IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 July 2024, accepted 14 September 2024, date of publication 19 September 2024, date of current version 30 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3464088

== RESEARCH ARTICLE

Applications of Artificial Intelligence and PMU
Data: A Robust Framework for Precision
Fault Location in Transmission Lines

V. YUVARAJU“'1, (Graduate Student Member, IEEE), S. THANGAVEL !, (Senior Member, IEEE),
AND MALLIKARJUNA GOLLA 2

! Department of Electrical and Electronics Engineering, National Institute of Technology Puducherry, Karaikal 609609, India
2School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India

Corresponding author: Mallikarjuna Golla (mallikarjuna.golla@vit.ac.in)

This work was supported by Vellore Institute of Technology, Vellore Campus, Tamil Nadu.

ABSTRACT Providing continuous electric power supply to consumers is difficult for power system
engineers due to various faults in transmission and distribution systems. Precise fault location (FL) in
transmission lines speeds up the repair and restoration process. This paper proposes a wide neural network
(WNN) approach for FL identification in power transmission networks. The proposed WNN uses the voltage,
current magnitude, and phase angles measured by the phasor measurement unit (PMU). This proposed
work considers the Western System Coordinating Council (WSCC) 9-bus test system with optimal PMU
placement for fault analysis. The several types of faults created on different line sections of the test system
are simulated using MATLAB/Simulink environment considering various fault parameters such as fault
resistance, fault inception angle, and fault distance. The performance of the proposed scheme is measured
by finding the absolute prediction error between actual and predicted FL. The results show that the average
prediction errors for L-G, LL, LL-G, and LLL faults are 0.0121, 0.0209, 0.0139, and 0.0124, respectively.
The proposed method outperforms the related machine learning-based FL estimation schemes for all the test
cases considered at different fault locations. In addition, considering phase angle measurement improves the
accuracy of finding the fault location compared to the voltage magnitude and current magnitude feature set.

INDEX TERMS Artificial intelligence, machine learning, phasor measurement unit, wide neural network,
fault localization.

I. INTRODUCTION malfunctions in the power system network [4], [5]. This

The rapid increase in the energy demand necessitates expand-
ing the power system, which increases the complexity [1].
Electrical power transmission and distribution systems are
always vulnerable to the unexpected events which affect
the system’s steady-state performance [2]. Owing to the
greater length of the transmission line (TL) , there are
several possibilities for the occurrence of faults due to various
causes such as equipment failures, creature activities, and
natural phenomena [3]. In recent years, various blackouts
have been recorded due to various types of faults and relay
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necessitates effective monitoring of the power system to
ensure its reliability and security. TL faults are classified
into series faults and shunt faults or short circuit faults. The
occurrence of series faults is sporadic, and they can also be
identified by observing the phase voltage [6]. There are two
types of short circuit faults: symmetrical and unsymmetrical.
Triple line (LLL) and triple line-to-ground (LLL-G) faults
are symmetrical faults. Line-to-ground (L-G), line-to-line
(LL), and double line-to-ground (LL-G) faults are examples
of unsymmetrical faults. Symmetrical faults on transmission
lines are rare, but their severity is high. Unsymmetrical faults
are common, and they cause significant disruptions in the
power system [6].
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All the aforementioned faults reduce the lifetime of the
line components, increase the power loss, induce the heating
effect on cables, and damage the insulators [7]. In addition,
the short circuit faults in the power system severely affect
its performance and create interruptions or disturbances in
the energy supply and hence the reliability gets reduced [3].
Thus, the short-circuit faults are considered as severe faults
in the transmission system. The effect of various types of
faults on the power system depends on the type of fault,
fault location (FL) from the relay point, and the duration
of the fault. Hence, to improve the reliability of the power
system network, accurate fault localization is required to fix
the fault in time [8]. Therefore, an efficient method is needed
to localize the TL faults for healing, which, in turn, reduces
the system recovery time and maintains the power system’s
reliability.

The early prediction of fault needs relevant, accurate data.
In this regard, using phasor measurement units (PMUs)
enables the access of synchronized data in the power system
network [9] to achieve the aforementioned tasks rather
than the data from conventional measurements. PMUs are
widely used in smart grids (SG) for time-synchronized
measurement of current, voltage, phase angle, frequency,
and rate of change of frequency. Due to the high cost of
PMUs, the total number of PMUs should be minimized and
optimally placed in a power system to achieve complete
system observability [10], [11]. PMU measurements are
widely used in power systems for protection applications
such as TL fault identification, localization, and backup
protection [12], [13], [14] and also the measured PMU data at
various terminals are made available as inputs to intelligent
techniques for effective fault detection, classification, and
localization [15]. Nowadays, researchers are focusing on
efficient FL estimation schemes to mitigate the effects of
various types of faults in power system and restore system
operation.

