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ABSTRACT In dual fluidized bed (DFB) gasification, the solids circulation rate is critical as it determines the
amount of char and heat transported between the interconnected reactors. In DFB plants, multiple control
inputs are typically available to control the solids circulation rate, resulting in an over-actuated system.
We propose a modeling and control method based on Gaussian process regression, a technique that provides
a measure of confidence in the model prediction. The availability of redundant control inputs is resolved by
explicitly incorporating the prediction confidence information into the control algorithm to drive the process
in regions of low model uncertainty. To address plant-model mismatches, a disturbance model is employed,
and an extended Kalman filter is used to estimate both system and disturbance states, enabling offset-free
tracking of constant references. Modeling and closed-loop simulation results for both a 100 kW and a 1 MW
DFB gasification plant demonstrate the applicability of the method to different plants. Experimental results
are presented for the 100 kW plant, demonstrating the successful control of the circulation rate by the
proposed algorithm.

INDEX TERMS Control, dual fluidized bed gasification, extended Kalman filter, Gaussian process
regression, solids circulation rate.

I. INTRODUCTION
As the global energy demand continues to rise and green-
house gas emissions have to be reduced, sustainable energy
solutions are needed [1]. Gasification of biomass or residues
can be employed to produce sustainable energy carriers.
Dual fluidized bed (DFB) steam gasification represents a
promising pathway to produce a product gas that is primarily
composed of hydrogen, carbon monoxide, carbon dioxide,
and methane [2]. This product gas can further be upgraded
for example to synthetic natural gas [3], [4], Fischer-Tropsch
liquids [5], [6], or pure hydrogen [7], [8]. These conversions
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have substantial potential for both the energy sector and
chemical manufacturing, providing a versatile platform for
generating clean fuels from renewable resources.

A DFB gasification plant essentially consists of two
interconnected reactors, a gasification reactor (GR) and a
combustion reactor (CR). Both reactors are operated as
fluidized bed reactors. Bed material continuously circulates
between those two reactors and transports heat from the CR
to the GR and ungasified feedstock from the GR to the CR.
The solids circulation rate is thus crucial for the process
since it influences reactor temperatures as well as product
gas composition and tar content [9]. Therefore, its efficient
control is desired. Typically, multiple air inlets to the CR are
available to control the circulation rate, resulting in redundant
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actuators for control. The mass of circulating bed material is
difficult to measure. However, the pressure drop in the upper
CR is a reliable indicator of the solids circulation rate [10].

To implement model-based control, a mathematical pro-
cess model is needed. Studies on modeling the solids circula-
tion in DFB gasification plants mainly rely on computational
fluid dynamics (CFD), such as [11], [12]. Process simulation
based on CFD requires high computational effort and is thus
less practical for real-time control applications. An alternative
approach is to use data-driven modeling approaches such
as artificial neural networks as presented in [13]. A major
challenge, thereby, is the limited availability of training data.

The application of Gaussian processes (GP) to regression
problems has been presented in [14]. GP regression includes a
measure of the prediction uncertainty in the model prediction.
An application in control has been proposed in [15] for
nonlinear systems that are linear in their input. For general
nonlinear systems, an internal model controller has been
presented in [16] and a model predictive control approach
in [17].

Linear methods for controlling the solids circulation rate in
DFB gasification plants have been proposed in [18] and [19].
However, these approaches are plant-specific and lack
general applicability. To the best of the authors’ knowledge,
no nonlinear methods have been published in this context.
This work addresses this gap by presenting an approach based
on GP regression, as it can be used to map nonlinearities.
Additionally, the method incorporates an explicit measure of
uncertainty in its predictions. The presented control approach
considers this uncertainty measure as well as the availability
of redundant control actuators to drive the system into a
region of lowmodel uncertainty. In contrast to linear methods
for solids circulation control, the method proposed in this
work offers more flexibility and improved transferability to
other plants. The method is applied to two different plants to
demonstrate the ease of implementation across plants without
extensive modeling efforts.

II. PROCESS DESCRIPTION
This section gives a concise overview of the DFB process,
highlighting key information essential for controlling the
solids circulation rate. In addition, the two plants considered
in this paper are described: a pilot plant with 100 kW thermal
fuel input and a demonstration plant with 1 MW thermal fuel
input. Fig. 1 illustrates the design of the DFB gasification
plants. Comprehensive descriptions of the DFB process can
be found in [2] and [20]. Detailed information on the 100 kW
pilot plant are given in [21] and [22], while more details on
the 1 MW demonstration plant can be found in [23] and [24].

