result will be
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FIGURE 3. Examples of 3D images from the Open Presurgery MRI Dataset
for Focal Cortical Dysplasia and Control Individuals: (a) a volumetric
diseased brain, (b) a volumetric healthy brain, (c) a diseased brain
presented in three orthogonal planes, (d) a healthy brain presented in
three orthogonal planes.

represented by a vector comprising features that describe the
entire image. The feature vector will then be utilized by the
classification algorithms, which will employ the extracted
features from theV_DDPmethod. Consequently, the learning
and classification processes will be based on the extracted
features.

FIGURE 4. FCD II detection overview.

For a thorough evaluation of our advanced V-DDP design’s
versatility and generalizability, we have considered intro-
ducing a range of classifiers as part of our experimental
procedure. In this respect, several classifiers, specifically,
the K-Nearts Neighbor Nearest (KNN), Linear Discrimi-
nant Analysis (LDA) and Support Vector Machines (SVM)
classifiers have also been observed, to help in the effective
assessment of our approach associated performance across
the entirety of learning paradigms.

FIGURE 5. Comparison of performance metrics between the used
classifiers using 3D MRI Flair sequences.

FIGURE 6. Comparison of performance metrics between the used
classifiers using 3D MRI T1 sequences.

An extensive performance evaluative procedure has been
undertaken to determine the suggested V-DDP architecture’s
effectiveness extent, along with establishing an evalua-
tive comparison with the most leading studies’ provided
solutions in the field. In effect, our approach displayed excep-
tional results across several metrics, particularly, regarding
the accuracy, sensitivity, specificity, precision, recall and
F1 score aspects.

The best results were obtained with the following param-
eters for T1 and FLAIR sequences. For LDA, the number of
components was set to 64. The Linear SVM used a parameter
of C = 1. For the Non-Linear SVM, the parameters were C =

10, kernel = rbf, degree = 3, and gamma = scale. Lastly,
the KNN method was configured with the number of classes
set to 2.
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TABLE 2. Performance evaluation: confusion matrix for different classifiers using 3D T1 MRI sequences.

TABLE 3. Performance evaluation: confusion matrix for different classifiers using 3D flair MRI sequences.

TABLE 4. Comparison of the proposed approach with state-of-the-art methods.

Figure 5 and 6 show the performance metrics of three
classifiers:

The results obtained with FLAIR sequences for vari-
ous classifiers demonstrate consistent and high performance
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across several evaluation metrics. The Linear SVM achieved
an accuracy of 84.85%, a sensitivity of 81.25%, a specificity
of 88.24%, a recall of 84.85%, and an F1 score that reflects
these balanced metrics. The Non-Linear SVM exhibited an
accuracy of 87.88%, a sensitivity of 87.5%, a specificity of
88.24%, a recall of 87.88%, and an F1 score of 87.88%. The
KNN classifier showed similar performance with an accuracy
of 87.88%, a sensitivity of 87.5%, a specificity of 88.24%,
a recall of 87.88%, and an F1 score of 87.88%. The LDA
classifier matched these results, also achieving an accuracy
of 87.88%, a sensitivity of 87.5%, a specificity of 88.24%,
a recall of 87.88%, and an F1 score of 87.88%. These results
indicate that theNon-Linear SVM,KNN, and LDA classifiers
perform equally well, with high accuracy and balanced sensi-
tivity, specificity, recall, and F1 scores, making them effective
for analyzing FLAIR sequences in this context.

The results obtained with T1 sequences for various clas-
sifiers exhibit notable performance metrics across multiple
evaluation criteria. The Linear SVM achieved an accu-
racy of 84.85%, a sensitivity of 68.75%, a specificity of
100%, a recall of 84.85%, and an F1 score of 84.42%. The
Non-Linear SVM demonstrated enhanced performance with
an accuracy of 90.91%, a sensitivity of 87.5%, a speci-
ficity of 94.12%, a recall of 90.91%, and an F1 score
of 90.89%. The KNN classifier showed an accuracy of
87.88%, a sensitivity of 75%, a specificity of 100%,
a recall of 87.88%, and an F1 score of 87.65%. Lastly,
the LDA classifier also exhibited strong performance, with
an accuracy of 90.91%, a sensitivity of 87.5%, a speci-
ficity of 94.12%, a recall of 90.91%, and an F1 score of
90.89%. These results indicate that both the Non-Linear
SVM and LDA classifiers provide high accuracy and
well-balanced sensitivity, specificity, recall, and F1 scores,
making them particularly effective for analyzing FLAIR
sequences.

This analysis underscores the critical role of selecting the
appropriate kernel to achieve optimal classifier performance.
It also emphasizes the need for careful consideration of
multiple metrics, including accuracy, sensitivity, specificity,
precision, recall, and F1 score, to make informed decisions
in classifier selection, recognizing the inherent trade-offs
among these performance indicators.

To further illustrate the effectiveness of our proposed
approach and the SVM RBF classifier, Table 2 and 3 present
the confusion matrix for the tested classifiers.

In conclusion, based on the comparative analysis, the RBF
SVM and LDA are designated as the optimal choices for
seizure detection in 3D IRM images, aligning seamlesslywith
our proposed feature extraction approach.

The results of numerous experiments conducted to validate
the V_DDP approach have demonstrated that it is significant
but a resource-intensive approach, requiring a significant
amount of time and computational power, especially for large
datasets.

In addition, the volumetric nature of 3D data introduces a
multitudinous array of intricate patterns and variations that

are often subtle and elusive, necessitating a considerable
investment of time and computational resources.

The proposed approach can be applied in various fields
that utilize 3D images. For instance, in facial recognition,
it can enhance the accuracy and reliability of identifying
individuals. In medical diagnostics, it can be used to detect
diseases such as cancer, multiple sclerosis, and COVID-19
by analyzing 3Dmedical imaging data, potentially improving
early detection and treatment outcomes.

Table 4 present a comparison study of the proposed
approach with some state-of the art methods.

IV. CONCLUSION
The proposed feature extraction approach V-DDP for auto-
mated detection of focal cortical dysplasia (FCD) shows
promising results in improving the accuracy and efficiency of
FCD detection from 3DMRI data. In addition, implementing
of machine learning algorithms, such as KNN, LDA and
SVM, has proven effective in learning complex patterns from
the extracted features, further improving the accuracy of FCD
detection. The accuracy, sensitivity and specificity achieved
in the experimental results suggest that the proposed approach
holds promise for assisting clinicians in the early and accurate
diagnosis of FCD.

Exploration of more advanced deep learning architectures,
such as convolutional neural networks (CNNs) or recurrent
neural networks (RNNs), may further improve the model’s
ability to capture hierarchical and spatial dependencies in the
image data.
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