The FL identification methods are divided into three
groups such as traveling wave-based, impedance-based, and
artificial intelligence (AI) based methods [16]. In traveling
wave-based methods, the total time taken by the waves to
travel between the bus terminal and fault point is calculated,
and it is used to estimate the FL [17]. In this method,
the decision-making process depends on analyzing the
position-time characteristics and the motion of the considered
signals [16]. The traveling wave-based FL method for the
line-to-ground fault is proposed in [18], and the fault distance
(FD) is calculated using the difference of the wave’s speed.
In this group of methods, capturing the transient waveform
for FL requires high-speed data acquisition devices, sensors,
fault transient detectors, and a global positioning system
(GPS) [19]. In the traveling wave-based methods, if the FL
is closer to the bus-bar, then the accuracy in identification of
FL is lesser [20].

The impedance-based FL methods are more popular
among electric power utilities than the traveling wave method
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due to their simplicity and economy. The basic principle of
the impedance-based method is to locate faults using the
impedance value as seen from the measurement node [19].
Various types of impedance-based FL estimation methods
are explored in [21], and also different strategies are offered
to enhance their performance with high accuracy. The
impedance-based FL method in [22] utilized the electrical
quantities measured at both ends of the bus terminals, and
it uses the faulty line parameters for the FL estimation.
In [23], the Thevenin equivalent impedance of the network
is used to estimate the FL, and in [24], line topology and
source impedance-based fault locator is discussed. However,
these approaches are one-ended, by utilizing equivalent
circuits and statistical theories, they can significantly reduce
parameter dependence. Further, these methods are extended
for multi-terminal and non-homogeneous TLs in [25], [26],
[27]. In the aforementioned impedance-based methods, the
steady-state values of voltage and current during the fault are
obtained, and are used to calculate an apparent impedance
that is directly associated with FD. The multi-estimation
is the major drawback in impedance-based methods due to
the presence of multiple probable faulty points at the same
location [28].

Nowadays, machine learning (ML) algorithms play a vital
role in FL estimation with the arrival of a wide area moni-
toring system (WAMS) and the availability of big data [29].
The combination of artificial neural networks (ANN) and
wavelet-based technique is used in [30] to locate TL faults.
This method achieves lesser error in the estimation of FL.
The comprehensive comparative analysis of performance in
detecting, classifying, and localizing transmission line faults
is presented in [31]. The authors compare the performance
metrics for L-G, LL, and LL-G faults across various
techniques such as adaptive neuro-fuzzy inference system
(ANFIS), ANN, Discrete wavelet transform-Adaptive neuro-
fuzzy inference system (DWT-ANFIS), and self-organizing
map (SOM). Recently, incorporating renewable energy
sources and the nonlinear behavior of advanced power
electronic equipment pose significant challenges to power
quality (PQ). In this regard, AI has become essential in
developing intelligent control methods for PQ devices.
In [32], the authors proposed the firefly algorithm-trained
ANN controller (FF-ANNC) to resolve the PQ issues and
enhance their performance.

Further, the ML and deep learning (DL) applications are
extended to hardware fault prediction such as Embryonic
Hardware (EmHW) in biomedical system and hardware
fault prediction in the transistor level [33], [34]. Al-based
techniques are widely used to detect the faults in solar
photovoltaic (SPV) arrays and improve fault detection
accuracy using a novel technique discussed in [35] and
[36]. In [37], a support vector machine (SVM) with wavelet
transform is used for short-circuit FL. estimation in TLs.
The complexities involved in FL estimation, especially in
large-scale multi-machine power systems, necessitate a novel
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method in FL estimation. Digital twin technology (DTT)
has recently emerged as a solution by developing real-time
digital replicas of physical equipment, facilitating efficient
monitoring and fault diagnosis in power systems and subsea
production systems [38], [39], [40]. In [41], the authors
explored the use of a deep graph neural network (DGNN) that
integrates multi-scale attention and a multi-linear perceptron
block for fault localization, detection, and classification in
transmission systems. However, the study noted a lower
accuracy in fault localization.