A. DUAL FLUIDIZED BED STEAM GASIFICATION
DFB steam gasification converts a feedstock, which can be
biomass or biogenic residues, into a product gas by separating
the gasification process taking place in the GR from the
combustion process in the CR. These two interconnected

reactors are both operated as fluidized bed reactors. The
GR is operated as a bubbling fluidized bed reactor using
steam as the gasification agent. The CR is operated as a
fast fluidized bed reactor using air for fluidization. The
bed material is constantly circulated between these two
reactors. The feedstock is fed into the GR, where drying,
devolatilization, and gasification take place. A portion of the
feedstock remains ungasified and is transported as char by the
bed material to the CR via a loop seal or chute at the bottom
of the system. In the CR, the char is combusted, which heats
the bed material. The hot bed material is returned to the GR
through a loop seal at the top of the unit. The heat is required
for the overall endothermic gasification reactions in the GR.
The loop seals and chute, if present, are also fluidized by
steam.

For better gas-solid interaction in the GR, a reactor design
has been proposed in [25] that includes a countercurrent
column above the freeboard in the GR. This design is
intended to enhance the gas-solid contact and thus reduce
the tar content in the product gas and increase the fuel
flexibility of the process, allowing the gasification of low-cost
feedstocks such as plastic waste. Both the 100 kW pilot plant
and the 1 MW demonstration plant use this new design.

B. THE SOLIDS CIRCULATION RATE IN DFB GASIFICATION
PLANTS
To adjust the solids circulation rate, the CR typically has
multiple air inlets at different heights within the reactor. This
design allows the solids circulation rate to be adjusted while
maintaining the total amount of air required for complete
combustion in the CR. Air introduced at lower levels of
the reactor tends to lift the bed material upward, thereby
increasing circulation. In contrast, air introduced at higher
levels has less of an effect on circulation or may even
reduce it.

Measurement of the solids circulation rate in circu-
lating fluidized bed systems is challenging, and differ-
ent approaches have been proposed. Several methods are
reviewed in [26]. Some of them are based on interrupting
the particle flow and measuring the accumulation of bed
material as used in [27] and [28]. Other methods use optical
measurements [29] or placing an obstacle in the flow and
measuring the impact [30]. Other methods are based on
measuring the pressure drop in the CR [10], [31], [32].
This method can be applied to industrial plants and is also
applicable to hot plant operations. In this work, we directly
interpret the pressure drop at the top of the CR as an indicator
of the solids circulation rate and present a method to control
it by adjusting the air staging in the CR.

C. DIFFERENCES IN THE DESIGN OF THE 100 KW PILOT
PLANT AND THE 1 MW DEMONSTRATION PLANT
The design of the two DFB plants considered in this work
is visualized in Fig. 1. The main differences are described
below.
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FIGURE 1. Design of the 100 kW pilot plant and the 1 MW demonstration plant, adopted from [13].

1) AIR SUPPLY TO THE CR
The most relevant process input variable for controlling
the solids circulation rate is the air supply to the CR.
In the 100 kW pilot plant, air can be supplied to the CR
through three different air stages. The airflow is measured
separately at each stage, and low-level controllers have been
implemented to adjust the individual air streams as set by
the plant operator or a high-level controller. For the 1 MW
demonstration plant, in addition to the three air stages, there is
a bottom air stage. The airflow through the bottom air stage to
the CR is measured separately. For the other three air stages,
only the total airflow is measured. This total airflow can be
adjusted by changing the power of the compressor. The air
can be distributed to the three air stages by adjusting the
positions of the butterfly valves on the three stages. The valve
for air 1 remains open during operation, and air is distributed
by adjusting the valves for air 2 and air 3.

For both plants, additional air is supplied to the CR along
with the auxiliary fuel. For the 100 kW pilot plant, a constant
flow of 4 Nm3/h is fed to the CR, while for the 1 MW
demonstration plant, 40 Nm3/h is provided.

2) LOWER LOOP SEAL AND CHUTE
For the 1 MW demonstration plant, a chute is used instead
of a loop seal to connect the GR and the CR at the bottom.
This is to allow the use of heterogeneous feedstocks, some of
which also contain larger particles that could clog a loop seal.

