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ABSTRACT Object Classification in Remote Sensing Imagery holds paramount importance for extracting
meaningful insights from complex aerial scenes. Conventional methods encounter challenges in achieving
precision amidst diverse landscape features. This paper introduces an innovative hybrid model to enhance the
accuracy of remote sensing multi-object classification. Incorporating a feature-level fusion approach inspired
by successful methods, we leverage Adoptive Fuzzy C-means segmentation for precise object classification
and Conditional Random Field labeling. Our model excels in capturing diverse features within remote
sensing images using multiple feature extraction methods. The distinctive feature of our methodology lies in
the thoughtful incorporation of a Deep Belief Network. Through rigorous experimental evaluations on two
standard datasets, our proposed system demonstrates exceptional performance, emphasizing its significant
potential for advancing methodologies in remote sensing multi-object classification. This tactful integration
results in substantial improvements, yielding high accuracies of 97.24% (UCM) and 96.84% (RESISC45).
The proposed model is methodologically novel and effective solution for advancing remote sensing image
classification.

INDEX TERMS Multi object classification, remote sensing, feature fusion, object detection, deep belief
network.

I. INTRODUCTION

Recent developments in imaging technology have ele-
vated the resolution n of remote sensing (RS) imagery
which makes it an essential tool for various research
domains. This improved resolution enables enhanced capa-
bilities, such as accurate object categorization, detailed
change detection analysis, and comprehensive environmental
monitoring. Aerial images, compared to their natural coun-
terparts, vary significantly in size, orientation, and imaging
environments [1], [2]. These variations pose challenges for
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accurate classification, impacting applications like urban
construction, land-use classification, airport security and
vegetation mapping. As imaging technology advances, the
complexities of aerial images become more evident [3],
[4]. Unlike terrestrial images, aerial images exhibit diverse
interclass variability, where objects of the same type may
appear in different sizes and orientations [5], [6]. Addition-
ally, identical objects can change due to varying imaging
conditions, such as equipment height during capture and solar
altitude. These nuances make achieving precise classification
a formidable task, crucial for societal development [7], [8],
[9], [10].
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The historical trajectory of remote-sensing image classi-
fication underscores the evolution from traditional low-level
feature methods, such as Scale-Invariant Feature Trans-
form, Color Histogram, Histogram of Oriented Gradi-
ents, and Local Binary Patterns, to more sophisticated
approaches based on mid-level and high-level features [11],
[12], [13], [14], [15]. The complexity inherent in modern
remote-sensing images necessitated this shift, as the inter-
nal information within these images became more intricate.
While mid-level features sought to capture global features by
encoding extracted features, challenges persisted, particularly
in terms of adaptability to different tasks and datasets [6],
[16], [17], [18].

Aerial images, with their bird’s eye view perspective,
present difficulties in capturing spatial structure information
and key features. The random distribution of key objects, cou-
pled with the large shooting height and angle of aerial images,
adds another layer of complexity to the understanding of these
images. Due to the presence of useless background infor-
mation, illumination changes and the angle of view makes
accurate classification more difficult [19], [20], [21], [22].

Therefore, a new method for aerial image classification
should be developed to address these obstacles. In this paper a
model is proposed to tackle these obstacles in which a feature
fusion method is presented to extract the informative features
of the images prior to be fed into Deep-Belief Network for the
classification and help overcoming the complexity of aerial
images. This will be achieved by improving the local key
feature representation, reducing computing complexity, and
preserving features from different tiers. The main contribu-
tion of this papers are.

o We applied a combination of Gaussian Mixture Model
and Adaptive Fuzzy C-Means for segmentation.

« Using Conditional Random Field as the post-processing
and labeling algorithm, we handled the drawbacks
related to segmentation that cannot addressed by other
techniques and to classify the scene correctly.

« We fused wavelet packet features, Haar wavelet, Gabor
and Correlogram, to improve classification accuracy.

« We modified Deep Belief Network for the final multi
object classification.

The rest of the paper is organized as follows: Section II
is about related works. In Section III, the methodology
will be described that includes segmentation, labeling, fea-
ture extraction, and their fusion. Part 4 is about datasets,
experimental design with results. Lastly, in Section V, the
conclusions of the study are discussed.

Il. RELATED WORKS

Image segmentation is one of the main task in analysis of
aerial- derived remote sensing images (RS). The accuracy
of segmentation method is crucial to feature extraction and
classification in remote sensing images. Image segmenta-
tion has applications in many fields, each of which uses
it in a different way. This diversity has contributed to the
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formulation of nuanced dynamics and metrics, shaping our
strategic approach.

A. MULTI-OBJECT SEGMENTATION

In remote sensing the objective of the segmentation is to
divide images into coherent regions. Recent advancements
in Very High-Resolution remote sensing images include the
introduction of a precise Mask Region Convolutional Neural
Network as proposed by Wu et al [23]. It generates accurate
segmentation masks along with bounding boxes for each
instance. Unlike traditional Regions of Interest align meth-
ods, the proposed precise ROI pooling prevents accuracy
loss. Semantic segmentation, which allocates homogeneous
regions to distinct geographical object categories, has seen
diverse approaches, including Markov random field models,
level sets, clustering, and deep learning. Traditional tech-
niques like clustering are less effective for high-resolution
remote sensing images, because individual pixels within
an object may possess distinct appearances. An optimized
multi-kernel method designed for semantic segmentation uti-
lizes an advanced Markov Random Field model for high
spatial resolution remote sensing imagery [24]. Leveraging
spatial and spectral data, the proposed Frequency Domain
Feature-Guided Network improves semantic segmentation
of Remote Sensing Images. FFGNet generates frequency
domain characteristics by means of 2D discrete cosine
transformation and patch partitioning. These properties are
selectively amplified by the Frequency Enhancement Atten-
tion module, which then integrates with Spatial-Spectral
Attention for enhanced spectral information. Up sampling
and feature fusion highlight spectral subtleties in inference,
a new loss function combines frequency and cross-entropy
losses. FFGNet shows better performance on LoveDA and
ISPRS Potsdam datasets [25].

