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ABSTRACT Identifying Ordinary Differential Equations (ODEs) from measurement data requires both
fitting the dynamics and assimilating, either implicitly or explicitly, the measurement data. The Sparse
Identification of Nonlinear Dynamics (SINDy) method does so in two steps: a derivative estimation and
smoothing step and a sparse regression step on a library of ODE terms. Previously, the derivative step in
SINDy and its python package, pysindy, used finite difference, L1 total variationminimization, or local filters
like Savitzky-Golay. We have incorporated Kalman smoothing, along with hyperparameter optimization,
into the existing pysindy architecture, allowing for rapid adoption of the method. Kalman smoothing is
a classical framework for assimilating the measurement data with known noise statistics. As a first SINDy
step, it denoises the data by applying a prior belief that the system is an instance of integrated Brownian
motion. We conduct numerical experiments on eight dynamical systems show Kalman smoothing to be
the best SINDy differentiation/smoothing option in the presence of noise on four of those systems, and tied
for three of them. It has particular advantage at preserving problem structure in simulation. The addition of
hyperparameter optimization further makes it the most amenable method for generic data. In doing so, it is
the first SINDy method for noisy data that requires only a single hyperparameter, and it gives viable results
in half of the systems we test.

INDEX TERMS Dynamical systems, machine learning, sparse regression, optimization, Kalman smoothing,
SINDy, differential equations.

I. INTRODUCTION
The method of Sparse Identification of Nonlinear Dynamics
(SINDy) [1], [2] seeks to discover a differential or partial
differential equation governing an arbitrary, temporally
measured system. The method takes as input some coordinate
measurements over time, such as angles between molecular
bonds [3] or a spatial field, such as wave heights [4], and
returns the best ordinary or partial differential equation (ODE
or PDE) from a library of candidate terms. However, the
method struggles to accommodate significant measurement
noise, which is typical of real-world systems. On the other
hand, Kalman theory [5], [6] has a half-century history
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of assimilating measurement noise to smooth a trajectory,
with well-studied and rigorously characterized noise prop-
erties [7]. We integrate the mature and well-established
theory of Kalman with the emerging SINDy technology and
combine with generalized cross validation (GCV) parameter
selection for systematic practical applications. The aim is to
improve the robustness of SINDy to noisy data. Our Kalman
SINDy architecture is shown to be competitive with other
combinations of data smoothing and system identification
techniques, and has a significant advantage in preservation
of problem structure and ease of parameter selection.

Model discovery methods are emerging as a critical
component in data-driven engineering design and scientific
discovery. Enabled by advancements in computational power,
optimization schemes, and machine learning algorithms,
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such techniques are revolutionizing what can be achieved
from sensor measurements deployed in a given system.
Of interest here is the discovery of dynamic models, which
can be constructed from a diversity of techniques, including
simple regression techniques such as the dynamic mode
decomposition (DMD) [8], [9] to neural networks such as
physics-informed neural networks (PINNs) [10]. In such
models, the objective is to construct a proxy model for the
observed measurements which an be used to characterize and
reconstruct solutions. While DMD provides an interpretable
linear model in terms of a modal decomposition, most
neural network architectures remain black-box without a
clear view of the underlying dynamical processes. Although
the number of techniques available are beyond the scope of
this paper to review [11], [12], SINDy is perhaps the leading
data-driven model discovery method for interpretable and/or
explainable dynamic models as it looks to infer the governing
equations underlying the observed data. As such, it discovers
relationships between spatial and/or temporal derivatives,
the underlying mathematical representation of physics and
engineering systems since the time of Newton.

