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ABSTRACT Providing continuous electric power supply to consumers is difficult for power system
engineers due to various faults in transmission and distribution systems. Precise fault location (FL) in
transmission lines speeds up the repair and restoration process. This paper proposes a wide neural network
(WNN) approach for FL identification in power transmission networks. The proposedWNNuses the voltage,
current magnitude, and phase angles measured by the phasor measurement unit (PMU). This proposed
work considers the Western System Coordinating Council (WSCC) 9-bus test system with optimal PMU
placement for fault analysis. The several types of faults created on different line sections of the test system
are simulated using MATLAB/Simulink environment considering various fault parameters such as fault
resistance, fault inception angle, and fault distance. The performance of the proposed scheme is measured
by finding the absolute prediction error between actual and predicted FL. The results show that the average
prediction errors for L-G, LL, LL-G, and LLL faults are 0.0121, 0.0209, 0.0139, and 0.0124, respectively.
The proposed method outperforms the related machine learning-based FL estimation schemes for all the test
cases considered at different fault locations. In addition, considering phase angle measurement improves the
accuracy of finding the fault location compared to the voltage magnitude and current magnitude feature set.

INDEX TERMS Artificial intelligence, machine learning, phasor measurement unit, wide neural network,
fault localization.

I. INTRODUCTION
The rapid increase in the energy demand necessitates expand-
ing the power system, which increases the complexity [1].
Electrical power transmission and distribution systems are
always vulnerable to the unexpected events which affect
the system’s steady-state performance [2]. Owing to the
greater length of the transmission line (TL) , there are
several possibilities for the occurrence of faults due to various
causes such as equipment failures, creature activities, and
natural phenomena [3]. In recent years, various blackouts
have been recorded due to various types of faults and relay
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malfunctions in the power system network [4], [5]. This
necessitates effective monitoring of the power system to
ensure its reliability and security. TL faults are classified
into series faults and shunt faults or short circuit faults. The
occurrence of series faults is sporadic, and they can also be
identified by observing the phase voltage [6]. There are two
types of short circuit faults: symmetrical and unsymmetrical.
Triple line (LLL) and triple line-to-ground (LLL-G) faults
are symmetrical faults. Line-to-ground (L-G), line-to-line
(LL), and double line-to-ground (LL-G) faults are examples
of unsymmetrical faults. Symmetrical faults on transmission
lines are rare, but their severity is high. Unsymmetrical faults
are common, and they cause significant disruptions in the
power system [6].
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All the aforementioned faults reduce the lifetime of the
line components, increase the power loss, induce the heating
effect on cables, and damage the insulators [7]. In addition,
the short circuit faults in the power system severely affect
its performance and create interruptions or disturbances in
the energy supply and hence the reliability gets reduced [3].
Thus, the short-circuit faults are considered as severe faults
in the transmission system. The effect of various types of
faults on the power system depends on the type of fault,
fault location (FL) from the relay point, and the duration
of the fault. Hence, to improve the reliability of the power
system network, accurate fault localization is required to fix
the fault in time [8]. Therefore, an efficient method is needed
to localize the TL faults for healing, which, in turn, reduces
the system recovery time and maintains the power system’s
reliability.

The early prediction of fault needs relevant, accurate data.
In this regard, using phasor measurement units (PMUs)
enables the access of synchronized data in the power system
network [9] to achieve the aforementioned tasks rather
than the data from conventional measurements. PMUs are
widely used in smart grids (SG) for time-synchronized
measurement of current, voltage, phase angle, frequency,
and rate of change of frequency. Due to the high cost of
PMUs, the total number of PMUs should be minimized and
optimally placed in a power system to achieve complete
system observability [10], [11]. PMU measurements are
widely used in power systems for protection applications
such as TL fault identification, localization, and backup
protection [12], [13], [14] and also the measured PMU data at
various terminals are made available as inputs to intelligent
techniques for effective fault detection, classification, and
localization [15]. Nowadays, researchers are focusing on
efficient FL estimation schemes to mitigate the effects of
various types of faults in power system and restore system
operation.

