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ABSTRACT Doors are part of the building infrastructure that mobile robots have to pass through to reach
zones on the other side. If robots were to clear these obstacles, theywould require human assistance, advanced
end-effectors, and complex control systems, making it challenging for robots. Therefore, a robot deployed
in an environment should be capable of minimizing the passing through doors as well as path distance to
improve overall efficiency. This paper proposes a novel Door-Density-Aware (DDA) path planning method.
A vision-based door-detecting framework based on YOLOv8 has been developed to tag the door locations
in a robot’s navigation map. The proposed DDA path planner uses a door-tagged map to plan an efficient
path considering the cost of moving through doors and the path distance. Genetic Algorithm (GA) and Gray
Wolf Optimization (GWO) have been considered for solving this optimization problem. According to the
experimental results, the proposed method can effectively detect and tag doors in the navigation map and
plan efficient paths. In summary, the proposed DDA path planner with GA outperformed other approaches,
achieving cost reductions of 66%, 34%, 49%, and 60% compared to random selection, DDA with GWO,
GA minimizing only distance, and GWO minimizing only distance, respectively.

INDEX TERMS Door density, path planning, optimization, vision-based detection.

I. INTRODUCTION
Mobile service robots are being implemented in service and
maintenance industries to mitigate the increasing shortage
and rising costs of trained manpower [1]. Menial and
repetitive tasks such as cleaning, inspection maintenance and
elderly care have been delegated tomobile service robots over
the years with the improvements in robotic technology and
the need of quick responses for such tasks [2].
With mobile service robots, navigation is a crucial feature

for the above applications and work tasks. Robots would
work best when they can have accessible space within
their work environment [3]. However, most of the existing
built environments do not consider robotic deployments
in their design. The doors that separate rooms, while a
trivial infrastructure for people to open and access the other
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side, are a pain point for robotic deployments [4]. This is
especially evident when the robots do not have the requisite
end-effectors or equipment to be able to open doors [5],
or would require human aid to open doors, which prevents
fully autonomous work.

The typical method would be to implement such manip-
ulators onto the robot, or to upgrade the entire building
infrastructure to a smart building for the service robots to
wirelessly communicate and open the doors. These methods
are often costly and unfeasible, especially if the service robot
is small in footprint, or do not have the advanced systems for
deftly controlling end-effectors needed for opening doors [6].
The ‘Design for Robot’ (DfR) methodology is a growing

field to create environments more conducive to robot oper-
ation by changing architectural elements to enhance robot
inclusivity [7]. DfR employs a multidisciplinary approach,
combining robotics, architecture, and human-robot research
application to design spaces that accommodate for both
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humans and robots [8], [9], [10]. In addition, DfR approaches
have been utilized to assessing the robot-inclusivity of
building infrastructure. The work [11] proposed an auto-
mated robotic system to evaluate the robot-inclusivity of
an environment based on the lighting condition which
effects the performance of a robot. There has also been
research conducted on automated door detection for indoor
environments [12], [13], [14]. However, a notable research
gap exists in assessing how these artificial barriers of doors
and gated entryways would impact robot inclusivity, and no
autonomous system has been developed yet to quantify such
a factor in building infrastructure for determining how fit the
environment is for deploying the mobile service robots.

On the other hand, path planning in robotics frequently
employs algorithms like A* and Dijkstra for point-to-point
navigation [15]. These methods can find efficient paths while
avoiding the obstacles during point-to-point navigation. The
traditional path planning methods often aim to minimize
travel energy and distance, as well as reduce the number of
turns [16], [17]. The Traveling Salesman Problem (TSP) is a
well-known approach used to minimize energy consumption
when covering a set of waypoints [18]. By solving the TSP,
a robot can determine the optimal sequence for navigating
through multiple waypoints minimizing the energy. Meta-
heuristics, such as Genetic Algorithms (GA) and ant colony
optimization, are often utilized to address the complexities
of TSP, providing efficient solutions for waypoint navigation
and energy optimization in robotic path planning [19], [20].
However, path planning that takes into account the density of
doors within an environment has not been explored until now.

This paper proposes a novel Door-Density-Aware (DDA)
path planning method. The proposed approach integrates
door density into the path planning process, potentially
leading to more efficient and contextually appropriate
navigation strategies for robots in environments with varying
door densities. The major scientific contributions of this
paper include the development of:

• A method to autonomously generate door-density maps
of building infrastructure for navigation.

• A Door-Density-Aware (DDA) path planning approach
based on metaheuristics.