The SINDy regression architecture seeks to robustly estab-
lish relationships between derivatives. Emerging from [1]
and [2], all variants aim to discover a sparse symbolic
representation of an autonomous or controlled system, ẋ =

f (x). As a first step, it estimates derivatives.
This paper introduces Kalman smoothing as the derivative

estimation step in SINDy in distinction with the L1 total vari-
ation minimization or Savitzky-Golay smoothers common in
application. It is not the first to combine Kalman methods
with SINDy; [13] utilize Ensemble Kalman Filtering (EKF)
to identify a partially-known system as a portion of a multi-
step method, and [14] apply Kalman filtering to the ODE
coefficients as a way of modeling a non-stationary but sepa-
rable system. This paper’s introduction of Kalman smoothing
a continuous process loss for derivative estimation, on the
other hand, begins to align the derivative estimation step to the
symbolic regression step. It allows engineering applications
to incorporate SINDy estimation with a well-established and
familiar data assimilation technique whose noise properties
are well understood.

Section II describes the individual methods of SINDy
and Kalman smoothing, providing some literature review.
Section III briefly describes the engineering, rather than
methodological, contributions of this work. In section IV,
experiments demonstrate that Kalman with GCV is able
to remove the need for a hyperparameter and successfully
smooth systems and that Kalman smoothing is an effective
differentiation step in SINDy. The paper concludes with
avenues for future research in section four.

II. BACKGROUND
A. SINDy
SINDy [1] is a family of emerging methods for discovering
the underlying dynamics of a system governed by unknown
or partially-known [15] differential equations. It can handle

FIGURE 1. The SINDy method, for example, applied to fitting a sinusoid. It
takes noisy data and smoothes it in the first panel, using the smoothed
values to evaluate a library of functions at each point (second panel).
Finally,it identifies the model ẋ = ξ1θ1(x) + ξ2θ2(x), rejecting θ0.

ODEs as well as PDEs [4], and has been used for chemical
reaction networks [16], plasma physics [17], and more. Most
invocations occur through the pysindy Python package, but
innovations such as Langevin Regression [18] or [19] exist as
independent code.

Given some variable of interest X and a library of functions
2 (including spatial derivatives, when relevant) SINDy seeks
to find the coefficients 4 of the differential equation:

Ẋ = 42(X ), (1)

where

X ∈ Rn×m
= x(t1) . . . x(tm): system

of n coordinates at m timepoints.

2(X ) ∈ Rp×m: library of p functions

evaluated at m timepoints

4 ∈ Rn×p: coefficients for n equations of p functions
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The function library, written as a time-independent quantity,
refers to the collection 2 = [θ1, . . . θp]T , where θi : Rn

→

R. Examples include the family of all degree-2 polynomials
of n inputs, mixed sines and cosines of certain frequencies,
or any user-specified family.

The method generally presumes the measurements (Z )
faithfully reflect system state (X ) and proceeds in two steps:

1) Estimate the time derivatives of the system ̂̇X = F(Z )
for some smoothing function F.

2) Choosing a sparse regression method, solve the prob-

lem argmin
sparse 4

∥∥∥̂̇X − 42(X )
∥∥∥2.

This general process is sketched out in a representative
scenario in Fig. 1. Each step described there has various
innovations and options. Researchers have tried a few
different methods for calculating the derivatives, broadly
grouped into global methods (e.g. L-1 total variation
minimization of [20]) and local methods (e.g. Savitzky-
Golay smoothing). Different ways of applying sparsity has
attracted more attention, including sequentially thresholding
linear regression, nonconvex penalties such as L-0 with a
relaxation-based minimization method [15], [21], an L-0
constraint [22], and Bayesian methods for a prior distribution
such as spike-slab or regularized horseshoe priors [23], [24].
The latter two papers also demonstrate an interesting line of
innovation, eschewing derivatives and using the integral of
function library in the loss term. A related approach instead
uses the weak form of the differential equation. Most of
these methods can benefit from ensembling the data and
library terms, as in [25], but others, such as [26] and [27],
for identifying Galerkin modes of globally stable fluid flows,
require a specific form of function library.

This paper seeks to make SINDy more resilient to noise
by taking a data assimilation approach. It instead presents the
Kalman SINDy steps:

1) Estimate the state and time derivatives of the system:̂̇X , X̂ = argmin
X ,Ẋ

L(X , Ẋ ,Z ) = F(Z ) (2)

where F applies Kalman smoothing and L is its
particular loss function.