3) AUXILIARY FUEL
To provide sufficient heat for the gasification reactions and
for temperature control, auxiliary fuel is fed to the CR.

For the 100 kW plant, heating oil is used. Auxiliary fuel is
particularly necessary to compensate for the relatively high
heat losses that occur at the pilot plant scale. Industrial plants
typically do not use heating oil as an auxiliary fuel, but
product gas can be recirculated to the CR. In the 1 MW
plant, both fuel supply options are implemented. In addition,
emulsion fluid from the product gas cleaning can be fed to
the CR.

4) INTERNAL LOOP SEAL
For the 100 kW pilot plant, a gravity separator is used, and the
separated particles are returned to the gasifier reactor (GR)
via an internal loop seal. In the 1 MW demonstration plant,
the product gas passes through a radiation cooler after exiting
the GR, where the separated particles are then fed back to the
GR (not shown in Fig. 1).

D. EXPERIMENTAL SETUP
Both plants are equipped with various measurement and
actuation devices. Themeasurement and actuation equipment
for the process variables presented in this work are listed in
Table 1.
The experiments at the 100 kW pilot plant were conducted

using softwood pellets as feedstock. The bed material
consisted of a mixture of 80 % olivine and 20 % limestone.

Experiments at the 1 MW demonstration plant were
conducted using olivine as the bed material, with the
occasional addition of limestone to enhance catalytic activity.
The test runs utilized various feedstocks, including wood
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TABLE 1. Instrumentation for both the 100 kW pilot plant and the 1 MW demonstration plant.

chips, softwood pellets, bark, forest residues, and a mixture
of plastic residues and wood chips.

III. MODELING
This section describes the modeling approach used to
model the pressure difference 1p in the upper CR, which
represents the solids circulation rate. Given the nonlinearities
present in the static input-output relationship, combined with
the fact that the system dynamics can be adequately repre-
sented by a linear time-invariant (LTI) model, we employ a
Hammerstein model. Fig. 2 visualizes the structure of the
Hammerstein model and the model inputs used for the two
different plants considered in this work. Preliminary studies
have identified these model inputs as the process variables
that most significantly affect the solids circulation rate. The
model consists of a nonlinear static part and a linear dynamic
part. We use GP regression for the static part to describe the
input-output relationship at steady state, using steady-state
process data as training data. The linear dynamic model
captures the system dynamics and includes a disturbance
model to account for plant model mismatch and unmeasured
disturbances.

Additionally, artificial neural networks (ANNs) are uti-
lized as simulation models for conducting closed-loop tests
of the control algorithms, as described in the last part of
this section. The use of ANNs allows the validation of the

FIGURE 2. Hammerstein model structure and model inputs used for the
two different DFB plants.

controller’s performance against a model that is unknown to
the controller. Furthermore, ANNs are chosen for their ability
to model nonlinearities in the process.

A. GAUSSIAN PROCESS REGRESSION
This section gives a brief introduction to GP regression. More
detailed explanations can be found in [33] and [34].

Assuming a training dataset consisting of input measure-
ments Ū = [ū1, . . . , ūN ] and the corresponding output
measurements ȳ = [ȳ1, . . . , ȳN ]. The goal is to predict a new
output ȳ∗ given a new input vector ū∗.

The outputs ȳ = [ȳ1(ū1), . . . , ȳN (ūN )] are assumed to be
random variables with a joint normal distribution, thus

ȳ ∼ N (µ,C), (1)

where µ is the mean vector and C is the covariance matrix.
In many applications, the mean vector is assumed to be the
zero vector after the data has been appropriately scaled. The
entries of the covariance matrix C are calculated using a
covariance function c(·, ·), defined as

Cij = c(ūi, ūj). (2)

A popular choice for the covariance function is the squared
exponential covariance function

c(ūi, ūj) = σ 2
f exp

(
−
1
2

∥ūi − ūj∥2

σ 2
l

)
+ δijσ

2
n , (3)

where the hyperparameters θ = [σf , σl, σn]T are governing
the function’s amplitude, length-scale, and noise level,
respectively. The Kronecker delta δij is defined as

δij =

{
1 if i = j,
0 if i ̸= j.