Section II delves into the methods used for automating
door-density mapping. Section III presents the proposed
DDA path planning approach. Section IV details the experi-
ment used for validating the proposed system. Section V then
concludes the paper, along with future works to be conducted
for this research work.

II. DOOR-DENSITY MAP GENERATION
A. ROBOT PLATFORM
The Meerkat audit robot platform was designed to conduct
mapping and auditing of sites using the DfR and robot
inclusive parameters. The robot is shown in Fig. 1. The
robot supports multiple sensors and has attachment points
for additional sensor types to be mounted for other parameter

tracking purposes. The typical sensor setup involves a SICK
2D LiDAR, VectorNav Inertial Measurement Unit (IMU),
and a RealSense camera. An onboard computer is used
for processing. This enables the robot to perform auditing
operations for given spatial sites, and data collection and
storage, along with analysis for the various robot inclusivity
parameters.

FIGURE 1. Meerkat audit robot and its main sensors.

B. DOOR DETECTION FRAMEWORK
In this research, we focus on the detection of door handles
as a proxy for detection, rather than entire doors due to the
limited field of view available to robotic visual systems when
the robots are close to the doors. If the robot attempts to detect
an object from far away, the accuracy of locating the object
would reduce. Typically, only the door handle is visible to
the robot when it is close to them (see Fig. 2). By accurately
identifying door handles, the robot can effectively infer the
locations of doors within the environment. In addition to
that, use of door handles as a proxy for doors enables the
identification of already opened doors. Furthermore, a rough
estimation of the door location is sufficient for the path
planning strategy proposed in this paper.

Many vision-based artificial intelligence detection models
have been developed to cater to the demand in diverse
applications. Faster Region-based Convolutional Network
(Faster R-CNN) [21], Single-Shot Detector (SSD) [22], and
You Only Look Once (YOLO) [23] are some examples.
YOLO, particularly its eighth iteration (YOLOv8), stands
out due to its remarkable speed and efficiency without
compromising accuracy [24]. Its lightweight architecture and
fast inference time make it ideal for integration into robotic
systems, enabling effective object detection and tracking.
Thus, YOLOv8 is highly suitable for detecting doors in our
work.

In order to enhance feature extraction, YOLOv8 has a new
backbone network that uses cutting-edge methods including
Cross-Stage Partial (CSP) connections to strengthen gradient
flow and lower computing complexity. YOLOv8’s head
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FIGURE 2. Using door handle as a proxy for locating door location.

uses anchor-free detection to expedite detection and reduce
computing cost, while the neck integrates Path Aggregation
Network (PANet) for improved spatial information retention
and multi-scale feature fusion.

C. GENERATING DOOR-TAGGED MAPS
The overall robot system architecture of the framework
proposed for generating door-tagged maps is shown in
Fig. 3. In the Meerkat’s system, the LiDAR sensor scans
the environment and stores the data using the ‘rplidar’
ROS package. Another ROS SLAM algorithm, ‘gmapping’
would use those scans along with IMU data to build a map
while simultaneously tracking the robot’s location within it.
Another ROS package, ‘AMCL’ then uses this pre-built map
and new lidar scans to estimate the robot’s pose (position
and orientation) with a particle filter, effectively localizing
the robot within the environment. This combined approach
allows the robot to navigate in an unknown environment. The
‘rviz’ ROS package can be separately used for visualization
of the mapped zone.

A ZED2 depth camera was used for the detection of door
handles. Depth information was used for gauging the distance
from robot to door for tagging the door’s location on the
map. Upon detecting a door through the ZED2 camera up
to a maximum distance of 1.2 meters from the robot, the
depth gauging algorithm will trigger to gauge the current
distance of the robot to the detected door, and the door’s
apparent location will be saved as coordinate points in the
xy-plane with reference to the stored map of the site. These
coordinates are saved under a separate file for the next step
of door location tagging.

By using the coordinates of detected doors from the ZED2
camera, the doors would then be tagged upon the base map of
the site. These location tags are then overlaid on the base map
to reflect the positions of doors within the work environment.
To avoid the tagging of the same door several time, the doors
detected in close proximity is filtered out. This filtering was
done by obtaining the centroid of the multiple locations of
doors that overlap or are in contact with each other, and using
that as the new center point. The formula for obtaining the
aggregated centroid is given in (1), where px,y is the center,
and (xk , yk ) is the center of k th detection among allM number
of detection of the same door.

px,y =

∑M
k=1 (xk , yk )

M
(1)

FIGURE 3. Overall robot architecture for the framework proposed for
generating door-tagged maps.