2) Choosing a sparse regression method, solve the
problem

argmin
sparse 4

∥∥∥̂̇X − 42(X̂ )
∥∥∥2 . (3)

A range of methodological innovations have been introduced
into the SINDy discovery framework to make it robust,
including the aforementioned weak form optimization by
Messenger and Bortz [28], [29]. This approach solves the
sparse regression problem after integrating the data over
random control volumes, providing a dramatic improvement
to the noise robustness of the algorithm. Weak form
optimization may be thought of as a generalization of the
integral SINDy [30] to PDE-FIND. Further improvements to
noise robustness and limited data may be obtained through

ensembling techniques [25], which use robust statistical
bagging to learn inclusion probabilities for the sparse terms
ξ , similar to Bayesian inference [23], [24], [31]. Many
methodological innovations are integrated in the open-source
PySINDy software library [32], reducing the barrier to entry
when applying these methods to new problems. Additional
techniques for learning dynamics from data include PDE-
NET [33], kernel methods [34] and the Bayesian PDE
discovery from data [35]. Symbolic neural net learning
has also been developed, including symbolic learning on
graphs [36], [37], [38].

B. KALMAN SMOOTHING
Kalman filtering and smoothing refers to a group of optimal
estimation techniques to assimilate measurement noise to a
random process. Filtering refers to incorporating new mea-
surements in real-time, while smoothing refers to estimating
the underlying state or signal using a complete trajectory
of (batch) measurements. Kalman smoothing and filtering
are widely used in engineering design for real-world control
and prediction, such as tracking and navigation, in radar
systems, econometric variables, and weather prediction [39].
The Kalman smoother can be considered as a best-fit Euler
update, as the maximum likelihood estimator of integrated
Brownian motion, or as the best linear fit of an unknown
system. While the processes this paper is concerned with are
not random, in the first step of SINDy they are unknown, and
so probabilistic language is appropriate.While the processes
this paper is concerned with are not random, in the first
step of SINDy they are unknown, and so probabilistic
language is appropriate. The best fit/maximum likelihood
view extends the classic Kalman updates to a rich family of
efficient generalized Kalman smooth algorithms for signals
corrupted by outliers, nonlinear models, constraints through
side information, and a myriad of other applications, see [40],
[41], and [42]. In the simplest invocation, the Kalman
estimator is determined given only the ratio of measurement
noise to the process’s underlying stochastic noise. Fixing both
of these parameters allows Kalman methods to also identify
the variance of the associated estimator. Furthermore, a line
of research aims to identify parameters purely from data,
including [43], [44], and [45]. Many such methods include
their own hyperparameters and are not guaranteed to find
a solution, but are an improvement on the indeterminate
nature of direct maximum likelihood or a prior choice for the
variance hyperparameter.
In adding Kalman smoothing to SINDy, we introduce a

distinction between the measurement variables and the state
variables of the dynamical system in equation 1. As such, the
inputs to the problem becomem time points of measurements
of k variables (Z ∈ Rk×m) and a linear transform from the
state to the measurement variablesH ∈ Rk×n describing how
the process is measured.

Measurement error is assumed to be normally distributed
with HX − Z ∼ σzN (0,R) where the covariance matrix
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R ∈ Rk×k . Measurement regimes where noise is autocorre-
lated or varies over time can be accomodated by flattening
HX − Z and describing R ∈ Rnk×nk .
As a simplifying assumption for brevity and applying to

the experiments in this paper, we use R = I . Two parameters
are required: σz, the measurement noise standard deviation,
and σx , the process velocity standard deviation per unit time.
Asmentioned, if only point estimates of the state are required,
and posterior variance is not, it suffices to use the ratio ρ =

(σz/σx)2.
Each process is assumed to have an independent, Brownian

velocity. This leads to Kalman smoothing estimator:

argmin
X ,Ẋ

∥HX − Z∥R−1
2
+ ρ∥G[Ẋ ,X ]∥Q−1

2
. (4)

Here, G is a linear transform to separate [Ẋ ,X ] into
independent, mean-zero increments, and Q is the covariance
of those increments. This is the full form of equation 2.
A graphic displaying Kalman filtering is shown in Fig. 2.
To illustrate the ideas, the figure presents step-by-step
filtering updates; however, batch smoothing is used for the
model discovery applications presented in the experiments.