N. Zhou et al. [26] suggests a novel MsASNet for the
purpose of categorizing landslide data. This network, which is
built upon the U-Net architecture has several distinctive char-
acteristics. Here, one essential upgrade is the assimilation of
a dynamic visual receptor that improves the network’s ability
to extract features from the given data. Further, a convolu-
tional block attention module which will enhance information
fusion and increase the accuracy of image segmentation is
used. By collecting both local and global contexts, the pro-
posed Geometric Prior-Guided Interactive Network solves
the semantic segmentation in high-resolution remote sens-
ing images. GPINet uses Local-Global Interaction Modules
with dual-branch encoder to couple CNN and transformer
outputs through cross-attention, so refining features. A new
Geometric Prior Generation Module uses geometric priors
iteratively to guide feature recovery. By weighted sum-
ming, the upsampled decoded features are finally merged
with these geometric priors, hence improving pixel-level
semantic correctness. On benchmark datasets, GPINet shows
better performance than others, therefore confirming the effi-
ciency of its geometric priors and model size control [27].
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K. Chen et al. [28] put forward an improved method
RSPrompter for remote sensing images, which improves
SAM by introducing semantic category knowledge related
to semantic category derived from prompt learning. This
enhancement is conducive to SAM to output the seman-
tic distinguishable segmentations for the RS images and
therefore make a further expand its applicability and appli-
cation performance in this line. Sulaiman and Isa [29].
introduce adoptive fuzzy K-means clustering for image seg-
mentation, allowing multiple levels of membership. Fuzzy
logic enables data members to be simultaneously allocated
to multiple clusters, especially relevant in remote sensing
images. Jia et al. [30]. propose the Hierarchical Heteroge-
neous Graph method, effective for change detection which
is very difficult in radar images due to high Nosie which
is overcome by using object based coarse to fine change
segmentation. Ghadi et al. [31]. contribute methods for gener-
ating pre-source feature representations, enhancing precision
in multi-source area networks. Zhang et al. [32]. propose
an isotropic spatial energy function for class co-occurrence
relationships in aerial-based remote sensing imagery, present-
ing an alternative to contemporary techniques. Li et al. [33]
proposed transformer based model AAFormer for semantic
segmentation for remote sensing images. An attention gate
is utilized to refine the self-attention module to focus on the
informative features. The model introduce the lightweight
attention attend transformer block which helped to attain the
contextual information. Rahaman et al. [34] research focuses
on the impact of simulated labels and noise on urban water
body image segmentation using deep learning algorithms
with Sentinel-2 satellites. They utilized the U-Net architec-
ture, mainly created for deep auto encoder-type networks
with skip connections, as the main segmentation model. They
create different training datasets in the simulated label noise
that are used to evaluate how it affects the U-Net performance.
The kind of synthetic noise considered includes salt and
pepper errors with the help of Gaussian noise and also image
translation for registration errors whereas less frequently
observed noise types like mirroring are also considered.
The state of the art fusion-based segmentation models has
outperformed the traditional single-modal based methods in
the case of semantic segmentation of remote sensing data.
However, these models are usually based on CNNs or the
ViT for fusion, which causes constraints in the local-global
contextual modeling and representative aspects. To overcome
these problems, certain solutions have been suggested, for
example the use of both CNNs and transformers, to combine
the advantages of both architectures. In particular, some mul-
tilevel fusion approaches have been investigated for shallow
and deep features to improve feature extraction of semantic
information and spatial context [35]. Li et al. [36] proposed a
novel approach for pixel level segmentation for remote sens-
ing images based on spectrum space Collaborative network.
In order to enhance the feature representation, it employs
a joint spectral—spatial attention mechanism that integrates
spectral attention and spatial attention. To capture the spectral
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context, it uses Euclidean distance and for capturing the
spatial context it uses position wise self-attention.

B. MULTI OBJECT CLASSIFICATION

In the domain of object categorization, researchers face chal-
lenges such as object localization, analyzing relationships,
handling occluded components, and achieving effective class
separation. Over the past decade, the bag-of-features model
has been a dominant paradigm for imagery categorization
[37]. Martin et al. [38]. introduced a Bayesian inference
model for object tracking by enhancing object recognition
precision and convergence rates. In a unique class-specific
illustration technique utilized Gaussian mixture models and
Euclidean distances for object categorization [39]. Another
approach focused on multi-object categorization for indoor-
outdoor scenes, employing segmentation and multiple kernel
learning [40]. Wong et al. [41]. proposed a kernel learn-
ing approach for online object detection and classification,
demonstrating effectiveness in rapidly tracking objects. Sum-
bul et al. [42]. developed methods incorporating a multi-
source region network for object location representations,
utilizing multispectral approaches for improved accuracy.
To overcome the problem, such as low accuracy and dif-
ficulty of integrating multimodal features, of conventional
methodologies, Zhang [43] puts forward a new way for
the recognition and classification of multimodal remote
sensing data. The proposed model uses a heat map and
HGR correlation pooling fusion operation to integrate these
two operations. It presents a new HGR correlation pooling
fusion algorithm that successfully restores the initial signal
while maintaining the transmitted information with the high-
est accuracy. The implemented algorithm improves feature
learning for images by effectively employing multimodal
information with different values of relevance. The integra-
tion of these components into a single approach gives a
complete solution for raising the correctness and performance
of identifying and categorizing multimodal remote sensing
data.

Object classification challenges include localization, ana-
lyzing connections, recovering hidden features, and achiev-
ing desired outcomes. Ahmed et al. [2] developed a model
that involves Fuzzy C-Means segmentation and saliency map-
ping as a means for identifying attention regions with greater
focus in images. Thus, it generates a more detailed differ-
entiation of the image areas that are important for feature
extraction, which ultimately lead to higher levels of classify
cation accuracy. Bo and Sminchisescu [44]defined character-
istics using Gaussian mixture models, employing Euclidean
distances for image comparisons. A. Ahmed et al [45].
utilized multiple kernel learning for multi-object categoriza-
tion, enhancing classification with area-specific signatures.
Ansith et al. [46]. presented a modified GAN architecture
for land usage classification in high-resolution remote sens-
ing images showcasing better results than most of the other
deep learning methods. Huang et al. [47] recommended
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FIGURE 1. Proposed model architecture illustrating the key novel components and methodological flow.

SVM and PCA for high-resolution image classification,
focusing on detecting object contours and motion. Object
classification across different high-resolution images includ-
ing Multispectral, Hyperspectral and Multi-temporal images
a major challenge due to integration of both spectral and
spatial domains. Several past approaches are weak in captur-
ing multiple features necessary for classification of patients
into different subgroups. To tackle this, Zheng et al. [48]
introduced the Hybrid Fusion Net model that integrates
2D & 3D convolutional neural networks & a transformer
encoder. This composed architecture enables HFN to com-
pute multi-dimensional features in the spectral, spatial, and
temporal domains while passing the learned global saliency
and discriminative information to the transformer encoder.

Ill. PROPOSED MODEL
Our proposed model presents a holistic and intricate approach

tailored for the precise classification of aerial images.
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During preprocessing stage, we used contrast stretching and
bilateral filtering techniques to elevate image quality by
mitigating noise and enhancing overall clarity. Our segmenta-
tion model integrates Gaussian Mixture Model and Adaptive
Fuzzy C-Means however for further processing AFCM is
considered due to the fact that it produced greater accu-
racy with better computational time. The subsequent stage
involves feature extraction, where our model leverages a
diverse set of techniques, including Gabor, Haar wavelet,
wavelet packet transform, and Correlogram which helped in
contributing to a robust feature set. The extracted features are
then concatenated to facilitate fusion, paving the way for a
more comprehensive representation of the image character-
istics. Genetic algorithm is used for feature optimization as
it fine-tunes the concatenated feature set which enhances the
discriminative power of the model. To cap off this intricate
framework, we adopted a Deep Belief Network for the final
classification task. The integration of these preprocessing,
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segmentation, feature extraction, optimization, and classi-
fication techniques underscores the model’s efficacy and
versatility, positioning it as a comprehensive and effective
solution for aerial image classification in diverse scenarios.
Fig. 1 display the structural diagram of proposed model.