The overall process of generating door-tagged maps is
explained in Algorithm 1.

III. DOOR-DENSITY-AWARE (DDA) PATH PLANNING
When performing activities such as inspections and patrolling
by a robot, the robot often need to go to a set of designated
goal points. All the designed goal points (pi) should be
coveredwhen performing activities in the environment. These
locations are referred to as waypoints (wj). Three possible
paths are depicted in Fig. 4 for an example scenario with
N number of goal points to be visited. Fig. 4(a) shows
a non-optimized path where the sequence of navigation is
randomly selected. Fig. 4(b) shows an optimized path that
passes through 11 doors. Fig. 4(c) shows an optimal path that
passes through only 4 doors. Considering the energy usage of
robots, the path in (c) is preferable.

Algorithm 1 Algorithm for Door Tagging
1) Initialize Mapping

• Initialize 2D LiDAR
• Perform site mapping
• Save LiDAR map

2) Initialize Door detection run
• Initialize door detection algorithm and dataset
• If door is detected AND within 1.2 meters from
robot’s current location:
– Create separate layer overlaid on site map with

same origin
– Tag location on separate layer

• Else Standby for next detection
• Save final location map

3) Combining maps
• Align site map and location map
• Remove door location aggregates for tagged door
locations in close proximity (overlapping circles)

• Replace door location tag aggregates with com-
bined tag

4) Overlay final maps
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FIGURE 4. Potential waypoint sequences for the auditing process. (a): Randomly selected sequence, (b): Shortest path distance, and (c): Path distance
minimum and number of door passing minimum.

The optimal sequence of waypoints is represented as Wk ,
where k ranges from 1 to N , with N being the total number
of waypoints, including the starting point. The traditional
Traveling Salesman Problem (TSP) method uses Euclidean
distances. However, in a typical environment, there are many
obstacles. It is necessary to plan a path that avoids these
obstacles. To achieve this, the A* (A-star) algorithm is used.
These A* distances are then used instead of the Euclidean
distances, unlike in the traditional TSP problem.

Assume D(k, l) is the distance calculated using the A-star
algorithm from point k to point l. The energy consumed by
the robot for navigation is directly proportional to the distance
it travels, assuming a flat, doorless workspace. The energy
required for the movement of the robot can be expressed as:
Ek,l = MD(k, l), whereM is a proportional constant.
If the robot needs to go through a door, additional overhead

is required in terms of requiring human support or using
a manipulator to open the door. This requirement should
penalize the energy cost for a path that connects two locations
through a door. In our solution, a penalty of E0 is applied
when the robot passes through a door. The energy cost should
be updated as follows in (2).

Êk,l =

{
MD(k, l) + nE0 if path goes through n doors
MD(k, l)

(2)

where E0 is the additional effort required for passing through
a door. Thus, the total energy required is calculated as in (3).
The required additional effort is considered as 10 times than
the average distance between waypoints in a particular case.

Total cost, C =

k=N−1∑
k=1

Êk,k+1 (3)

It is now required to find an optimal solution that
minimizes the above expression. Given N waypoints, there
are N (N−1)

2 waypoint pairs. Calculating the energy usage
between each pair and finding the optimal solution requires
(N −1)! comparisons, which becomes impractically large for
large N . Therefore, it is essential to focus on metaheuritics

optimization techniques. We selected the metaheuritics,
Genetic Algorithm (GA) and Grey Wolf Optimizer (GWO)
to solve this optimization problem due to their proven
efficacy in solving complex optimization problems [25].
GA is renowned for its robust search capabilities and
ability to explore a large solution space through mechanisms
inspired by natural selection and genetics [26]. GWO,
on the other hand, mimics the social hierarchy and hunting
behavior of grey wolves, offering a strong balance between
exploration and exploitation, which is crucial for finding
optimal solutions [27].

A. GENETIC ALGORITHM (GA)
A Genetic Algorithm (GA) is inspired by natural selection,
where the best individuals survive and reproduce based on
principles of genetics and evolution [26]. This technique
employs a population of individuals (representing waypoint
sequences) working collectively to find the optimal solution
for through genetic processes. The flow of the GA is outlined
in Algorithm 2. The population size and the number of
generations were selected as 100 and 2000, respectively
observing the performance variations.