(4)

This covariance function ensures that outputs ȳi and ȳj will
have higher covariance if their corresponding inputs ūi and
ūj are closer in the input space.
To predict a new output ȳ∗, a joint normal distribution is

assumed for both the training points and the new data point,
leading to [

ȳ
ȳ∗

]
∼ N

(
0,
[
C c∗
cT∗ c∗∗

])
, (5)
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where c∗ is the covariance of the training outputs and the new
output, given by

c∗ = c(Ū, ū∗), (6)

and c∗∗ is the variance of the new input ū∗, calculated as

c∗∗ = c(ū∗, ū∗). (7)

Given the observed training outputs ȳ, the prediction for ȳ∗ is
derived by computing the conditional normal distribution

µ∗ = cT∗C
−1ȳ, (8a)

σ 2
∗ = c∗∗ − cT∗C

−1c∗, (8b)

with the mean µ∗ and the variance σ∗ of the predicted output.
A common approach to training the hyperparameters θ,

which is also used in this work, is tomaximize the logarithmic
marginal likelihood,

log p(ȳ |U, θ) = −
1
2
ȳTC−1ȳ−

1
2
log |C | −

N
2
log 2π,

(9)

where p(ȳ |U, θ) is the probability that the training data
was generated by the model given the input data and the
hyperparameters.

Note that for each prediction, all the training data points
are used, which can lead to a high computational effort for a
large number of training data points. In [35], approximation
methods are given to reduce this computational effort. In this
work, the full data set is used to make predictions.

B. HAMMERSTEIN MODEL
GP regression is used to predict the output at steady state,
hereinafter referred to as yGP. In the real process, changes
in input variables do not immediately affect the output.
However, dynamic behavior can be observed. To incorporate
these dynamics into the model, a linear dynamic model
is used in series with the GP regression. In addition,
a disturbance state is added to the model to account for
plant model mismatch and unmeasured disturbances acting
on the process. This disturbance state adds an integrator to
the plant model, which later enables offset-free tracking of
constant references. The resulting model is described by the
differential equations

ẋ(t) =
1
τ
(−x(t) + yGP(u(t)) + d(t)),

ḋ(t) = 0,
y(t) = x(t),

(10)

where x(t) and d(t) are the system state and the disturbance
state, respectively.

Both the state estimator and the controller are implemented
in discrete time. Therefore, the model is discretized assuming
zero-order hold for the GP prediction yGP and the disturbance

FIGURE 3. Structure of the artificial neural network (ANN) used as a
simulation model in closed-loop simulations, where yANN represents the
ANN’s prediction.

state d , which leads to
xk+1 = axk + byGP(uk ) + bdk ,
dk+1 = dk ,
yk = xk ,

(11)

where

a = e−Ts/τ , b = 1 − e−Ts/τ , (12)

with the sampling time Ts. The GP prediction is a normally
distributed random variable

yGP ∼ N (µGP, σ
2
GP). (13)

This can be decomposed to

yGP = µGP + ηGP, (14)

where

ηGP ∼ N (0, σ 2
GP). (15)

C. ARTIFICIAL NEURAL NETWORKS AS SIMULATION
MODELS
An ANN is trained for each plant using the same model
inputs as those used for GP regression. Unlike GP regression,
the ANNs are trained on time series data. Each ANN
consists of a single hidden layer with four neurons and
an output layer, as shown in Fig. 3. The neurons in the
hidden layer use tangent sigmoid activation functions, while
the output layer establishes a linear relationship between
the outputs of the hidden layer neurons and the ANN’s final
output. Quasi-Newton backpropagation is used to train the
networks using the MATLAB Deep Learning Toolbox [36].

IV. STATE ESTIMATION AND NONLINEAR CONTROL
A. EXTENDED KALMAN FILTER FOR STATE ESTIMATION
An extendedKalmanfilter (EKF) [37] is used to estimate both
the system state x and the disturbance state d . It is assumed
that zero mean white noise drives the disturbance state d
and acts on the measured output y. For the system state x,
it is assumed that the uncertainty originates solely from the
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GP prediction, which is normally distributed with a known
variance. This leads to the following model for the EKF:

xk+1 = axk + bµGP(uk ) + bdk + bηGP(uk ),
dk+1 = dk + wk ,
yk = xk + vk ,

(16)

with

wk ∼ N (0, σ 2
w), vk ∼ N (0, σ 2

v ). (17)

To estimate the states, first, a prediction step is carried out

x̂−

k+1 = ax̂k + bµGP(uk ) + bd̂k ,

d̂−

k+1 = d̂k ,

P−

k = FPk−1FT + Qk , (18)

with the prediction of the state covariance matrix P−

k , the
systemmatrix of the augmented systemF, and the covariance
matrix of the process noise Qk , which are