A. DATA PROCESSING

In the initial stages of image classification for aerial imagery,
our preprocessing pipeline contains three main step image
resizing, contrast stretching and bilateral filtering. In order
to make all the images consistent from both datasets we
resized all the images to 213 X 213 pixels. Although the
image size in both the datasets is 256 X 256 pixels but they
exhibit significant variations in ground sampling distance
and geographical coverage. We used bilinear interpolation
for the resizing process as it provides good balance between
the quality of image and the computational efficiency. The
output pixel values are calculated using the weighted average
of 2 x 2 neighborhood of the pixel surrounding the input
coordinate which helps to maintain edge sharpness. The
resizing of the images also helped in normalizing the scale
variations in the datasets as same objects have different size in
different classes and also in same classes. Contrast stretching
is employed to expand the dynamic range of pixel values
in the image, enhancing its overall clarity. This technique
operates through a linear scaling transformation, effectively
adjusting pixel intensities to span a wider range. The process
is parameterized by minimum and maximum intensity values,
as well as new minimum and maximum values, ensuring
a controlled enhancement without introducing exaggeration
[49], [50]. Mathematically, this can be expressed as:

O(x,y) = (I(x, y) — minVal)/(maVal — minVal)

X (newMax — newMin) + newMin (1)

where O(x,y) is the output pixel intensity, I(x,y) is the input
pixel intensity, and minVal, maxVal, newMin, and newMax
are the parameters controlling the stretching. Additionally,
bilateral filtering is implemented as a non-linear smooth-
ing mechanism to mitigate noise while preserving essential
image features, especially edges [51], [52]. The bilateral filter
considers both spatial and intensity variations in the image,
with a spatial Gaussian kernel addressing spatial differences
and a range Gaussian kernel accounting for intensity dis-
parities [53], [54]. Mathematically, the bilateral filter can be
represented as:

1 ok k . ; 2+
O(X, y) — ; Zi:_k Zj:—kl ()C + l,y+.]) -exp( ZO_SZ )

. N 2
.exp(_"(””y“) 1<x,y)>) o

2
2(7;/

where O(x, y) is the output pixel intensity, /(x, y) is the input
pixel intensity, o_s is the spatial Gaussian kernel, o _r is the
range Gaussian kernel, and W is the normalization factor.
This combined preprocessing approach serves to optimize
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FIGURE 2. Aerial images after application of bilateral filtering.

the visual quality of the images by making them more con-
ducive to subsequent image classification tasks by ensuring
improved feature visibility and minimizing unwanted noise
[55], [56].

B. SEGMENTATION

With regard to aerial image segmentation, clustering algo-
rithms are crucial in dividing an image into meaningful
regions. So in this paper two different techniques Gaussian
Mixture Models and Adaptive Fuzzy C-Means are used due to
the fact that different character of aerial images makes certain
approaches relevant in capturing individual patterns.

The computational time and segmentation results are eval-
uated after applying GMM and AFCM to the aerial images.
The results showed that AFCM has faster computation times
along with better segmentation accuracy. Due to the fuzzy
membership values it is able to handle the inherent variability
which is present in aerial images which is the base for accu-
rate and smoother segmentations.

1) GMM SEGMENTATION

Gaussian Mixture Models segmentation is a probabilistic
approach which is used in image processing for partitioning
an image into distinct regions based on the assumption that
the image is a mixture of several Gaussian distributions. The
GMM models the pixel intensities of an image as a com-
bination of these Gaussian components. The segmentation
process assigs each pixel to the most likely Gaussian com-
ponent by determining the region to which it belongs [57].
The GMM probability density function for a pixel intensity x
is given by:

P =" mNGluiof) ®

where k is the number of Gaussian components, m; is
the ith component, N (x|u;, aiz) is the Gaussian distribu-
tion with mean p; and variance aiz. It assigs each pixel to
the Gaussian component with the highest probability. The
parameters 7;, (i, O’iz of the GMM are estimated using the
expectation-Maximization algorithm. The EM algorithm iter-
atively refines the estimates to maximize the likelihood of
the observed data [57]. Although GMM segmentation can
capture complex data distributions, it is essential to consider
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FIGURE 3. Segmented images using gaussian mixture model.

computational efficiency, especially for large-scale datasets.
In scenarios where computational time is a critical factor,
alternative methods like Adaptive Fuzzy C-Means may be
considered due to their faster processing capabilities.

2) ADOPTIVE FUZZY C MEAN SEGMENTATION

Adaptive Fuzzy C-Means segmentation is suited for scenarios
where the data has more complex and exhibit more changes.
AFCM uses the Fuzzy C-Means algorithm by incorporating
adaptive spatial information into the clustering process due
to which it is able to handle non-uniform regions along with
varying noise levels better than GMM [58], [59]. The AFCM
objective function is formulated as follows:

. c n m a2
J = Zi:l 1 1 )

where J represents the objective function to be minimized, ¢
is the number of clusters, n is the total number of pixels, 1;; is
the membership value for pixel j belonging to cluster / and m
is the fuzziness parameter controlling the degree of fuzziness.
djj is the distance between the feature vector of pixel j and the
centroid of cluster i [60]. The membership values are updated
iteratively using the following formula:

s = [Z;l K(Z—Zn])'"zl]_l ®

The spatial information is carried out with the help of adaptive
spatial constraint by modifying the distance term d;j based on
the local spatial structure of the image. This adaptive term
helps AFCM to be more robust in the presence of varying
textures and spatial non-uniformities. The AFCM algorithm
iteratively refines the membership values and cluster cen-
troids until it converges as a result it provides a segmented
image where each pixel is assigned membership values for
multiple clusters. The final segmentation is achieved by
assigning each pixel to the cluster with the highest member-
ship value. At time AFCM can show unsatisfactory results if
noise is too much in the images so it is important that we use
some filter during preprocessing stage in order to eliminate
the noise so that AFCM can perform better as in this model
we used adoptive mean filter in preprocessing stage. The
result of few of the segmented images after applying Adoptive
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FIGURE 4. Segmented images using adoptive fuzzy C mean.

Fuzzy C Mean which in display also depicts better results
than GMM which is displayed in Fig. 4.