The FL identification methods are divided into three
groups such as traveling wave-based, impedance-based, and
artificial intelligence (AI) based methods [16]. In traveling
wave-based methods, the total time taken by the waves to
travel between the bus terminal and fault point is calculated,
and it is used to estimate the FL [17]. In this method,
the decision-making process depends on analyzing the
position-time characteristics and themotion of the considered
signals [16]. The traveling wave-based FL method for the
line-to-ground fault is proposed in [18], and the fault distance
(FD) is calculated using the difference of the wave’s speed.
In this group of methods, capturing the transient waveform
for FL requires high-speed data acquisition devices, sensors,
fault transient detectors, and a global positioning system
(GPS) [19]. In the traveling wave-based methods, if the FL
is closer to the bus-bar, then the accuracy in identification of
FL is lesser [20].
The impedance-based FL methods are more popular

among electric power utilities than the traveling wavemethod

due to their simplicity and economy. The basic principle of
the impedance-based method is to locate faults using the
impedance value as seen from the measurement node [19].
Various types of impedance-based FL estimation methods
are explored in [21], and also different strategies are offered
to enhance their performance with high accuracy. The
impedance-based FL method in [22] utilized the electrical
quantities measured at both ends of the bus terminals, and
it uses the faulty line parameters for the FL estimation.
In [23], the Thevenin equivalent impedance of the network
is used to estimate the FL, and in [24], line topology and
source impedance-based fault locator is discussed. However,
these approaches are one-ended, by utilizing equivalent
circuits and statistical theories, they can significantly reduce
parameter dependence. Further, these methods are extended
for multi-terminal and non-homogeneous TLs in [25], [26],
[27]. In the aforementioned impedance-based methods, the
steady-state values of voltage and current during the fault are
obtained, and are used to calculate an apparent impedance
that is directly associated with FD. The multi-estimation
is the major drawback in impedance-based methods due to
the presence of multiple probable faulty points at the same
location [28].
Nowadays, machine learning (ML) algorithms play a vital

role in FL estimation with the arrival of a wide area moni-
toring system (WAMS) and the availability of big data [29].
The combination of artificial neural networks (ANN) and
wavelet-based technique is used in [30] to locate TL faults.
This method achieves lesser error in the estimation of FL.
The comprehensive comparative analysis of performance in
detecting, classifying, and localizing transmission line faults
is presented in [31]. The authors compare the performance
metrics for L-G, LL, and LL-G faults across various
techniques such as adaptive neuro-fuzzy inference system
(ANFIS), ANN, Discrete wavelet transform-Adaptive neuro-
fuzzy inference system (DWT-ANFIS), and self-organizing
map (SOM). Recently, incorporating renewable energy
sources and the nonlinear behavior of advanced power
electronic equipment pose significant challenges to power
quality (PQ). In this regard, AI has become essential in
developing intelligent control methods for PQ devices.
In [32], the authors proposed the firefly algorithm-trained
ANN controller (FF-ANNC) to resolve the PQ issues and
enhance their performance.

Further, the ML and deep learning (DL) applications are
extended to hardware fault prediction such as Embryonic
Hardware (EmHW) in biomedical system and hardware
fault prediction in the transistor level [33], [34]. AI-based
techniques are widely used to detect the faults in solar
photovoltaic (SPV) arrays and improve fault detection
accuracy using a novel technique discussed in [35] and
[36]. In [37], a support vector machine (SVM) with wavelet
transform is used for short-circuit FL estimation in TLs.
The complexities involved in FL estimation, especially in
large-scale multi-machine power systems, necessitate a novel
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method in FL estimation. Digital twin technology (DTT)
has recently emerged as a solution by developing real-time
digital replicas of physical equipment, facilitating efficient
monitoring and fault diagnosis in power systems and subsea
production systems [38], [39], [40]. In [41], the authors
explored the use of a deep graph neural network (DGNN) that
integrates multi-scale attention and a multi-linear perceptron
block for fault localization, detection, and classification in
transmission systems. However, the study noted a lower
accuracy in fault localization.

Most of the previous works in the literature review used
voltage or current features for fault location estimation.
The wide area protection system requires the PMU data
consisting of both the magnitude and phase angle of the
considered signal to monitor the power system network and,
hence, ensure the reliability of the power system. In addition,
incorporating ML concepts with PMU data can effectively
identify the FL. Finally, with the availability of PMU data,
the proposed work presents a novel wide neural network
(WNN) regression model to estimate the TL FL. The main
contribution towards this work is as follows:

• A WNN-based scheme is developed and proposed for
transmission line fault localization.