B. GRAY WOLF OPTIMIZATION (GWO)
Gray Wolf Optimization (GWO) is inspired by the social
hierarchy and hunting strategy of gray wolves in nature.
This technique uses a population of individuals (representing
waypoint sequences) working together to find the optimal
solution by demonstrating the cooperative behavior and
leadership hierarchy of gray wolves [27]. The flow of the
GWO is outlined in Algorithm 3. The population size and
the number of generations were selected as 40 and 5000,
respectively observing the performance variations.

IV. EXPERIMENTS
A. TRAINING AND TESTING OF DOOR DETETCION
MODELS
A dataset comprising 933 images was used in this work,
and basic augmentations were applied to expand the dataset.
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Algorithm 2 Pseudocode for the GA
1) Initialize Parameters:

• Generations
• Population size
• CrossOverRate = 0.5

2) Generate Population:
• Generate initial population of random waypoint
connections.

• Sort the population by fitness scores.
3) Evolutionary Process:

• For each generation:
– Parent Selection: Select top individuals as

parents and split into mothers and fathers.
– Crossover: Combine parent segments to create

offspring.
– Mutation: Randomly swap two waypoints in

offspring.
– Population Replacement: Merge old and new

populations, sort by fitness, and retain the top
individuals.

4) Return Best Solution:
• Output the best route for the waypoint sequence
after all generations.

Algorithm 3 Pseudocode for the GWO
1) Initialize parameters:

• MaxIterations
• SearchAgents
• lb = 0
• ub = Number of waypoints - 1

2) Initialize Alpha, Beta, Delta scores to infinity
3) Initialize positions of SearchAgents randomly within

boundaries [lb, ub]
4) For each iteration from 1 to MaxIterations:

• For each SearchAgent:
– Ensure the position is within [lb, ub]
– Calculate fitness
– Update Alpha, Beta, Delta based on fitness:

∗ If fitness < Alpha_score: Update Alpha
∗ Else if fitness < Beta_score: Update Beta
∗ Else if fitness < Delta_score: Update Delta

5) Calculate the parameter ‘a’ as 2 − ( current iteration×2
MaxIterations )

6) For each SearchAgent:
• For each dimension (waypoint):
– Update position based on Alpha, Beta, Delta

positions
7) Return the best solution.

• Output the best route for the waypoint sequence
after all Iterations

These augmentations included horizontal flipping, 90-degree
rotations, blurring, and the introduction of Gaussian noise

with a standard deviation of 0.5. As a result, the dataset
was inflated to 2,195 images. This augmented dataset was
then split into training, testing, and validation sets, with
proportions of 70 %, 15%, and 15%, respectively. The
model training was carried out using an NVIDIA GeForce
RTX 3080 GPU.

A performance comparison of the trained YOLOv8 model
with othermodels, YOLOv5, SSD, and Faster-RCNN is given
in Table 1. All the models were trained using the same
dataset and the standard performance matrices precision,
recall, F1-score, and mean Average Precision (mAP) have
been used here. This comparison of trained detection models
shows that YOLOv8 is the best choice for our application.
With a precision of 0.83, recall of 0.78, F1 score of 0.82,
and mean Average Precision (mAP) at 0.5 of 0.86, YOLOv8
outperforms other models across all metrics.

TABLE 1. Performance comparison of trained detection models.

FIGURE 5. Examples for YOLOv8 detection results from testing dataset.

Some detection results for the YOLOv8 model can be seen
in Fig. 5 as a way to show the detection capabilities of the
trained model.

B. GENERATING DOOR-TAGGED MAP
The Meerkat robot was made to pass through the test sites
with the door detecting algorithm to obtain the door locations
for the respective sites.

The first test was conducted in a classroom and its adjacent
storage rooms. Fig. 6(a) shows a map of the environment
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FIGURE 6. Site maps and resultant door-tagged maps. (a) manually created door layout of test site 1, (b):
generated door-tagged map for test Site 1, (c): manually created door layout of test site 2, (d) generated
door-tagged map for test Site 2. Blue dots on site maps indicate actual locations of doors for the given sites
while red dots indicated the doors located by the robot. Map resolution is 1 pixel = 0.05 m.

with the door locations (manually annotated as the ground
truth for the comparison). There were six doors on this site.
The generated door-tagged map for the first site is shown in
Fig. 6(b). This door-tagged map has accurately tagged all six
doors. However, the robot erroneously detected and tagged
one extra door on the map. Even though this extra erroneous
detection would not considerably impede the path planning
performance since no accessible space is recorded beyond the
erroneously detected door.