We use the generalized cross validation (GCV) of [43] to
choose ρ. This strategy chooses ρ in order to minimize the
loss on a witheld set of data. While the algorithm described
in that paper is not guaranteed to find a minimum, heuristic
experience has shown that the longer the trajectory, the more
likely their algorithm will succeed. The experiments in the
next section show that this strategy works reasonably well.

The GCV approach witholds some measurement points
in order to find the values of H ,R,G, and Q that produce
estimates X̂ that fit withheld data most accurately. This
powerful approach can apply to many systems, and from
a basic view, merely applies prox-gradient descent on the
withheld losswith respect to the systemmatrices. In ourwork,
we presume to know the measurement parameters and most
of the process parameters - after all, ‘‘position is the integral
of velocity’’, implies structural constraints onG andQ. Since
we specify H , G, R, and Q, up to a scaling parameter ρ

(the ratio of measurement variance to process variance over
unit time) in equation 4, we call the GCV method with prox
function equal to a projection onto the known structure of
these matrices.

Alternate methods to assimilate noisy data, as mentioned
earlier, include Total Variation regularization, Savitzky-
Golay smoothing( [20]), and Weak SINDy ( [29]. Total
variation regularization, emerging from denoising overhead
imagery in [47]. Slight variations in the optimization method
exist, but the implementation used in this paper’s experiments
seeks to minimize:

λ∥ẋ∥1 + ∥

∫
ẋ − z∥22

for some measurements z and smoothing hyperparameter λ.
Similar to Kalman smoothing, there is a regularity condition
on the derivative and a hyperparameter that balances it

with the measurement error term. However, in this TV
implementation, the state is always the direct integral of
ẋ, whereas Kalman allows for some covariance between
state and its derivatives. On the other hand, Savitzky-Golay
smoothing seeks to find a local polynomial regression of
some window. As a local method, the effects of outliers
are ignored beyond the window width, and it can handle
nonstationary problems better. However, unlike Total Vari-
ation and Kalman Smoothing, Savitzky-Golay’s smoothing
hyperparameter (window width) affects runtime. Finally,
Weak SINDy eschews the need to estimate derivatives by
building a regression from the weak form of the ODE:∫

Ẋφ(t)dt =

∫
42(X )φ(t)dt

−

∫
Xφt (t)dt =

∫
42(X )φ(t)dt

for some suitable test function φ(t) that perishes at the
integral boundary. By cutting up the data space into temporal
bins (and in PDEs, spatiotemporal bins), the effect of
measurement noise is averaged away. This is a compelling
approach. It does not need two separate steps and may be
better conditioned than Kalman smoothing, but it cannot
take advantaged of a smoothed state in 2(X ). As the
implementation in pysindy is incomplete, we do not
include it in our experiments.

III. ENGINEERING
We sought to make the implementation of the work as much a
part of the contribution as the mathematical and experimental
work. The aim is to go beyond reproducibility and provide
reusability not just of the method, but the experiments and
their constituent functionality. This contribution is spread
across four Python packages: pysindy, derivative,
mitosis, and pysindy-experiments.
In pysindy, we enabled incorporating the smoothed

coordinates into the second SINDy step, the ODE regres-
sion. It should be noted that previous experiments using
pysindy’s derivative estimation would re-use the noisy
coordinates in function library evaluation. This functionality
is partially extended to smoothing methods that use the
derivative package, but we only implemented it for
Total Variation smoothing and Kalman. Finally, we added an
entry point group so that others could write hyperparameter
optimization plugins that derivativemethods would pick
up.