• The several types of faults on different line sec-
tions of the Western System Coordinating Council
(WSCC) 9-bus test system are simulated by using
MATLAB/Simulink considering various fault parame-
ters such as fault resistance (FR), fault inception angle
(FIA), and FD.

• The voltage, and current phasors for various fault
scenarios are captured by PMUs, which are strategically
positioned on the test system through optimal PMU
placement (OPP) technique.

• The required datasets are generated using simulation and
are used to train and test the WNN-based fault locator
model.

• The effectiveness of the suggested model is assessed by
comparing it with other regression-based state-of-the-art
algorithms like decision tree (DT), and SVM, ANFIS,
DWT-ANFIS, and DGNN in terms of performance
metrics such as mean absolute error (MAE), mean
squared error (MSE), and root mean squared error
(RMSE).

The rest of this article is organized as follows: Section II
describes the benchmark system used in this work for
dataset preparation and parameters considered for the same.
Section III presents the architecture and estimation methods
of the proposed FL scheme. Section IV discusses the results
and comparative analysis with other regression-based ML
algorithms, and section V concludes the paper.

II. DATASET PREPARATION
The dataset preparation process for the proposedWNN-based
fault localization techniques is elaborated in the following
subsections:

FIGURE 1. IEEE 9-bus test system with optimal PMU placement.

A. SYSTEM UNDER CONSIDERATION
The proposed fault localization scheme is tested on the
WSCC 9-bus system [42]. It comprises three synchronous
generators with a 60 Hz supply frequency, three two-winding
transformers, six transmission lines, and three loads. The
one-line diagram of the WSCC 9-bus system is shown in
Figure 1.

B. OPTIMAL PMU PLACEMENT
The outlay of PMUs and their accessories motivate the
researches on the OPP issues. OPP seeks to maximize
the observability while utilizing the minimum number of
PMUs. The teaching-learning-based optimization (TLBO)
algorithm [43] is used to solve the OPP problem. Considering
the characteristics of the TLBO algorithm, such as ease of
implementation and non requirement of algorithm-specific
parameters for tuning [43] inspires the researchers towards
the TLBO algorithm in solving theOPP problem. The optimal
number of PMUs reduces the cost and the optimal location
yields the reliable operation. Hence, the authors in their
previous article [11] proposed the TLBO-based algorithm for
determining the optimal PMU locations. From this algorithm,
the optimal PMU locations in a WSCC 9-bus system is found
to be at bus-4, bus-7, and bus-9. Figure 1 shows the test
system with optimally placed PMUs.

C. DATASET GENERATION
The performance of the WNN model in FL estimation of
the WSCC 9-bus system is evaluated using Matrix laboratory
(MATLAB)/Simulink environment for various types of faults
on the TLs. Three-phase voltage and current signals with
magnitude and phase angles are obtained from bus-4, bus-7,
and bus-9 through PMUs placed at the aforementioned buses.
The line-to-ground fault (C-G fault), line-to-line fault (AC
fault), and double line-to-ground fault (AC-G fault) are
created on TL 8-9 in the time interval of 200 ms to 300 ms.
Two cycles of the post-fault voltage and current samples
are considered within the specified time interval for dataset
generation. The total number of samples considered for the
two cycles is 68 (34 samples per cycle with a time step of
0.4902 ms and sampling frequency of 12 kHz). Table 1 shows
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TABLE 1. Dataset generation parameters for line 8-9.

TABLE 2. Dataset generation parameters for line 4-5.

TABLE 3. Dataset generation parameters for line 7-8.

the various fault parameters that are considered for dataset
generation in lines 8-9.

For illustration, consider the C-G fault in lines 8-9. The
fault is created at various locations from 1 to 99 km with a
step size of 1 km, FR of 30 �, and FIA of 0◦. So, the final
dataset count for the C-G fault can be calculated as follows:
(99×1×1×68) = 6732. Here, the ‘‘99’’ indicates the total
number of fault locations for the C-G fault with a 1 km step
size. The ‘‘1’’ in the second position indicates the number
of FR (only one FR), and ‘‘1’’ in the third position indicates
the number of FIA (only one FIA), and 68 indicates the total

number of samples considered. Finally, the total number of
datasets generated for the C-G fault is 6732. Similarly, the
total number of training data samples was generated for the
rest of the fault types, such as AC andAC-G faults in the same
line sections 8-9. It is inferred from Table 1 that each type of
fault has its own FL and FIA for testing data.