F =

[
a b
1 0

]
, Qk =

[
b2σ 2

GP 0
0 σ 2

w

]
. (19)

The prediction step is followed by a correction step

kk = P−

k h
T (hP−

k h
T

+ r)−1[
x̂k
d̂k

]
=

[
x̂−

k
d̂−

k

]
+ kk (yk − x̂−

k )

Pk = (I − kkh)P−

k (20)

with

r = σ 2
v , h =

[
1 0

]
. (21)

Note that no approximation by model linearization is
necessary because the state equation is nonlinear only in the
input, not in the state.

B. NONLINEAR CONTROLLER DESIGN
For the process under consideration, multiple control inputs
are available to control a single output. In addition, the GP
prediction includes information about the confidence of the
prediction. These two aspects are considered in the control
design: A steady-state input vector ūk should be found so that
the output meets the reference rk at steady state. Since there is
no unique solution to this problem, ūk is computed by solving
the optimization problem

min
ūk

J = σ 2
GP(ūk ) + λ∥ūk − uk−1∥, (22a)

subject to µGP(ūk ) = rk − d̂k , (22b)

ūk ∈ U, (22c)

at each time step k , assuming that there are regions in the
input space with higher and regions with lower uncertainty in
the GP prediction. The first term in the cost function (22a)
represents the uncertainty of the GP prediction, which is,
generally a non-convex function. To avoid large steps in the
input space for small improvements in uncertainty, the second

term is added to the cost function, with a weighting factor
λ ≥ 0. Constraint (22b) ensures that an input vector is found
such that the GP prediction matches the reference corrected
by the estimated disturbance state d̂k . This correction by the
disturbance state enables offset-free tracking of a constant
reference, despite plant model mismatch or unmeasured
disturbances acting on the process, and incorporates the
feedback in the closed-loop system. By restricting the input
space with (22c), some inputs that should not be used by the
controller to control the output, such as the feedstock feed
rate, can be fixed. In addition, upper and lower bounds can
be implemented for the control inputs.

Since the cost function is generally non-convex, we solve
the optimization problem (22) multiple times with different
initial conditions, where the different initial conditions are
generated by Latin hypercube sampling [38]. The solution
with the lowest value of the cost function is then selected from
the feasible solutions. The cost function is minimized using
fmincon from the MATLAB Optimization Toolbox [39].
The optimization problem (22) may be infeasible, e.g. if a

reference is set to a value that can not be reached according
to GP regression. In this case, an alternative optimization
problem is solved as a fallback that minimizes the squared
difference between the GP prediction and the reference,
corrected by the estimated disturbance state, which is

min
ūk

J = (µGP(ūk ) − rk + d̂k )2, (23a)

subject to σ 2
ξ (ūk ) ≤ σGP,max (23b)

ūk ∈ U. (23c)

With (23b), an upper bound for the uncertainty of the model
prediction σGP,max is established to prevent finding a solution
in regions of the input space where limited model information
is available. Constraint (23b) may still lead to infeasibility,
which can be avoided by omitting it.

Up to this point, the control input has been selected to
ensure that the output will match the reference at steady state.
However, this approach can result in abrupt, step-like changes
in the control input, e.g. if the reference is changed stepwise.
Such rapid changes in the control input may not be desired
by the operator and the excitation of higher modes, which
are not represented in the model, can be avoided. This can
be avoided by not applying ūk directly, but by applying a
first-order delayed input uk to the process, calculated as

uk = (I + Rc)−1(Iūk + Rcuk−1), (24)

where Rc is a weighting matrix. For Rc = 0, ūk is applied to
the process immediately, while higher values in Rc result in
smoother control inputs.

V. RESULTS AND DISCUSSION
This section presents modeling and controller simulation
results for both the 100 kW and the 1 MW plant. In addition,
experimental closed-loop results are shown for the 100 kW
plant. All of the algorithms are implemented in MATLAB.
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FIGURE 4. Identification data for the 100 kW demonstration plant with simulated output from GP regression and ANN.

FIGURE 5. Identification data for the 1 MW demonstration plant with simulated output from GP regression and ANN.

The GP regression is implemented using the Statistics and
Machine Learning Toolbox [40].