Most of the previous works in the literature review used
voltage or current features for fault location estimation.
The wide area protection system requires the PMU data
consisting of both the magnitude and phase angle of the
considered signal to monitor the power system network and,
hence, ensure the reliability of the power system. In addition,
incorporating ML concepts with PMU data can effectively
identify the FL. Finally, with the availability of PMU data,
the proposed work presents a novel wide neural network
(WNN) regression model to estimate the TL FL. The main
contribution towards this work is as follows:

« A WNN-based scheme is developed and proposed for

transmission line fault localization.

o The several types of faults on different line sec-
tions of the Western System Coordinating Council
(WSCC) 9-bus test system are simulated by using
MATLAB/Simulink considering various fault parame-
ters such as fault resistance (FR), fault inception angle
(FIA), and FD.

o The voltage, and current phasors for various fault
scenarios are captured by PMUs, which are strategically
positioned on the test system through optimal PMU
placement (OPP) technique.

o The required datasets are generated using simulation and
are used to train and test the WNN-based fault locator
model.

« The effectiveness of the suggested model is assessed by
comparing it with other regression-based state-of-the-art
algorithms like decision tree (DT), and SVM, ANFIS,
DWT-ANFIS, and DGNN in terms of performance
metrics such as mean absolute error (MAE), mean
squared error (MSE), and root mean squared error
(RMSE).

The rest of this article is organized as follows: Section II
describes the benchmark system used in this work for
dataset preparation and parameters considered for the same.
Section III presents the architecture and estimation methods
of the proposed FL scheme. Section IV discusses the results
and comparative analysis with other regression-based ML
algorithms, and section V concludes the paper.

Il. DATASET PREPARATION

The dataset preparation process for the proposed WNN-based
fault localization techniques is elaborated in the following
subsections:
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FIGURE 1. IEEE 9-bus test system with optimal PMU placement.

A. SYSTEM UNDER CONSIDERATION

The proposed fault localization scheme is tested on the
WSCC 9-bus system [42]. It comprises three synchronous
generators with a 60 Hz supply frequency, three two-winding
transformers, six transmission lines, and three loads. The
one-line diagram of the WSCC 9-bus system is shown in
Figure 1.

B. OPTIMAL PMU PLACEMENT

The outlay of PMUs and their accessories motivate the
researches on the OPP issues. OPP seeks to maximize
the observability while utilizing the minimum number of
PMUs. The teaching-learning-based optimization (TLBO)
algorithm [43] is used to solve the OPP problem. Considering
the characteristics of the TLBO algorithm, such as ease of
implementation and non requirement of algorithm-specific
parameters for tuning [43] inspires the researchers towards
the TLBO algorithm in solving the OPP problem. The optimal
number of PMUs reduces the cost and the optimal location
yields the reliable operation. Hence, the authors in their
previous article [11] proposed the TLBO-based algorithm for
determining the optimal PMU locations. From this algorithm,
the optimal PMU locations in a WSCC 9-bus system is found
to be at bus-4, bus-7, and bus-9. Figure 1 shows the test
system with optimally placed PMUs.

C. DATASET GENERATION

The performance of the WNN model in FL estimation of
the WSCC 9-bus system is evaluated using Matrix laboratory
(MATLAB)/Simulink environment for various types of faults
on the TLs. Three-phase voltage and current signals with
magnitude and phase angles are obtained from bus-4, bus-7,
and bus-9 through PMUs placed at the aforementioned buses.
The line-to-ground fault (C-G fault), line-to-line fault (AC
fault), and double line-to-ground fault (AC-G fault) are
created on TL 8-9 in the time interval of 200 ms to 300 ms.
Two cycles of the post-fault voltage and current samples
are considered within the specified time interval for dataset
generation. The total number of samples considered for the
two cycles is 68 (34 samples per cycle with a time step of
0.4902 ms and sampling frequency of 12 kHz). Table 1 shows
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TABLE 1. Dataset generation parameters for line 8-9.

Parameters Training Data

Test Data

Fault Type

C-G fault, AC fault, AC-G fault

C-G fault, AC fault, AC-G fault

Fault distance
Fault resistance 30 Q2

Fault inception angle 0°

Total Number of Samples

1 km to 99 km with 1 km step size

99x1x1x68 = 6732 per fault

C-G: 3.25 km to 95.25 km with 4 km step size
AC: 1.75 km to 96.75 km with 5 km step size
AC-G: 1.6 km to 96.6 km with 5 km step size
300 2

C-G:0° 15°, 45°,75° 105°

AC: 0% 60°,90°, 120°, 180°

AC-G:0°,10°, 30°, 40°, 50°

C-G : 24x1x1x68 = 1632 samples per FIA
AC : 20x1x1x68 = 1360 samples per FIA
AC-G : 20x1x1x68 = 1360 samples per FIA

TABLE 2. Dataset generation parameters for line 4-5.