Upon comparing the time estimates and segmentation
accuracy of two methods, Adaptive Fuzzy C-Mean segmenta-
tion was chosen for labeling due to its faster processing time
compared to GMM Segmentation as shown in Table 1.

TABLE 1. Evaluation of segmentations methods.

Computational Time  Segmentation
Accuracy
Datasets  —GNIM AFCM  GMM__ AFCM
UCM 160.13s  147.3s 83.2% 92.28%
RESIEC45 169.21s  145.8s 85.6% 92.17%

C. CONDITIONAL RANDOM FIELD(CRF) FOR LABELING
Next, Conditional Random Fields is applied on Adoptive
Fuzzy C-Means segmented images for the labeling process.
It is post-processing step whose purpose is to refine the seg-
mentation results by incorporating contextual dependencies
and spatial relationships between pixels. CRF is a proba-
bilistic graphical model that considers both the unary and
pairwise potentials in order to optimize and enhance the
labeling process [61], [62], [63]. The energy function of the
CRF is defined as:

E 1) =27 i x) + 2 V0 3o %) (6)

Here, y represents the label assignments for each pixel, and x
is the observed image data. The unary potential ¥, captures
the compatibility of a label with the observed data at a single
pixel, while the pairwise potential i, models the compat-
ibility between labels assigned to neighboring pixels. The
goal is to minimize this energy function in order to achieve
refined and coherent label assignments. The membership
values which are obtained from AFCM are used to assess
the certainty of the assigned labels. The pixels which contain
high membership values are considered more certain and con-
tribute in favor of the unary potential for the particular cluster
[64]. The pairwise potential is designed to consider spatial
relationships between neighboring pixels. It encourages label
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FIGURE 5. Object labeling using conditional random field.

TABLE 2. Dice coefficient (DC) score AFCM over UCM dataset.

Objects DC Objects DC Objects DC
AL 0.98 SK 0.98 IN 0.99
BH 0.97 AP 0.92 MK 0.91
CL 0.99 BG 0.93 PG 0.98
FT 0.86 DL 0.90 RY 0.93
GE 0.85 FY 0.86 SL 0.89
TT 0.88 HR 0.93 (O 0.85
BL 0.93 ML 0.94 RR 0.91

Mean Dice Coefficient = 92.28%

consistency between adjacent pixels, ensuring that neigh-
boring regions with similar characteristics share the same
label. This spatial regularization helps to eliminate isolated,
inconsistent labels and promotes smooth transitions between
different regions in the final segmented image [65].

D. DICE COEFFICIENT

In order to evaluate the effectiveness of our segmentation
method Dice coefficient is used. It works by measuring the
similarity between the predicted segmentation and the ground
truth as shown below.

. 2x XNy
Dice = ————
IX| + Y]

Here, X represents the set of pixels in the predicted seg-
mentation, Y is the set of pixels in the ground truth, and |.|
denotes the cardinality of a set [66], [67]. The Dice coefficient
ranges from O to 1, where a higher value indicates better
overlap and similarity between the predicted and ground truth
segmentations [68], [69]. The results of dice coefficients for
both datasets are shown in Table 2 and 3 and it shows that
the implementation of conditional random field on adoptive
fuzzy c mean segmented images have improved the accuracy
rate signifenlty. The dice coefficient score of UCM dataset is
92.28% and 92.17% on RESICS 45 dataset.

(N

E. FEATURE EXTRACTION

One of the most important step of this model is the feature
extraction which play a vital role in classification of aerial
images. The basic purpose of this step is to distill essen-
tial information from the raw pixel data. Aerial imagery,
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Algorithm 1 Pseudo-Code for the Proposed Model

Input: Image I, Number of clusters K
Output: Segmented image
// Initialization
init_ AFCM(membership values, cluster centroids)
/I Adaptive Fuzzy C-Means (AFCM) Segmentation
/I AFCM objective function
J =X (i=D)"c T (=1)"n p_ij™m * d_ij *2
converged = False
while not converged:
for i in range(c):
for j in range(n):
// Update membership values
p_ij = [Ek=D"c (d_ij/d_kj)N2/(m-1)]*(-1)
End for
End for
//Update cluster centroids
update_centroids(cluster_centroids,
membership_values)
//Check convergence condition
if convergence_criteria_met():
converged = True
/I Assign each pixel to the cluster with the highest member-
ship value
for pixel in image:
pixel_label = cluster_with_max_membership (pixel,
membership_values)
segmented_image[pixel] = pixel_label
End for
/IConditional Random Field (CRF) for Labeling
/I CRF energy function
E(Y|X) =E_i1/f_“(y_i5 x_i) +E_(iJ)1/f_P(y_i, y_j’ X_i’ X_j)
// Use membership values from AFCM to assess label
certainty
for pixel in segmented_image:
unary_potential = compute_unary_potential(pixel, mem-
bership_values)
End for
/I Compute pairwise potentials for neighboring pixels
for pixel, neighbor in get_neighbors(segmented_image):
pairwise_potential = compute_pairwise_potential (pixel,
neighbor)
End for
/I Optimize CRF energy function
optimize_CRF_energy(segmented_image, unary_potentials,
pairwise_potentials)
Output: Final segmented image
return segmented_image

with its inherent complexity and variability, often contains
high-dimensional data that can be computationally expensive.
Feature extraction addresses this issue by transforming the
data into a more compact and informative representation
[70], [71]. This reduction in dimensionality facilitates more
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FIGURE 6. Harr wavelet transform applied on Tennis Court (left) and Air Field (right) for feature extraction.

TABLE 3. Dice coefficient (DC) score AFCM over RESISC45.

Objects DC Objects DC Objects DC
AP 0.97 CP 0.95 CF 0.94
BR 0.97 DR 0.97 DS 0.91
CL 0.98 GC 0.91 GT 0.87
FR 0.87 IN 0.87 IS 0.90
HR 0.91 MR 0.89 MK 0.92
LK 0.96 PL 0.91 PG 0.91
MT 0.93 RF 0.88 RV 0.96
RW 0.95 SI 0.89 SP 0.94
RD 0.91 SM 0.92 ST 0.89
SB 0.89 TS 0.89 WT 0.96
TC 0.93 BS 0.93 BH 0.95
AT 0.96 SR 0.91 OP 0.89
CH 0.97 TR 0.93 RS 0.88
CM 0.90 BB 0.89 RY 0.94
FW 0.92 1D 0.94 MW 0.92

Mean Dice Coefficient =92.17%

efficient processing and analysis. Moreover, the extracted
features enhance the discriminatory power of the data,
allowing subsequent classification algorithms to differentiate
between objects, terrains, or structures present in the images
[72], [73]. The process also contributes to increased robust-
ness against noise and environmental variability, which is
particularly pertinent in aerial imagery where factors like
lighting conditions and perspectives can introduce consider-
able variations. So for this purpose we used wavelet packet
features, Haar wavelet, Gabor and Correlogram, as they col-
lectively contributed to a more comprehensive analysis for
subsequent classification tasks.