The second test site is in one of the faculty office. The site
contains interior meeting rooms in the center that also provide
a shortcut between the corridors that connect the peripheral
office rooms when the meeting rooms are not being used
(see Fig. 6(c)). The generated door-tagged map of the area
is shown in Fig. 6(d). All the doors were tagged successfully
at the correct locations in this site.

The door-tagged map generated for the test site 1 and
2 validate that the proposed system can successfully generate
the door-taggedmap. Themap generation is thus adequate for
door-density-aware path planning purposes.

C. PATH PLANNING
The door-tagged maps of two sites were used for the
DDA path planning. For benchmarking the path planning
performance, the navigation of the robot in a random
sequence and path planning that only considers minimizing
the distance (using both GA and GWO) have been considered
as baselines. The paths generated for each case are given in
Fig. 7. The corresponding cost variations during the optimiza-
tion processes are given in Fig. 8. The key parameters of the
generated paths, distance (D), number of doors to be crossed
(n), total path cost (C), and time for optimization (t) for the
cases are summarized in Table 2 for comparison.
The robot navigation through 25waypoints was considered

for site 1. The path generated for site 1 considering a
random sequnce is given in Fig. 7(a). The distance of this
path is 143.55 m and it crosses 8 doors leading to total
path cost of 94355 (see Table 2). The proposed DDA path
planning approach considering GA was able to generate a
path with distance of 97.00 m and the number of doors
to be crossed 2 leading to a substantially lower total path
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FIGURE 7. Planed paths for the two sites considering different approaches. (a): Random waypoints sequence in site 1, (b): DDA path planning using GA
in site 1, (c): DDA path planning using GWO in site 1, (d): Distance-only optimization considering GA in site 1, (e): Distance-only optimization
considering GWO in site 1, (f): Random waypoints sequence in site 2, (g): DDA path planning using GA in site 2, (h): DDA path planning using GWO in
site 2, (i): Distance-only optimization considering GA in site 2, and (j): Distance-only optimization considering GWO in site 2.

FIGURE 8. Variation of cost with generation for each case. (a): DDA path planning using GA in site 1, (b): DDA path planning using GWO in site 1,
(c): Distance-only optimization considering GA in site 1, (d): Distance-only optimization considering GWO in site 1, (e) DDA path planning using GA in
site 2, (f) DDA path planning using GWO in site 2, (g): Distance-only optimization considering GA in site 2, and (h): Distance-only optimization
considering GWO in site 2.

cost (C = 29700) compared to the other cases. The GA
took 6.7 minutes for terminating the optimization process in
this case. In contrast, DDA path planing using GWO could
generate a path that is considerably higher than the GA. In the
event of minimizing only the distance, the GA could generate
the shortest path of 95.53 m. However, 7 doors has to be
crossed by the robot leading to substantially higher total path
cost (C = 79553).

Similar performance was observed for site 2, where
27 waypoints were considered. Overall, the proposed DDA
path planning approach with GA generated the path with
the lowest total path cost compared to the other cases in
both sites. The proposed DDA with GA achieved average
cost reductions of 66%, 34%, 49%, and 60% compared to
random selection, DDA with GWO, GA minimizing only
distance, and GWO minimizing only distance, respectively.
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TABLE 2. Comparison of key parameters for different path planning approaches.

Furthermore, the processing time is satisfactory. Therefore,
the proposed DDA with GA is suitable for improving
navigation performance of robots used in waypoint coverage
applications such as patrolling and inspections.

V. CONCLUSION
This paper proposed a novel path-planning approach that
considers door density in an environment. The proposed
approach consists of a method to autonomously create
door-density maps of building infrastructure through vision-
based detection. The vision-based door detection method has
been developed using the YOLOv8 model. The proposed
DDA path planner utilizes these door-tagged maps to
generate an efficient navigation path that minimizes the cost
of path distance and the effort required for going through
doors. A GA and a GWO have been proposed to find the
optimum waypoint sequence during navigation.

The experimental results found that the trained YOLOv8
model performs superiorly to other detection models, SSD,
Faster-RCNN, and YOLOv5. In addition, the proposed
robotic system can autonomously generate door-tagged maps
of building infrastructure with an accuracy adequate for
path planning. The proposed DDA path-planning approaches
generated paths that minimize the total path costs compared
to random waypoint sequence selections and distance-
minimization-only path planning. The GA produces the best
results compared to GWO in DDA path planning. Therefore,
the work proposed in this paper would be highly beneficial for
efficient path planning of robots deployed in indoor building
infrastructures. Future work would explore the consideration
of other factors that impact robot inclusivity, such as surface
unevenness, for efficient path planning.
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