Additionally in pysindy, we redefined ensembling in
a more flexible way to apply to a greater variety of
underlying optimizers, such as the MIOSR one used in these
experiments. The standardization of interfaces allows us to
compose SINDy experiments from the following section in
the pysindy-experiments package [48]. This package
provides an API to specify data generation, model building,
and evaluation. This package also registers a derivative
plugin to conduct the Kalman GCV hyperparameter opti-
mization of [43]. Given that their method optimizes a large
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FIGURE 2. Explanatory depiction of Kalman filtering. A previous iteration gives a distribution p(xi−1, ẋi−1). Multiplication by an update
matrix produces the predictions p(xi , ẋi |xi−1, ẋi−1). Simultaneously, measurements zi are taken that, with known measurement noise, give
p(zi |xi ). Multiplication gives the joint distribution p(xi , ẋi , zi |xi−1, ẋi−1), from which the conditional distribution p(xi , ẋi |zi , xi−1, ẋi−1) can
be calculated, shown in [46].

parameter space that we then restrict to a single parameter at
each iteration, this setup is far from computationally optimal;
a faster implementation is beyond the ambit of this paper.

Finally, in order to make it easier to collaborate and
reproduce experiments, we built the mitosis package [49]
for this and other projects. Rather than run experiments
interactively, this package provides a way to enforce and
log relevant runtime reproducibility information and specify
experiment parameter variants in a declarative manner. The
appendix contains instructions on how to use it to reproduce
the experiments in this paper.

IV. EXPERIMENTS
A. SETUP
We seek to evaluate Kalman smoothing as a step in SINDy in
comparison to other noise-mitigation innovations. We sim-
ulate eight dynamical systems1 with noisy measurements
across a variety of initial conditions, discovering ODEs
from SINDy with different smoothing methods. These
systems are of moderate complexity: two chaotic, one linear,
three quadratic, four cubic, and all existing in pysindy’s
repertoire. We aim to explore the behavior under varying
noise regimes. An extension of the experiments to more
systems in order to draw conclusions about the behavior
across different dynamical characteristics represented in
[50] would be a worthy extension, but beyond these first
steps.The trials are run across a range of durations and relative
noise levels, calculated as the noise-to-signal ratio of the
measurement variance with the system’s mean squared value.
To compare the methods, we then integrate the discovered

1Cubic Harmonic Oscillator, Duffing, Hopf, Lotka-Volterra, Rossler,
Simple Harmonic Oscillator (SHO), Van Der Pol Oscillator, and Lorenz-63.

equations and observe how well they preserve the system’s
structure as well as directly comparing the coefficients.

We compare the results of SINDy with three different
differentiation/smoothing methods, parametrized across a
gridsearch: Kalman smoothing, Savitzky-Golay, and L-1 total
variation minimization,2 as well as with Kalman smoothing,
with GCV hyperparameter optimization [43]. The gridsearch
parameters sweep a range of reasonable values around the
default provided to a user. We explore noise regimes ranging
from minimal to severe, and data availability ranging from
parsimonious to copious. It is worth noting that choosing
the gridsearched optimum requires knowledge of the true
system, in distinction to the hyperparameter optimization
method used for Kalman smoothing. The GCV method itself
requires hyperparameters only for the proportion of witheld
data, stopping criteria, and any regularization.

Methods can be compared in several ways: by the
coefficients of the equations they discover, by their accuracy
in forecasting derivatives, and how well the discovered
system recreates observed dynamics in simulation. There are
many metrics for scoring dynamical system discovery, and
the merit of a metric depends upon both the use case and
whether the trajectory considered is one of importance. For
instance, in controls engineering, the local derivative and very
short-term forecasting is the primary imperative. On the other
hand, for reduced-order PDE models, recreating larger-scale
phenomena in simulation may be more important. Finally,
in high-dimensional network dynamics, the accuracy of
identifying connectivity, as measured by coefficient F1 score,
is most important.

2TV requires a coefficient for the L-1 regularizer and Savitzky-Golay
requires a smoothing window width.
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FIGURE 3. The simulation of discovered models compared to test data. Kalman appears better for half of eight ODEs. It represents the
essential behavior of more ODEs than TV and Savitzky-Golay. Kalman with auto-hyperparameter selection performs similarly to total
variation on a gridsearch. 10% relative noise, 8 seconds of data.