The total number of testing data samples is calculated
based on the total number of fault distances for a particular
fault type, FR, FIA, and the number of post-fault voltage
and current cycles. The two cycles of post-fault voltage and
current signals (with 68 samples) are also considered for
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FIGURE 2. Structure of a typical neural network.

testing dataset generation. For example, the total number
of dataset generation for the C-G fault (for testing) is
demonstrated here. The C-G fault is created at various
locations from 3.25 to 95.25 km with a step size of 4 km,
FR of 300 �, and FIA of 0◦. The total number of testing data
samples generated for the C-G fault is calculated as follows:
24×1×1×68= 1632 samples per FIA. Here, 24 indicates the
total number of fault positions calculated based on the step
size between 3.25 km to 95.25 km, ‘‘1’’ in position 2 indicates
the total number of FRs, and ‘‘1’’ in position 3 denotes
the total number of FIA. Here, the ‘‘68’’ indicates the total
number of samples considered. Finally, the total number of
testing datasets generated for the C-G fault is 1632 samples
per FIA. Similarly, the testing dataset is generated for AC
and AC-G faults for various test cases with different FIAs,
which are shown in Table 1. Table 2 and Table 3 show the fault
parameters for dataset generation for other types of faults on
the TL 4-5 (B-G fault, BC fault, BC-G fault) and 7-8 (A-G
fault, AB fault, ABC, and AB-G fault), respectively. The total
number of data samples generated for training and testing is
presented in Tables 2 and 3.

III. ARTIFICIAL NEURAL NETWORK
An ANN is an artificial system that mimics the operation
of the brain in performing prediction (regression) and clas-
sification problems. It involves nodes, activation functions,
weights, and biases that are linked in a network [44]. The
neural network comprises an input layer representing the
network’s input data, hidden layers, and an output layer
representing the network’s response. Each layer has a certain
number of neurons, and each neuron is linked to the neurons
of the previous layer via adjustable weights w and biases b.
Figure 2 shows the structure of a typical neural network unit.
If x1, x2, · · · , xN are the inputs of the jth neuron then the
output of the jthneuron zj is obtained as follows [45],

uj =

N∑
i=1

wijxi + bj (1)

zj = f (uj) (2)

wherewij represents the weight of the connection between the
ith input and neuron j, the bias of neuron j is represented by
bj, and the activation function of neuron j is represented by f .
The following features motivate the researchers toward

ANN for transmission line FL identification.
• Due to simple and better generalization property, ability
to learn independently and adaptive nature, ANN is

widely used for fault analysis studies for both real-time
and offline application [31].

• The ANN output is accurate, reliable and fast. Based
on the training algorithm, the above-said task can be
achieved [46].

A. PROPOSED FAULT LOCATOR SCHEME WITH TRAINING
ALGORITHM
The proposed WNN architecture for FL estimation is shown
in Figure 3. It has three layers: the input layer, a hidden
layer, and an output layer. The data extracted from the
MATLAB/Simulink model of the WSCC 9-bus system is
used as the input and target data for training the WNN. For
this, the network is initially trained with a set of training
data consisting of post-fault voltage and current signals with
magnitude and phase angles that are measured by PMUs
located at optimal locations on the power system network.
The proposed WNN architecture has one input layer that
accepts 12 features, one hidden layer with 100 neurons, and
an output layer for estimating the fault location. The inputs
layers are used to transfer the inputs to hidden layers. Using
the weight of the connection between the input and the hidden
layer, the bias, and the activation function of the hidden layer,
the output of the hidden layer is obtained. The output zj of
neuron j is obtained as follows:

zj = fhidden

(
N∑
i=1

whiddenij xi + bhiddenj

)
(3)

where fhidden is the activation function of the hidden layer,
whiddenij represents the weight of the connection between the
ith neuron of the input layer and neuron j in the hidden layer
and bhiddenj represents the bias of neuron j.