1) HAAR WAVELET TRANSFORM

The First feature extraction methods used in this study is Haar
wavelet transform. It plays an important role in capturing
variations in intensity across different scales within an image.

VOLUME 12, 2024

It is important to note that Haar wavelet transform takes less
time and it has the ability to identify abrupt changes in differ-
ent lightning conditions. This makes it valuable in scenarios
where edges and high-frequency details are of interest [74].
The Haar Wavelet Transform is applied to a two-dimensional
image using a pair of low-pass (LL) and high-pass (LH), (HL),
(HH) filters. The approximation coefficients (LL) represent
the low-frequency components, while the detail coefficients
(LH), (HL), and (HH) capture the high-frequency components
in the horizontal, vertical, and diagonal directions, respec-
tively [75], [76] as shown in Fig. 6 where the horizontal pixel
coordinates are displayed along x-axis which depicts width
of the image. Y-axis represents the vertical pixel coordinates
which corresponds to the height of the image and Z-axis
represents the intensity of the Haar wavelet transform.

Let I be the CRF-labeled image, and Wy represent the
Haar Wavelet Transform. The transformation is performed
iteratively, producing approximation and detail coefficients
at each level. Mathematically, the transformation can be
expressed as:

1
oo 5[]

Here, IV contains the approximation coefficients LL and
detail coefficients LH, HL, HH of the first level. This pro-
cess can be recursively applied to further decompose the
approximation coefficients into subsequent levels, yielding a
multi-resolution representation of the image [77]. The final
outcome consists of the extracted features that capture varia-
tions in intensity at different scales and orientations.

2) WAVELET PACKET TRANSFORM (WPT)

The Wavelet Packet Transform further enhance the standard
wavelet transforms as it provides a more versatile decompo-
sition by allowing both approximation and detail coefficients
to be further decomposed [78], [79], [80]. Let I be the
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FIGURE 7. Feature extraction using wavelet transform of air field image.

CRF-labelled image, and Wpacter represent the Wavelet
Packet Transform. Unlike the Haar Wavelet Transform,
which uses a fixed set of filters, the Wavelet Packet

Transform allows for more versatility in choosing the
filters. The process involves recursively decomposing the
approximation and detail coefficients into sub bands, result-
ing in a tree structure [81]. Mathematically, the Wavelet
Packet Transform can be expressed as:

I' = Wpacker (1) = [A'D'] )
Here, A' contains the approximation coefficients, and D!
contains the detail coefficients at the first level. Unlike the
Haar Wavelet Transform, the Wavelet Packet Transform fur-
ther decomposes both approximation and detail coefficients
into sub bands, providing a more detailed and comprehen-
sive set of features [82]. The process is then recursively
applied to each sub band, creating a tree structure where each
node represents a different frequency sub band. The resulting
coefficients at different levels constitute the extracted fea-
tures, capturing variations in intensity and spatial details at
multiple scales and orientations. WPT retains both high and
low-frequency components and is a superior choice when
inspecting finer details within an image that has been seg-
mented. The process of separating the image into different
frequency sub-bands which is represent along X-axis and the
magnitude of the coefficient at each of these frequency band
along Y-axis as displayed in the Fig. 7, using WPT which
provides a comprehensive depiction of it which eases the job
of differentiating between various regions which improves
the accuracy of image classification.

3) GABOR FILTER BASED FEATURE EXTRACTION
The feature extraction process using Gabor filters involves
capturing relevant information about the texture patterns
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present in an image. The Gabor filter is used to analyze
spatial frequencies at various orientations and scales. The
mathematical representation of the Gabor filter response
g(x, y) at a pixel location (X, y) is expressed as:

X
7t
In this equation, X and Y represent the rotated coordinates
after applying the specified orientation, y is the spatial aspect
ratio, o controls the spread of the Gaussian envelope, A is
the wavelength of the sinusoidal function, and ¢ is the phase
offset [83]. For feature extraction, a filter bank of Gabor
filters is applied across the entire image, systematically calcu-
lating responses that characterize local texture information at
different orientations and scales. The responses are computed
for each pixel, resulting in a set of feature vectors. These fea-
ture vectors collectively represent the texture characteristics
of the entire image. The integration of these feature vectors
into subsequent analyses, such as image classification or seg-
mentation, allows for a more nuanced exploration of texture
patterns within the image [84]. This feature extraction method
plays a vital role for edge detections of different objects
from the images making model to learn patterns within the
segmented images. In the Fig. 8 the x-axis and y-axis repre-
sent the spatial coordinates within the segmented image. The
x-axis corresponds to the horizontal pixel coordinates, while
the y-axis corresponds to the vertical pixel coordinates. The
z-axis, on the other hand, represents the probability density
values computed from the multivariate normal distribution
(Gaussian distribution) fitted to the pixel coordinates of each
segmented object within the image.

X2472y2

glx,y)=e 27 cosQ2w (10)

4) CORRELOGRAM FEATURES
Correlogram features are employed for texture analysis
in image processing, providing insights into the spatial
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FIGURE 8. Feature extraction using gabor on left is tennis court and on right is air field.

relationships between pixel intensities at varying distances
and angles. It quantifies the probability of having a pair of
pixels with similar intensity values at a given distance and
angle in an image. It is important in order to characterizing
the texture and structural patterns present in aerial images.

Let I be the CRF-labelled aerial image, and P(d,0) denote
the correlogram, where d represents the distance between
pixel pairs, and 6 signifies the angle. The computation of
the correlogram involves counting the number of pixel pairs
with similar intensity values within specified distance and
angle bins [85], [86]. Mathematically, the correlogram can
be expressed as:

Na(9)

P, 0) ) 8 (xi)) —1(x;+d6)) (11)

- Na(9) “i=
Here N;(0) is the number of pixel pairs separated by distance
d and angle 6. I(x;) and I(xi + d@) are the intensity values of
the pixel pairs at positions xi and xi 4+ df), respectively and
48(.) is the Kronecker delta function, yielding 1 if the intensity
values are similar and O otherwise.

Correlogram features are typically computed for various
distance and angle combinations, creating a multi-
dimensional feature vector that characterizes the spatial
relationships in the image. With the assistance of cor-
relogram, the classifier can build a better capacity of
distinguishing the similar texture regions yet depicting
non-corresponding color distribution, hence enhancing the
robustness of the classification model.

It is important to note that each feature extraction method
plays a unique role in the classification process by cap-
turing distinct aspects of segmented images. The Wavelet
Packet Transform (WPT) offers a detailed frequency break-
down, enhancing the representation of intricate textures. The
Haar Wavelet Transform efficiently detects edges and sudden
intensity changes crucial for boundary delineation. Gabor
filters excel in extracting spatial frequency characteristics
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across various orientations and scales, aiding in texture and
edge identification. Correlograms capture spatial color cor-
relations, providing statistical insights into color patterns and
distributions. These techniques were chosen for their proven
efficacy in capturing diverse image features, creating a com-
prehensive and discriminative feature set that significantly
boosts classification accuracy.