A. MODELING RESULTS
For both plants, data points from steady-state operation,
represented as Ū and ȳ, are used as training points for the GP

regression. These training points were manually selected by
averaging the time series data over periods when the process
was at steady state.

At the 100 kW pilot plant, an identification experiment was
conducted to generate training data for the GP regression.
Fig. 4 shows the time series data from this experiment.
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FIGURE 6. Variation of the inputs used by GP regression. The 4 inputs are
varied individually from a starting point indicated by the black bars. The
dotted lines indicate regions outside of where there are training
data points.

TABLE 2. Computation times required for each time step in the
closed-loop simulations.

The highlighted time periods indicate the steady-state points
used as training points. The upper plot shows the pressure
difference in the upper part of the CR, which represents the
solids circulation rate. Both the raw measurement data and a
filtered version are visualized. The filtering was performed
using a 50-sample centered moving average. In addition, the
predictions from both the GP regression and the ANN model
are shown, generated by applying the respective models to the
time series input data. The hyperparameters were identified as

σl,100kW = 11.58, σf ,100kW = 4.962, σn,100kW = 0.2151.

Note that σ 2
n,100kW is not the variance of the noise present

in the time series data, since the data was averaged over
measurement periods. However, noise can still be present due
to disturbances that affect the output but are not accounted for
in the model, such as variations in reactor temperature.

For the 1 MW demonstration plant, no specific identifi-
cation experiments were conducted. Instead, measurement
data from two different test runs, totaling approximately
136 hours of plant operation, was utilized. From these
data, 201 points corresponding to steady-state operation
were selected as training points for GP regression. Fig. 5
displays the measurement data, the selected training points,

FIGURE 7. Variation of the inputs used by GP regression. The 5 inputs are
varied individually from a starting point indicated by the black bars. The
dotted lines indicate regions outside of where there are training
data points.

FIGURE 8. Closed-loop simulation results for the 100 kW pilot plant.

and predictions from both GP regression and the ANN.
Additionally, the feedstock used is displayed at the bottom of
the figure.When a mixture of plastic residues and wood chips
was used, the height of the bar indicates the ratio, either 50:50
or 25:75. The hyperparameters were identified to be

σl,1MW = 1.998, σf ,1MW = 8.844, σn,1MW = 1.828.
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FIGURE 9. Closed-loop simulation for the 1 MW demonstration plant. The plots on the left show the controlled variable (top) and the control inputs
(bottom). The plot on the right visualizes the GP uncertainty.

To gain insight into GP regression and to understand how
individual inputs affect GP prediction, input variations are
performed. The results are shown in Fig. 6 and Fig. 7 for
the 100 kW pilot plant and the 1 MW demonstration plant,
respectively. In these figures, the horizontal axes represent the
varied inputs, while the vertical axes show theGP predictions.
The line represents the mean, with dashed lines indicating
regions where no training data is available. The shaded area
around it represents the standard deviation of the prediction.
The smaller plots below show the starting point from which
the inputs are varied (shown in black) and the locations of the
training data points (shown as colored bars).

According to the model, the circulation rate for both
plants increases with higher feedstock feed rates. For the
100 kW plant, increasing the volume flow of air 1 results in
increased circulation, which is expected as this air blows up
the bed material. Conversely, increasing the volume flow of
air 2 and air 3 decreases the circulation, probably because
these air inlets are mounted facing downwards, opposing the
circulation.

For the 1 MW plant, circulation increases with higher
total airflow or, to a limited extend, increased bottom air
volume flow. Opening the valves for air 2 or air 3 decreases
circulation, as these actions increase the air fed to the reactor
at higher positions, thus reducing the volume flow of air 1.
Air 2 has a greater effect than air 3, possibly because the pipe
diameter for air 3 is smaller, resulting in less air being diverted
from air 1 when the air 3 valve is opened compared to when
the air 2 valve is opened.

The dynamic components of the models incorporate time
constants of τ100kW = 10 s and τ1MW = 50 s, respectively.

B. CLOSED-LOOP SIMULATIONS
The control algorithm is validated in closed-loop simulations
for both the 100 kW pilot plant and the 1 MW demonstration
plant. The ANNs are used as simulation models.

1) 100 KW PILOT PLANT
For the 100 kW pilot plant, the controller parameters are
chosen to be

λ = 10−2, Rc = 5I, σGP,max = 0.5,

and the EKF parameters

σ 2
w = 10−5, σ 2

v = 0.85.