In modern WNN, the rectified linear unit (ReLU) activa-
tion function is widely used during the feed-forward training,
which is defined as [47] and [48]

ReLU (x) = x+
= max(0, x) (4)

The vanishing-gradient problem is well handled by
ReLU [47], [48], and it is less computationally expensive
than traditional hyperbolic tangent and sigmoid activation
operations [48]. As a result, ReLU is extremely useful when
developing WNN and deep neural networks. The output
vector y1 of the output layer is calculated using the weight
that connects the hidden and output layers, the bias of the
output layer, and the activation function. The value of y1 with
one neuron is obtained as follows:

y1 = fout

 M∑
j=1

woutj zj + bout

 (5)

where fout is the activation function of the output layer,
woutj represents the weight of the connection between the
jth neuron of the hidden layer and the neuron in the output
layer, bout represents the bias of the output layer. The
pure linear activation function is used in the output layer.
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FIGURE 3. Architecture of the proposed wide neural network.

TABLE 4. Performance evaluation during C-G fault at line 8-9.

TABLE 5. Performance evaluation during AC fault at line 8-9.

TABLE 6. Performance evaluation during AC-G fault at line 8-9.

TABLE 7. Performance evaluation during B-G fault at line 4-5.

The output y1 is predicted FL, represented as ypredicted .
After obtaining the predicted FL, the performance and
effectiveness of the proposed model are evaluated. In this

regard, various performance metrics are used to validate the
proposed model, such as MAE, MSE, and RMSE, which
reflect the performance of the proposed WNN model. The
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TABLE 8. Performance evaluation during BC fault at line 4-5.

TABLE 9. Performance evaluation during BC-G fault at line 4-5.

TABLE 10. Performance evaluation during A-G fault at line 7-8.

TABLE 11. Performance evaluation during AB fault at line 7-8.

TABLE 12. Performance evaluation during ABC fault at line 7-8.

TABLE 13. Performance evaluation during AB-G fault at line 7-8.

aforementioned metrics denote the prediction error rate, and
each one is defined as follows [49], [50]: MAE, commonly
used for regression models, measures the average magnitude
of the errors between actual and predicted FL values,
calculated as follows:

MAE =
1
T

T∑
k=1

|(yactualk − ypredictedk )| (6)

MSE, another crucial metric, measures the average of the
squared differences between actual and predicted FL values,
and is expressed as follows:

MSE =
1
T

T∑
k=1

(yactualk − ypredictedk )
2

(7)

RMSE, a quadratic metric, is determined by taking the square
root of the mean of the squared differences between the actual
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TABLE 14. Actual and predicted fault location with error during C-G fault at line 8-9.

FIGURE 4. Step by step working of wide neural network.

and predicted FL values. The formula for RMSE is as follows:

RMSE =

√√√√ 1
T

T∑
k=1

(yactualk − ypredictedk )
2

(8)

where T is the number of input data, yactual is the actual
output and ypredicted is the output of the WNN model. The
training algorithm plays a vital role in tuning the connection
weights w and biases b. The step-by-step process of the
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FIGURE 5. Residuals in predicted fault location during C-G fault at line 8-9.
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FIGURE 6. Residuals in predicted fault location during AC fault at line 8-9.
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FIGURE 7. Residuals in predicted fault location during B-G fault at line 4-5.
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FIGURE 8. Residuals in predicted fault location during AB fault at line 7-8.
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TABLE 15. Actual and predicted fault location with error during AC fault at line 8-9.

TABLE 16. Actual and predicted fault location with error during AC-G fault at line 8-9.

proposed scheme is shown in Figure 4. The initial weights
and biases are generated randomly and are used to create

the WNN output in step 1 [51]. Step 2 involves calculating
the error value by subtracting the predicted output from

VOLUME 12, 2024 136577



V. Yuvaraju et al.: Applications of Artificial Intelligence and PMU Data: A Robust Framework

TABLE 17. Actual and predicted fault location with error during B-G fault at line 4-5.

TABLE 18. Actual and predicted fault location with error during BC fault at line 4-5.

the actual output. Step 3 involves adjusting the initialized
weights in all links and biases in all neurons to minimize

the error by propagating the error backward. In this regard,
the limited-memoryBroyden, Fletcher, Goldfarb, and Shanno
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TABLE 19. Actual and predicted fault location with error during BC-G fault at line 4-5.