F. FEATURE FUSION AND OPTIMIZATION

Feature fusion is a crucial step in leveraging complemen-
tary information from diverse feature extraction methods
to enhance the overall effectiveness of a system. In this
context, concatenation serves as a straightforward yet pow-
erful approach to fuse features extracted from Gabor filters,
Wavelet Packet Transform, Haar Wavelet Transform, and
Correlogram features. Concatenation combines the distinct
characteristics of each feature set into a unified feature vector,
providing a comprehensive representation of the image con-
tent [87], [88]. Mathematically, concatenated feature vector
Fused is given by:

Fused = [FGabor, FWavelet» FHaar » FCorrelogmm] (12)

This concatenated feature vector effectively captures the
combined information from multiple feature extraction meth-
ods, paving the way for a more comprehensive analysis.

To further optimize the performance of the fused fea-
tures, Genetic Algorithms (GAs) are employed as a feature
selection and dimensionality reduction technique [89], [90].
GA has the capability to explore large search space effec-
tively and they have the capability to find the global optima
where there is complex and high dimensional feature space.
Moreover, it has the advantage of handling the nonlinear
relationships in the data which some of the other optimization
methods cannot. Due to their ability to evaluate different
solutions simultaneously, the convergence becomes faster.
These advantage of GA makes it an optimal choice for our
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FIGURE 9. Feature extraction using correlogram from tennis court showing the distance and angle correlogram.

work to be used for optimization purpose. GA’s iteratively
evolve a population of potential solutions based on natural
selection principles, seeking an optimal subset of features
that maximizes a defined objective function. In this case,
the objective function could be related to the performance
of a classification or analysis task. The optimization process
involves encoding the concatenated feature vector into a chro-
mosome, and the genetic algorithm performs operations such
as selection, crossover, and mutation to iteratively improve
the feature subset. The output is an optimized subset of
features that exhibits enhanced [91], [92], [93].

G. CLASSIFICATION: DEEP BELIEF NETWORK

For the classification process we have employed Deep belief
network. It’s noteworthy we utilized GA to optimize the
features which we have already extracted and these optimized
features are feed as input to DBN which ensures that supplied
to the DBN are fine-tuned for optimal performance. Deep
belief Network is a problastic model have multiple hidden
interconnected layer and based on artificial neural network
model [94]. These interconnected layers contribute to the
refinement of unit weights through an iterative process [95],
[96], [97]. Theses weights can be adjusted using the following
equation.

Wi, j(t 4+ 1) = Wi, j(t) + nlog(P(v)) (13)
And the probability p(v) can be calculated as
1 Eoo)—
[ —E(.h)
P(v)—ZZhe (14)

The weight adjustment equation Wi, j(z+1) captures the incre-
mental refinement of weights based on the logarithm of the
probability of the visible vector. The probability p(v) is fun-
damental to the DBN’s learning process. It sums over the
exponential terms of the energy function (v, /), which encap-
sulates the interactions between the visible and hidden layers.
By exponentiation and summing these terms, the equation
normalizes the probabilities across all possible configurations
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FIGURE 10. Multi object classification using our proposed model.

of the hidden layers. More informally, equation 14 speci-
fies the probability distribution over the visible vector based
on the current state of the hidden layers. This probabilistic
property enables the DBN to learn intricate probabilistic rela-
tions and patterns from the input data thus enabling accurate
classification.

The DBN’s architecture contains visible and output lay-
ers, along with three hidden layers. Genetic Algorithm is
used to determine optimal units for each hidden layer and
total epochs in network [2], [98], [99]. The output layer
is responsible for generating class probabilities based on
input values which are object categories, IOU scores, and
extracted features. The training process of our DBN includes
several stages. Layer-wise unsupervised pre-training serves
to initialize the network weights, for which each layer of
the Restricted Boltzmann Machine is trained using Con-
trastive Divergence. These methods maximize correlation
by enhancing the network’s ability to learn meaningful pat-
terns from input data. After pre-training, back-propagation
is used in tightening the entire network, where weights are
regulated to reduce classification error in this supervised
training. Cognitive parameter weights are adjusted during
pre-training and fine-tuning phases by stochastic gradient
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FIGURE 11. Few of the example images from RESISC45 and UCM datasets.

descent algorithm. However, for RBM layers we use the
CD-k algorithm which is often set at k = 1. The stochastic
operations introduce randomness which allows the network
to explore different configurations and converge to a robust
solution. During training, the Softmax and modified Sigmoid
functions are used for multi-object classification. Unlike tra-
ditional Softmax, the modified Sigmoid treats each neuron
as an independent binary classifier, capturing the probability
of individual object classes simultaneously. It continues until
one of three conditions is met: achieving the maximum epoch
of 200, approaching the minimum gradient, or meeting the
mean squared error benchmark. The GA, optimizing hidden
units, utilizes a fitness function based on misclassification
rate, total training time before backpropagation, and time
taken for fine-tuning during backpropagation. Optimal con-
vergence of the fitness function is declared when both training
time and error rates are minimized. After 25 generations, evo-
lution ceases, and the selected optimized neurons in the three
hidden layers (800, 450, and 1580) and epochs generated
by the genetic algorithm (120, 100, and 136) are employed
for object classification. The DBN classifier generates prob-
ability values for input feature vectors, facilitating training
against specific datasets with corresponding class numbers
[100]. There are several distinct advantages of using Deep
Belief Networks (DBNs) for classification tasks, particularly
when input values are in the form of pre-extracted features.
Here, the DBN is able to learn the complexity within the
features without needing to extract features on its own by
feeding in pre-processed features as the input for the network.
This reduces computational complexity in certain domains
and also the time taken to train the classifiers thus making
the classification easier. Another advantage of DBNs is their
ability to learn a hierarchical representation, which allows
the discrimination of both the high-level semantic features
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and the low-level details that may be present in the features.
Finally, DBNs are flexible, and the method is very efficient
in classification no matter the type of data being fed into the
network. The object wise classification of the object is shown
in Fig. 10.

IV. EXPERIMENTATION AND RESULTS

The experiments were carried out on a system equipped with
an Intel Core i3 processor running at 1.7 GHz, operating on
Windows 10. For the implementation and analysis, we used
Python. The datasets are divided into the ration of 70:30 for
the training and testing respectively. The proposed model pro-
duces remarkable results on UCM and RESISC45 benchmark
datasets. Details of the dataset and evaluation is discussed in
the section given below.