Parameters Training Data

Test Data

Fault Type

B-G fault, BC fault, BC-G fault

B-G fault, BC fault, BC-G fault

Fault distance
Fault resistance 20 2

Fault inception angle 0°

Total Number of Samples

1 km to 99 km with 1 km step size

99x1x1x68 = 6732 per fault

B-G: 1.6 km to 96.6 km with 5 km step size
BC: 1.45 km to 96.45 km with 5 km step size
BC-G: 4.75 km to 94.75 km with 5 km step size
200 Q2

B-G: 07, 45°,90°, 135°, 180°

BC:0°,75°, 120°, 150°, 165°

BC-G: 0°, 30°, 50°, 60°, 180°

B-G : 20x 1x1x68 = 1360 samples per FIA
BC:20x1x1x68 = 1360 samples per FIA
BC-G: 19x1x1x68 = 1292 samples per FIA

TABLE 3. Dataset generation parameters for line 7-8.

Parameters Training Data

Test Data

Fault Type

A-G fault, AB fault, ABC fault, AB-G fault

A-G fault, AB fault, ABC fault, AB-G fault

Fault distance 1 km to 99 km with 1 km step size

Fault resistance 10Q2

Fault inception angle 0°

Total Number of Samples ~ 99x1x1x68 = 6732 per fault

A-G: 1.5 km to 96.5 km with 5 km step size
AB: 3.25 km to 98.25 km with 5 km step size
ABC: 4.75 km to 94.75 km with 5 km step size
AB-G: 2.5 km to 98.5 km with of 4 km step size
100 ©

A-G:0°,10°, 20°, 30°, 270°

AB:0°,30° 90°, 150°, 210°

ABC : 0°, 30°, 40°, 50°, 150°

AB-G: 0°, 10°, 30°, 50°, 180°

A-G: 20x 1x 1x68 = 1360 samples per FIA
AB: 20x1x1x68 = 1360 samples per FIA
ABC: 19x1x1x68 = 1292 samples per FIA
AB-G: 25x1x1x68 = 1700 samples per FIA

the various fault parameters that are considered for dataset
generation in lines 8-9.

For illustration, consider the C-G fault in lines 8-9. The
fault is created at various locations from 1 to 99 km with a
step size of 1 km, FR of 30 €2, and FIA of 0°. So, the final
dataset count for the C-G fault can be calculated as follows:
(99x1x1x68) = 6732. Here, the “99” indicates the total
number of fault locations for the C-G fault with a 1 km step
size. The “1” in the second position indicates the number
of FR (only one FR), and ““1” in the third position indicates
the number of FIA (only one FIA), and 68 indicates the total
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number of samples considered. Finally, the total number of
datasets generated for the C-G fault is 6732. Similarly, the
total number of training data samples was generated for the
rest of the fault types, such as AC and AC-G faults in the same
line sections 8-9. It is inferred from Table 1 that each type of
fault has its own FL and FIA for testing data.

The total number of testing data samples is calculated
based on the total number of fault distances for a particular
fault type, FR, FIA, and the number of post-fault voltage
and current cycles. The two cycles of post-fault voltage and
current signals (with 68 samples) are also considered for
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FIGURE 2. Structure of a typical neural network.

testing dataset generation. For example, the total number
of dataset generation for the C-G fault (for testing) is
demonstrated here. The C-G fault is created at various
locations from 3.25 to 95.25 km with a step size of 4 km,
FR of 300 €2, and FIA of 0°. The total number of testing data
samples generated for the C-G fault is calculated as follows:
24x1x1x68 = 1632 samples per FIA. Here, 24 indicates the
total number of fault positions calculated based on the step
size between 3.25 km to 95.25 km, ““1”” in position 2 indicates
the total number of FRs, and “1” in position 3 denotes
the total number of FIA. Here, the 68’ indicates the total
number of samples considered. Finally, the total number of
testing datasets generated for the C-G fault is 1632 samples
per FIA. Similarly, the testing dataset is generated for AC
and AC-G faults for various test cases with different FIAs,
which are shown in Table 1. Table 2 and Table 3 show the fault
parameters for dataset generation for other types of faults on
the TL 4-5 (B-G fault, BC fault, BC-G fault) and 7-8 (A-G
fault, AB fault, ABC, and AB-G fault), respectively. The total
number of data samples generated for training and testing is
presented in Tables 2 and 3.