TABLE 20. Actual and predicted fault location with error during A-G fault at line 7-8.

(L-BFGS) back-propagation algorithm [52], [53], [54] is
used during the back-propagation process. The L-BFGS is

used to solve high-dimensional minimization problems when
the objective function and its gradient can be calculated
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TABLE 21. Actual and predicted fault location with error during AB fault at line 7-8.

TABLE 22. Actual and predicted fault location with error during ABC fault at line 7-8.

analytically [53]. The network outputs (predicted FL) and
error are computed again with the adapted weights and

biases, and the procedure (WNN training) is continued until
a satisfying FL output y1 is obtained corresponding to the
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TABLE 23. Actual and predicted fault location with error during AB-G fault at line 7-8.

values of the input variables x and the error is acceptably
small.

IV. RESULTS AND DISCUSSION
This section discusses the performance of the proposed FL
estimator for different types of faults occurring in various TL
sections of the considered power system.

A. PERFORMANCE OF THE PROPOSED FAULT LOCATOR
FOR VARIOUS FAULTS
Table 4 shows the various performance metrics of the
proposed FL estimator for single line to ground fault (C-G) at
lines 8-9. The performance metrics are compared with other
ML algorithms such as DT and SVM. Concerning Table 1,
different test cases are considered for C-G fault in the same
line section. The FL for test cases lies between 3.25 km and
95.25 km with a step size of 4 km. The FIAs for 5 test cases
is 0◦, 15◦, 45◦, 75◦, and 105◦ respectively. The performance
metrics are analyzed for both training and testing datasets.
Table 4 shows that the WNN-based proposed fault locator
identifies the FL with minimum error compared with other
ML algorithms. The various performance metrics, such as

MAE,MSE, and RMSE, clearly show the effectiveness of the
proposed FL scheme for both training and testing. Similarly,
the error metrics are calculated for AC and AC-G faults in
line sections 8-9 and are presented in Table 5 and Table 6,
respectively.

In addition, TLs 4-5 and 7-8 are considered for the FL
estimation problems. In TL sections IV-V, three different
types of faults (B-G fault, BC fault, and BC-G fault) are
considered with three different sets of FIAs for testing the
proposed scheme. For every test case, the fault locations are
also modified. The performance metrics for both training and
test cases are shown in Table 7-9 for the above-mentioned
faults. In TL 7-8, different types of faults such as A-G fault,
AB fault, ABC fault, and AB-G fault are considered for FL
estimation problem. The performancemetrics of the proposed
FL estimation scheme are shown in Table 10-13 for the
aforementioned faults in lines 7-8. Table 4-13 show that,
for all the fault types with different test cases, the proposed
fault locator identifies the FL with lesser error than other
techniques. The performance metrics for various faults on
FL are used to calculate the estimated FD from the relay
point. In this regard, the percentage FL error and the absolute
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TABLE 24. Performance of the proposed scheme with different features during C-G fault at line 8-9.

average error percentage of FL are calculated using Eq. (9)
and Eq. (10) [15].

Errork (%) =
(Ak − Pk )

L
× 100 (9)

Absolute average error(%) =

∣∣∣∣∣
∑T

k=1 Errork (%)
T

∣∣∣∣∣ (10)

where, Errork (%) is the k th error(%), L is the total line length,
and T is the number of input data. For illustration, consider
the C-G fault in lines 8-9. Table 14 shows the actual and
predicted FL with an error during the C-G fault at lines 8-9.
The average FL is estimated for 24 different fault locations
lies between 3.25 km and 95.25 km with a uniform step
size of 4 km. The negative sign in the error indicates that
the estimated FL is greater than the actual FL. It is inferred
from Table 14 that the error in the predicted FL is lesser and
is in the order of 10−2 to 10−3. Furthermore, the average
prediction error for the C-G fault in lines 8-9 has been
calculated, resulting in an error value of 0.0095. It shows
the effectiveness of the proposed WNN-based fault locator.
Figure 5 shows the residuals in predicted FL for the C-G fault
in line sections 8-9. It indicates the error range for all the fault
locations of each test case. Figure 5(a) shows the residuals in
predicted FL for test case I with a FIA of 0◦. It is clear that
the aforementioned fault locations lies between 3.25 km and

95.25 km with a step size of 4 km and have a minimum error
range.