A. DATASETS

1) UCM DATASET

The UCM [101] dataset is a high-resolution remote sensing
dataset for multi object classification. The data set con-
tains aerial images captured covering urban, rural, and other
landscapes. It contains total of 21 land-use classes, includ-
ing residential and agricultural areas. Each class contains
100 images while the dimension of the images is 256 X 256.
Moreover, the number of object in each image are not consis-
tent making it a good choice for multi object classification.

2) RESISC45 DATASET

The RESISC45 dataset [102] is a collection of 31,500 remote
sensing images. These images are divided into 45 distinct
classes where the number of images in each class are 700.
Also the number of objects are different in each image. The
dataset is best suited for multi object classification in remote
sensing images. It contains diverse classes like airports
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FIGURE 12. The recognition accuracy of over UCM dataset. AL = agricultural; AP = airplane; BL = baseball diamond; BH = beach; BG = building;
CL = chaparral; DL = dense residential; FT = forest; FY = freeway; GE = golf course; HR = harbor; IN = intersection; ML = medium residential;
MK = mobile home park; OS = overpass; PG = parking; RR = river; RY = runway; SL = sparse residential; SK = storage tank; TT = tennis court.

playing area, industrial area and urban areas. RESISC45 has
become a benchmark dataset for research in object classifica-
tion algorithms.

B. EVALUATION AND DISCUSSION

In this section, we present the achieved recognition accuracies
in form of confusion matrices across UCM, and RESISC45
datasets. Results, visually represented in Fig. 12, and 13,
showcase the system’s robust performance. Specifically,
an outstanding 96.25% average accuracy in image classifi-
cation was observed over the UCM dataset. The agriculture,
parking, freeway, forest, intersections and building classes
exhibits the accuracy of 99%. While sparse residential and
medium residential strugglers with 96% accuracy compar-
ing with other classes better accuracy due to much of the
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similarity. Furthermore, RESISC45 dataset demonstrated an
average accuracy of 97.13%. Our result shows that the model
performed well comparing to most of the state of the art
methods. One of the major factor is that our segmentation
method AFCM produced good results which are improved
more in post processing step using CRF for labeling which
helped to get better feature extraction. Moreover, our feature
extraction methods used in this paper proved to be very
effective as they contributed in achieving the high accuracy
in multi object classification.

In this extensive analysis, we conducted a thorough evalu-
ation of precision (Pn.), recall (Rc.), and F1 scores obtained
from comparing RNN and DBN models on two datasets
RESISC45 and UCM. Table 4 on UCM dataset represents
the mean precision, recall, and F1 scores for RNN are
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FIGURE 13. The recognition accuracy of model over RESISC45 dataset. AP = airplane; AT = airport; BB = baseball diamond; BC = basketball
court; BH = beach; BR = bridge; CH = church; CP = chaparral; CF = circular formland; CL = cloud; CM = commercial area; DR = dense
residential; DS = desert; FR = forest; FW = freeway; GC = golf course; GT = ground track field; HR = harbor; ID = island; IN = industrial area;
IS = intersection; LK = lake; MW = meadow; MR = medium residential; MK = mobile home park; MT = mountain; OP = overpass; PL = palace;
PG = parking lot; RW = railway; RS = railway station; RF = rectangular formland; RV = river; RD = roundabout; RW = runway; SI = sea ice; SP =
ship; SB = snow berg; SR = sparse residential; SM = stadium; ST = storage tank; TC = tennis court; TR = terrace; TS = thermal power station;

WT = wetland.

0.912, 0.891, and 0.945, respectively. In comparison, DBN
achieves mean scores 0of 0.921, 0.905, and 0.915 for precision,
recall, and F1. These results show the robust and consis-
tent performance of both models across the diverse set of
object categories present in the UCM dataset. Similarly, when

VOLUME 12, 2024

examining the RESISC45 dataset as represented in Table 5,
RNN demonstrates mean precision, recall, and F1 scores of
0.852, 0.811, and 0.885 while, DBN exhibits mean scores
of 0.921, 0.905, and 0.915 for precision, recall, and F1. The
overall mean values emphasize the models’ competence in
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TABLE 4. Precision (Pn.), Recall (RC.) and F1 Score (F1 S) Object
categorization (OC) among RNN and DBN UCM dataset.

Classes RNN DBN
Pn. Re. F1S Pn. Re. F1S

AG 0.755 0.788 0.755 0.799 0.899 0.817
AP 0.711 0.744 0.875 0.815 0.875 0.844
BB 0.783 0.711 0.746 0.841 0.819 0.747
BH 0.792 0.658 0.737 0.844 0.889 0.844
BD 0.701 0.725 0.758 0.889 0.839 0.889
CH 0.745 0.715 0.875 0.872 0.921 0.872
DN 0.799 0.791 0.795 0.886 0.938 0.886
FR 0.783 0.711 0.746 0.985 0.954 0.985
FW 0.771 0.792 0.781 0.901 0.859 0.901
GC 0.730 0.717 0.961 0.883 0.965 0.883
HR 0.755 0.788 0.755 0.879 0.851 0.879
IN 0.711 0.744 0.875 0.986 0.937 0.986
MR 0.783 0.711 0.746 0.967 0.809 0.967
MH 0.792 0.658 0.737 0.845 0.856 0.850
OP 0.701 0.725 0.758 0.879 0.851 0.864
PN 0.874 0.845 0.859 0.986 0.937 0.960
RV 0.869 0.829 0.903 0.967 0.809 0.880
RW 0.872 0.851 0.895 0.844 0.855 0.850
SP 0.886 0.918 0.911 0.899 0.839 0.867
SN 0.965 0.934 0.969 0.872 0.875 0.873
TC 0.901 0.859 0.937 0.886 0.913 0.899
Mean 0912 0.891 0.945 0.921 0.905 0.915

dealing with the complexities of object categorization within
this dataset. The consistency in performance across diverse
categories underlines the models’ adaptability and effective-
ness in handling the intricacies present in both the UCM and
RESISC45 datasets.

Table 5. displays the comparison the mean accuracy of
our proposed model with state of the art methods. As it can
be seen that our model performed well on both the datasets
comparatively to most of the methods. Although the proposed
model by OSCS [31] and Resent 18 [103] based model per-
formed better on UCM dataset than our model but our model
performed better than their model on REISSC 45 dataset
which showcases that our model is robust and can perform
equally well on different datasets and can identify the com-
plex patterns from the given datasets. Moreover, the results
depict that our feature set is very effective for further classifi-
cation of the objects from images. One important factor that
took major part in better results is our segmentation methods
in which we used adoptive fuzzy ¢ mean and then with the
help of post processing step using CRF for the labeling have
boosted the overall performance of our proposed model.