FIGURE 4. The smoothing of training data, performed by different differentiation methods prior to SINDy fit. It does not appear to be the
case that a more visually accurate smoothing yields a model that behaves more correctly in simulation. Nevertheless, as Fig. 3 shows,
Kalman-smoothed trajectories lead to better models in simulation. 10% relative noise, 8 seconds of data. Of interest, note the particular
cases of SHO, cubic HO, and Hopf systems, in which the best smoother does not necessarily lead to the best simulation.

The integration metrics require additional parametrization
and are best suited for low-noise systems. Coefficient metrics
are the most straightforwards, and we compare methods by
F1 score and MAE (mean absolute error) as the duration of
training data increases, and separately, as the measurement
noise increases. These metrics, based upon L1 and L0 norms,
reflect the goal of sparsity better than metrics based upon the
L2 norm. We also visually evaluate how well the discovered
ODEs, simulated from random initial conditions in a test set,
track the true data and display relevant behavior.

Beyond the differentiation step, the SINDy models also
specify a function library and optimizer. The feature library
used for all experiments was cubic polynomials, including

mixed terms and a constant term. The optimizer was the
mixed-integer SINDy optimizer of [22], configured with the
correct number of nonzero terms a priori, and ensembled
over 20 models each trained on 60% of the data. Presenting
SINDy with the known number of nonzero coefficients is an
attempt to present a best case, where we can ameliorate any
interaction between the smoothing method and sparsification
parameters. A full list of ODE, simulation, and experimental
parameters are shown in the Appendix, tables 1 and 2.

B. RESULTS
We find that SINDy with Kalman smoothing recovers the
problem structure in application as well or better than
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FIGURE 5. How well different smoothing methods in SINDy recover the ODE coefficients as data duration increases. 10% relative noise.

FIGURE 6. How well different smoothing methods in SINDy recover the ODE coefficients as noise increases. 8 seconds of data.

competing methods in seven of eight systems. Models
discovered in this manner track the essential dynamics in
most cases. GCV hyperparameter optimization is noticeably
not as good as the ideal gridsearched optima, but still
provides accurate smoothing in six of eight cases. Somewhat
counterintuitively, however, the best smoothing parameter
does not necessarily lead to the most accurate solution, either
in coefficient accuracy or in simulation.

SINDy with Kalman hyperparameter optimization tends
to perform worse than that with Savitzky-Golay, but
on par with Total Variation gridsearched optima, and
is itself outperformed only slightly by the Kalman
gridsearched optima. While hyperparameter optimization
imposes some runtime cost, it does not require access
to the true data, making those results all the more
inspiring for field use cases. Simulations of discovered
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TABLE 1. The parametrization of ODEs used in these experiments. Mostly from defaults in the pysindy package.

models across all ODEs and methods are shown in
Fig. 3

There are caseswhere theMAE scores of differentmethods
do not indicate which method performs better in simulation,
and where effective smoothing does not predict effective
system recovery. As one case in point, Kalman GCV and
Total Variation smoothing appears most accurate for the Hopf
system in Fig. 4. However, the coefficient metrics show
that Total Variation, Kalman gridsearch, and Savitzky-Golay
recovered the system equations better that Kalman GCV, and
simulation in Fig. 3 confirms Kalman GCV is the outlier in
reconstructing the dynamics. Similarly, methods have a wide
range of performance on MAE and F1 score on the Rossler
system, despite all simulations missing the chaotic behavior.
As a final case in point, the Kalman-smoothed training data
itself does not seem as accurate as data smoothed by L-1 Total
Variation in the the SHO trial. Yet a SINDymodel based upon
it performs better

Just as surprisingly, despite performing well in simulating
the Lotka-Volterra system, SINDy with Kalman hyperpa-
rameter optimization performs poorly in the coefficient
metrics. Coefficient metrics by data duration is shown in
Fig. 5, and by noise level shown in Fig. 6. If anything
appears consistent about Kalman with GCV, it is that, with
a long enough duration, it becomes more consistent. Across
the range of noise levels sampled, either Savitzky-Golay
or Kalman (gridsearched) perform the best, depending
upon system. As expected, Kalman (gridsearched) always
outperforms Kalman GCV, but it is interesting to note that at
some durations and noise levels Kalman GCV occasionally
outperforms Savitzky-Golay (e.g. Rossler, SHO).