Similarly, Figure 5(b)-5(e) show the error analysis for the
rest of the test cases with FIAs of 15◦, 45◦, 75◦, and 105◦,
respectively. It is observed from Figure 5(a)-5(e) that the
residuals and their range for all the test cases are lesser.
In addition to Table 14, Figure 5 describes the performance
of the proposed fault locator with detailed residual analysis.
Similarly, the line-to-line fault (AC) and double line-to-
ground (AC-G) fault in lines section 8-9 are considered,
and the actual and predicted FL with errors are shown in
Table 15 and Table 16, respectively, for the aforementioned
faults. In addition, the line-to-line (AC) fault is considered
for the analysis of residuals in predicted FL for different test
cases and is shown in Figure 6(a)-6(e). It is inferred from
Table 15 and Figure 6 that the proposed fault locator estimates
the FL with an error of ±0.03. This shows the efficacy of
the proposed fault locator. Similarly, Table 16 shows the
actual and predicted FL for the AC-G fault. Additionally,
to demonstrate the accuracy of the proposed scheme, the
average prediction errors for line-to-line (AC) and double
line-to-ground (AC-G) faults have been calculated, yielding
error values of 0.0032 and 0.032, respectively.

The errors in the FL for different types of faults, such as
B-G fault, BC fault, and BC-G fault on TL 4-5, are presented
in Table 17-19, respectively. The aforementioned tables show
the effectiveness of the proposed fault locator in estimating
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TABLE 25. Performance of the proposed scheme with different features during BC-G fault at line 4-5.

TABLE 26. Performance of the proposed scheme with different features during AB fault at line 7-8.

the FL. For illustration, the residuals in the predicted FL for
single line to ground (B-G) fault on TL 4-5 with different test

cases are shown in Figure 7(a)-7(e). Similarly, four different
types of faults (A-G fault, AB fault, ABC fault, and AB-G
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TABLE 27. Performance of the proposed scheme with different features during ABC fault at line 7-8.

TABLE 28. Average absolute prediction error in fault location.

fault) are considered in TL 7-8, with four different sets of
FIAs for each type of fault, respectively. To show the efficacy
of the proposed scheme, the performance metrics on the
FL are shown in Table 20-23 for the above-said faults. For
illustration, the residuals in the predicted FL for different test
cases are shown in Figure 8(a)-8(e) for line-to-line (AB) fault
on TL 7-8. It is observed from Table 20-23 and Figure 8 that
the proposed fault locator effectively identifies the FL with
lesser error. To demonstrate the effectiveness of the proposed
fault locator, the prediction errors for fault localization can
be calculated for all faults discussed in Tables 17 through
23. The overall prediction errors for LG, LL, LL-G, and LLL
faults are calculated and discussed in subsection C.

B. COMPARATIVE ANALYSIS OF PERFORMANCE METRICS
OF THE PROPOSED SCHEME WITH DIFFERENT FEATURES
Table 24 presents a comparative analysis of the performance
metrics for the proposed FL scheme when applied to a

TABLE 29. Average training and testing performance.

single line-to-ground (C-G) fault on lines 8-9. This analysis
examines input features, including voltage and currentmagni-
tudes with phase angle, voltage magnitude alone, and current
magnitude alone. The percentage reductions in MAE, MSE,
and RMSE for Test I are also calculated for demonstration.
Specifically, the percentage reduction in MAE when all three
features are considered is compared with voltage magnitude,
and current magnitude alone is considered as a feature set.
The MAE reductions are 95.27% and 96.29%, respectively,
while MSE reductions are 99.90% and 99.86%, and RMSE
reductions are 96.85% and 96.23% for voltage and current
alone, respectively. Similarly, the percentage reductions in
these performance metrics for the other test cases can be
calculated. Table 24 illustrates that including phase angle
as a feature set significantly enhances the accuracy of the
estimated fault location compared to rest of the feature sets
with voltage and current magnitude alone. Correspondingly,
Table 25-27 detail the performance metrics for the proposed
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FL estimation scheme for different fault types, such as double
line-to-ground (BC-G) fault on lines 4-5, line-to-line (AB)
fault on lines 7-8, and triple line (ABC) fault on line 7-8,
respectively. It is evident from Table 25-27 that incorporating
phase angle in the input features consistently results in
more accurate fault location identification with minimal error
compared to using magnitude alone.