C. LIMITATIONS

Although, our model performed outstanding results on both
the datasets and produced State of the Art results on RESIC45
datasets but it also exhibits few limitations. The model’s
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TABLE 5. Results for OC among RNN and DBN RESISC45 dataset.

classes RNN DBN
Pn. Rec. F1S Pn. Rc. F1S

AP 0843 0.752 0914 0864 0872  0.906
BR 0.898  0.743 0.925  0.842 1.011 0.947
CL 0911  0.888 0.885 0980 0925  0.948
FR 0.950  0.757 0.838 0856  0.836  0.930
HR 0774  0.831 0916  1.032 0928  0.944
LK 0.952  0.854 0.907  1.008 0.952  0.868
MT 0.958  0.772 0.851 0961 0901  0.900
RW 0.782  0.853 0.863 0929 0955  0.923
RD 0.968  0.771 0910  0.897 0990  0.957
SB 0.769  0.804 0.909 0826  0.866  0.963
TC 0874  0.888 0894 0876 0953  0.897
AT 0.757  0.756 0.839  0.850  0.828  0.922
CH 0.896  0.866 0.845 0855 1017 0913
CM 0.808  0.894 0.898  0.830  0.872  0.900
Fw 0.764  0.746 0.860  0.859  0.961 0.880
ID 0925  0.897 0.841 0920 0918  0.878
MW 0.754  0.894 0.864  0.928 1012 0.937
OP 0.801  0.864 0918  1.017  0.804  0.907
RS 0.800  0.845 0910 0917  0.823  0.920
RY 0.810  0.744 0.832 0980 0902  0.885
SR 0.844  0.830 0.904 0922 0961 0.857
TR 0.797  0.759 0.923  1.001 0.971 0.862
BB 0.897  0.719 0.851 0.986  0.809  0.944
Cp 0.879  0.879 0.889  1.029 0938  0.876
DR 0.935 0814 0.838  0.971 0.931 0.879
GC 0.773  0.900 0.860  0.825 0967  0.950
IN 0.899  0.766 0.924  0.897  0.865  0.927
MR 0923  0.769 0.898  0.893 0.909  0.888
PL 0.954  0.719 0.900  0.981 0.986  0.857
RF 0817  0.896 0.888  0.827 0994  0.962
SI 0812  0.776 0.897  0.863  0.871  0.943
SM 0792 0.755 0917 0966 0909  0.942
TS 0.896  0.818 0.895 0993 0815  0.936
BC 0918  0.845 0.900  0.838  0.829  0.880
CF 0.882  0.746 0.892  0.873 0920  0.932
DS 0.866  0.901 0.896  0.835  0.871 0.928
GT 0.934  0.883 0.841 1.024 0874 0876
IS 0771  0.855 0.866  0.831 0985  0.953
MK 0.764  0.827 0910 0906  0.865  0.897
PG 0.760  0.734 0.888  1.031 0.832  0.889
RV 0.858  0.873 0.866 0984  0.824  0.878
SP 0.859  0.773 0.903  0.842  0.809  0.962
ST 0.783  0.768 0915 0951 0877  0.957
WT 0.859  0.713 0.901 0983 0945  0.940
BH 0.874  0.757 0.846  0.965 0.842  0.931
Mean 0.852 0.811 0.885 0.921 0905 0915

performance got degraded in the classes which are visually
very much similar like the sparse residential and medium res-
idential in UCM dataset, or industrial and commercial areas
in RESISC45. Similarly, classes with lot of texture like beach
and desert also got misclassified occasionally, and has the
room for further improvement. Some of the misclassifications
are result of the scale invariant objects as same objects have
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FIGURE 14. Accuracy of feature extraction methods and their combinations on our proposed model on RESISC45 and UCM datasets.

TABLE 6. Comparison of our model with SOTA methods.

Mean Accuracies %

Authors

RESISC45 UCM
Self-attention [104] 86.91 86.79
Feature fusion + ELM [105] 96.97 84.00
FSCNet with CRIM[106] 94.76 99.60
SSGA-E[107] 88.6 94.52
D-CNN with GoogLeNet[108] 90.49 97.07
RS-CLIP [109] 85.76 95.94
VHR RS[110] 93.04 98.61
Siamse ResNet50[111] 95.95 94.39
0CSC[31] 96.57 98.75
ResNet18 + LA + KL[103] 95.26 99.21
Proposed 96.84 97.90

different size, distance and angles in same or different scenes.
One of the key improvement or enhancement which in future
we will work on is the integration of contextual information
into the classification because few of the misclassification are
due to the fact that the distinctive features are less prominent
like gold course are misclassified as park.

VOLUME 12, 2024

D. ABLATION STUDY

To analyze the performance of our system based on fea-
ture extraction techniques, we implemented four feature
extractors such as Haar Wavelet Transform, Wavelet Packet
Transform, Gabor Filter, and Correlogram. The results of
these feature extractors for object classification tasks are
depicted in Fig. 14 across two datasets to include RESISC45
and UCM.

For the RESISC45 dataset, the individual techniques
achieved accuracies ranging from 69.75% (HW) to 75.31%
(WP). The combination of WP and GF features (WP+GF)
yielded an accuracy of 80.78%, outperforming other two-
feature combinations. Incorporating all four techniques
(HW+WP+GF+CG) resulted in the highest accuracy of
96.84%, indicating the complementary nature of the diverse
feature representations.

On the UCM dataset, a similar trend was observed,
with individual technique accuracies ranging from 67.56%
(HW) to 76.63% (WP). The WP+GF combination
achieved 80.45% accuracy, while the four-technique com-
bination (HW+WP+GF+CGQG) attained the highest accu-
racy of 97.90%. Among the three-feature combinations,
WP-+GF+CG consistently performed better than other
combinations, with accuracies of 90.45% and 91.23% on
RESISC45 and UCM, respectively. The addition of HW fea-
tures to this combination marginally improved the accuracy,
suggesting complementary information from HW features.
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In particular, the application of the WP technique aimed
at achieving higher accuracy and proved to be significantly
higher compared to other individual techniques in both
datasets while determining the relevant information for the
classification. Additionally, the CG technique’s performance
was not very good when used individually, yet it was help-
ful when fused with other techniques, which indicates its
information-complementing capacity. The obtained perfor-
mance trends in both datasets sustain the effectiveness of
the presented feature extraction and combination techniques.
The removal of the feature fusion component reveals that the
experimental setup benefits from the use of multiple feature
extraction techniques, as opposed to solely relying on any one
of them in isolation.

V. CONCLUSION

In this study, we presented a novel methodological approach
for multi-object categorization in remote sensing. This
method was tested using UCM and RESISC45 datasets.
When it comes to segmentation, the models use Adoptive
Fuzzy C-means, followed by CRF for labeling, and finally
multi-feature technique is used for extraction The optimiza-
tion process is performed with the help genetic algorithms,
and multi- object classification deep belief network is used.
The effectiveness of our algorithm is evident from the fact
that it provides an impressive accuracy of 97.90% on UCM
and 96.84% on RESISC45. As part of our ongoing research,
we will explore ways to improve optimization for multiple
data types and address real-time processing issues.
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