V. CONCLUSION
This paper has demonstrated that Kalman smoothing is
a useful addition to SINDy. It makes the method more
generally applicable across domains. The Kalman smoother
behaves optimally for the simplest systems and provides
a familiar process to the controls engineering community.
It also appears to perform better at preserving global
system structure in simulation. Incorporating the GCV
hyperparameter optimization of [43] may not recover the best
model, but it allows one to at least recover useful models
without relying on an accurate parametrization a priori,
particularly if substantial training data exists. Meanwhile,
Savitzky-Golay, as a local method, struggles to discover the
slow decay of some oscillators, whereas TV makes errors
in systems that do not have sufficient corners for the L-1
regularization to be effective.

Plenty of ideas in extant literature could be leveraged
to improve the approach in future work. In one direction,
the GCV approach could extend to the second step of
SINDy. Prior art in this direction, the Stepwise Sparse
Regressor of [3], conducts cross validation on the sparsity
of the solution, but has not fully been incorporated into
pysindy. Completing the implementation, and combining
it with Kalman GCV in the first step of SINDy, would
provide the first hyperparameter-free approach to SINDy.
In an other direction, it would be elucidating to contrast
the hyper-parameter estimation techniques of [44] for
Savitzky-Golay with those of [43] in the smoothing step of
SINDy.

Since Kalman smoothing and SINDy regression loss terms
both accommodate variable timesteps, a natural innovation
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TABLE 2. Parametrization of data, SINDy models, and experiments
conducted.
*Lotka-Volterra uses a gamma distribution, rather than normal, in order to
enforce nonnegativity.

is to combine equation 3 and 2 into a single optimization
problem. This would introduce the complexity of handling
the nonlinear term, 42(X ). Bayesian SINDy [23], Langevin
Regression [19], and Weak SINDy [28] each introduce
alternate single-step methods, but do not evaluate their single
step methods in comparison to the mathematically nearest
two-step SINDy. As a result, it is difficult to evaluate that
aspect of their innovations in isolation. A single-step SINDy
that utilizes Kalman loss would allow a clearer picture of
the trade-off between measurement noise and coefficient
sparsity, as all of the same hyperparameters would be present
in the two-step version. Moreover, the Gaussian process
background of Kalman smoothing motivates a more detailed
mathematical comparisonwith other stochastic ODE learning
methods, including Kernel SINDy [34].
The biggest use case for the results in this work is building

low-dimensional approximations of high-dimensional PDEs
for faster simulation, e.g. for molecular bond angles [3].
Casual experimentation indicates that the nonconvexity of
GCV is less of a problem with more data, and such a use
case allows as much data as is required. Its reduction in
hyperparameters also makes it amenable as a first effort
in dealing with new, poorly understood systems. On the
other hand, for uncovering connections between variables,
such as in neural activity or chemical reaction networks
[16], the performance on coefficient F1 metrics indicates
that more accurate parameter tuning is essential. Finally,
for engineering and control systems already built around
Kalman filtering, using Kalman SINDy allows for recovery
of meaningful parameters in that context.

APPENDIX
This paper is built from https://github.com/Jacob-Stevens-
Haas/Kalman-SINDy-paper. To run the experiments, install
the package located in images/gen_image and run the com-
mands in images/gen_image/run_exps.sh. These are a series
of mitosis commands to record reproducibility information
and results for each trial and produce an html notebook of
visualizations for that trial. Each experiment trial will gen-
erate a pseudorandom hex key for reproducibility. To build
the final figures, edit images/gen_image/composite_plots.py
with the keys to the experimental results and run it.

The experiments are made to be run across a range
of compatible packages, defined in the pyproject.toml.
To run against the exact package versions used in this
paper, see the file images/published-requirements.txt. While
the exact parametrization is in the experimental con-
figuration and package defaults, it is recreated here in
Tables 1 and 2.
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