The controller was executed with a sampling time of Ts = 2 s.
The results of the closed-loop simulation for the 100 kW pilot
plant are presented in Fig. 8. The upper plot depicts the solids
circulation rate, indicated by the pressure difference in the
upper CR. The gray line represents the simulated output, with
noise introduced by adding a normally distributed random
number with zero mean and variance σ 2

v . Reference changes
occur at 5 min and 20 min. The second reference change is
set to an unattainable level to demonstrate how infeasibility
is handled using (23). The middle subplot shows the total
airflow to the CR with its reference and the fuel input. The
lower plot illustrates the three air volume flows, which are
the control inputs. The dashed lines represent the steady-state
inputs ū, while the solid lines represent the control inputs u
applied to the process.

2) 1 MW DEMONSTRATION PLANT
For the 1 MW demonstration plant, the controller parameters
are chosen to be

λ = 10−2, Rc = I, σGP,max = 3,

and the EKF parameters

σ 2
w = 10−3, σ 2

v = 3.3.

The controller operates with a sampling time of Ts = 10 s.
Fig. 9 and 10 show the corresponding closed-loop simula-

tion results. For this plant, which has two control inputs, the
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FIGURE 10. Closed-loop simulation for the 1 MW demonstration plant. Second simulation scenario with a different airflow to the CR.

model uncertainty can be visualized over the control input
space, as shown in the contour plots in the right subplots.
The training data points are also shown in these plots. This
model uncertainty is affected by other model inputs - feed
rate, airflow to the CR, and bottom airflow - which are
not control inputs. Therefore, two separate simulations were
conducted holding these three variables constant so that
the model uncertainties over the control input space remain
unchanged within each simulation. In the first simulation
scenario, the lowest model uncertainty occurs when the air
3 valve is nearly closed and the air 2 valve is used to track
changes in the reference. In contrast, in the second scenario,
themodel uncertainty isminimizedwhen both valves are used
for control.

The calculation times required for the closed-loop simula-
tions are given in Table 2.

C. EXPERIMENTAL VALIDATION
The results of the experimental closed-loop validation for
the 100 kW pilot plant are shown in Fig. 11. The controller
parameters are identical to those used in the 100 kW
pilot plant simulation. The controller was implemented in
MATLAB, running on a separate computer, and receives
measurement data from the process control system every
2 seconds. For clarity, a smoothed version of the solids
circulation rate, represented by the pressure difference in
the CR, is also shown in the plot. This was smoothed
using a centered moving average with a window length of
20 samples. During the test run, the references for the solids
circulation rate, the total airflow to the CR, and the feedstock
feed rate were varied multiple times. Around 40 min into
the run, the reference for the solids circulation rate was set
to an unattainable level. In this case, the controller applied
the maximum possible circulation rate while maintaining
a maximum model uncertainty as specified by (23b).

FIGURE 11. Experimental results of the GP regression-based controller
applied to the DFB process at the 100 kW pilot plant at TU Wien.

The experiment was interrupted twice, as indicated by the
vertical dashed lines.

The controller performed very well, effectively
managing the variations and maintaining stable operation
throughout the test run. This demonstrates the robustness and
reliability of the control strategy under different operating
conditions.
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VI. CONCLUSION AND OUTLOOK
This study presents amethod formodeling and controlling the
solids circulation rate in DFB gasification using GP regres-
sion. By exploiting the uncertainty in the GP predictions, the
process was driven toward regions of low model uncertainty,
thereby improving the reliability and accuracy of control
actions. Simulation results for both a 100 kW pilot plant and
a 1 MW demonstration plant demonstrated the applicability
of the method to different plants without extensive modeling
efforts. The controller was successfully implemented in the
100 kW pilot plant and achieved offset-free tracking of
constant references. This was achieved by incorporating a
disturbance state into the model to compensate for plant
model mismatch and unmeasured disturbances.

The controller presented can also be used as a subordinate
controller, whereby the desired circulation is not specified
directly by the plant operator, but by a higher-level controller
that regulates temperatures or gas compositions.

In addition, the GP regression method employed in this
study has potential for other applications. First, it could be
used to identify regions of low data availability and high
model uncertainty, facilitating the design of targeted iden-
tification experiments to improve model accuracy. Second,
the control approach demonstrated here could be extended
to similar processes, such as chemical looping combustion,
where precise control of the solids circulation rate is critical.
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