C. COMPARATIVE ANALYSIS WITH EXISTING TECHNIQUES
Table 28 presents a comparative analysis of the average
absolute prediction error for transmission line fault localiza-
tion. The different types of faults, such as L-G, LL, LL-G,
and LLL faults, are considered for analysis. The proposed
technique achieves the lowest prediction error for L-G faults
at 0.0121. The prediction errors obtained for LL, LL-G,
and LLL faults are 0.0209, 0.0139, and 0.0124, respectively.
The DGNN technique yields an overall prediction error of
0.442 for all fault types. Notably, in all fault categories and
localization, the proposed technique outperforms existing
methods, such as ANFIS, ANN, DWT-ANFIS, and DGNN.
Table 29 highlights the performance metrics of the proposed
fault localization scheme compared to existing techniques,
focusing on MAE and RMSE values for both the training and
testing phases. The proposed technique records the lowest
averageMAE of 0.0109 and RMSE of 0.0192 during training.
In testing, it also achieves the lowest MAE and RMSE values
of 0.0390 and 0.0566, respectively. These results indicate that
the proposed method performs better in training and testing
than the other fault localization techniques.

V. CONCLUSION
In this paper, a WNN-based fault locator was developed
for the WSCC 9-bus system using the MATLAB/Simulink
environment. In addition, the optimal PMU placement
is considered, ensuring PMUs are strategically placed to
achieve 100% system observability. The WNN was trained
using the PMU-derived features such as voltage and current
magnitudes and phase angles to estimate the fault location
by creating specific faults within the system. The analysis
of prediction errors revealed absolute prediction errors of
0.0121 for L-G faults, 0.0209 for LL faults, 0.0139 for
LL-G faults, and 0.0124 for LLL faults, demonstrating the
effectiveness of the proposed fault locator compared with
the existing techniques. Training and testing results indicated
significantMAE,MSE, and RMSE reductions when incorpo-
rating voltage, current, and phase angle features. Specifically,
the MAE is reduced by 95.27% and 96.29% compared to
voltage and current alone, respectively. MSE reductions were
99.90% and 99.86%, while RMSE reductions were 96.85%
and 96.23% for voltage and current alone, respectively.
These results underscore the importance of including phase
angle measurements to enhance fault location accuracy
beyond using voltage and current magnitudes alone. The
proposed WNN-based method was benchmarked against
other regression-based models, such as decision trees and
support vector machines, across various test scenarios at

different fault locations. The performance metrics confirmed
the superior accuracy of the WNN-based fault location
scheme over other techniques. In future, the effect of
frequency domain features can also be thought of with WNN
for enhancing the performance of the proposed fault locator.

A. ABBREVIATIONS
AI Artificial intelligence
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural networks
DGNN Deep graph neural network
DL Deep learning
DT Decision tree
DTT Digital twin technology
DWT-ANFIS Discrete wavelet transform-Adaptive neu-

rofuzzy inference system
EmHW Embryonic hardware
FD Fault distance
FF-ANNC Firefly algorithm-trained ANN controller
FIA Fault inception angle
FL Fault location
FR Fault resistance
GPS Global positioning system
L-BFGS Limited-memory Broyden, Fletcher,

Goldfarb, and Shanno
L-G Line-to-ground fault
LL Line-to-line fault
LL-G Double line-to-ground fault
LLL Triple line fault
LLL-G Triple line-to-ground fault
MAE Mean absolute error
MATLAB Matrix laboratory
ML Machine learning
MSE Mean squared error
OPP Optimal PMU placement
PMU Phasor measurement unit
PQ Power quality
ReLU Rectified linear unit
RMSE Root mean squared error
SG Smart grids
SOM Self-organizing map
SPV Solar photovoltaic
SVM Support vector machine
TL Transmission line
TLBO Teaching-learning-based optimization
WAMS Wide area monitoring system
WNN Wide neural network
WSCC Western system coordinating council
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