Ill. ARTIFICIAL NEURAL NETWORK

An ANN is an artificial system that mimics the operation
of the brain in performing prediction (regression) and clas-
sification problems. It involves nodes, activation functions,
weights, and biases that are linked in a network [44]. The
neural network comprises an input layer representing the
network’s input data, hidden layers, and an output layer
representing the network’s response. Each layer has a certain
number of neurons, and each neuron is linked to the neurons
of the previous layer via adjustable weights w and biases b.
Figure 2 shows the structure of a typical neural network unit.
If x1,x2,---,xy are the inputs of the j’h neuron then the
output of the j"neuron z; is obtained as follows [45],

N

uj = Zw,-jx,- + bj (1)
i=1

G =fw) )

where w;; represents the weight of the connection between the
i input and neuron j, the bias of neuron j is represented by
bj, and the activation function of neuron j is represented by f.
The following features motivate the researchers toward

ANN for transmission line FL identification.
« Due to simple and better generalization property, ability
to learn independently and adaptive nature, ANN is
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widely used for fault analysis studies for both real-time
and offline application [31].

« The ANN output is accurate, reliable and fast. Based
on the training algorithm, the above-said task can be
achieved [46].

A. PROPOSED FAULT LOCATOR SCHEME WITH TRAINING
ALGORITHM

The proposed WNN architecture for FL estimation is shown
in Figure 3. It has three layers: the input layer, a hidden
layer, and an output layer. The data extracted from the
MATLAB/Simulink model of the WSCC 9-bus system is
used as the input and target data for training the WNN. For
this, the network is initially trained with a set of training
data consisting of post-fault voltage and current signals with
magnitude and phase angles that are measured by PMUs
located at optimal locations on the power system network.
The proposed WNN architecture has one input layer that
accepts 12 features, one hidden layer with 100 neurons, and
an output layer for estimating the fault location. The inputs
layers are used to transfer the inputs to hidden layers. Using
the weight of the connection between the input and the hidden
layer, the bias, and the activation function of the hidden layer,
the output of the hidden layer is obtained. The output z; of
neuron j is obtained as follows:

N
hidd hidd
Zj = fhidden (Z Wijl e"xi + bjt en) 3)

i=1

where fhidden 1S the activation function of the hidden layer,
wfj’.idde” represents the weight of the connection between the
i neuron of the input layer and neuron j in the hidden layer
and b;‘idde” represents the bias of neuron j.

In modern WNN, the rectified linear unit (ReLU) activa-
tion function is widely used during the feed-forward training,
which is defined as [47] and [48]

ReLU (x) = xT = max(0, x) 4)

The vanishing-gradient problem is well handled by
ReLU [47], [48], and it is less computationally expensive
than traditional hyperbolic tangent and sigmoid activation
operations [48]. As a result, ReLU is extremely useful when
developing WNN and deep neural networks. The output
vector y; of the output layer is calculated using the weight
that connects the hidden and output layers, the bias of the
output layer, and the activation function. The value of y; with
one neuron is obtained as follows:

M
Y1 = fou ZW;ij"l‘bout ©)
J=1

where f,,; is the activation function of the output layer,
wo represents the weight of the connection between the
j’z neuron of the hidden layer and the neuron in the output
layer, b,,; represents the bias of the output layer. The

pure linear activation function is used in the output layer.
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FIGURE 3. Architecture of the proposed wide neural network.

TABLE 4. Performance evaluation during C-G fault at line 8-9.

Testing Results
Test - 1 Test - IT Test - 111 Test - IV Test -V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0037 0.0021 1.9363 0.0037 0.2702 1.8989 0.0055 0.2831 1.9214 0.0090 0.3223 1.9950 0.0102 0.3343 2.0274 0.0087 0.3184 1.9879
MSE 0.0000 0.0018 4.7736 0.0000 0.0831 4.6109 0.0000 0.0996 4.8167 0.0001 0.1557 5.4315 0.0002 0.1769 5.7004 0.0001 0.1487 5.3855
RMSE 0.0047 0.0423 2.1849 0.0048 0.2882 2.1473 0.0070 0.3156 2.1947 0.0111 0.3946 2.3306 0.0129 0.4205 2.3875 0.0112 0.3856 2.3207

Training Results
Metrics 8

TABLE 5. Performance evaluation during AC fault at line 8-9.

Testing Results
Test - 1 Test - IT Test - IIT Test - IV Test -V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0063 0.0004 1.6474 0.0050 0.2510 1.6351 0.0059 0.2633 1.6993 0.0051 0.2548 1.6294 0.0054 0.2577 1.5638 0.0056 0.2673 1.6448
MSE 0.0001 0.0004 3.6772 0.0000 0.0636 3.6322 0.0001 0.0757 4.0371 0.0000 0.0677 3.5817 0.0000 0.0706 3.1677 0.0001 0.0809 3.6960
RMSE 0.0084 0.0211 1.9176 0.0066 0.2522 1.9061 0.0081 0.2752 2.0092 0.0067 0.2601 1.8925 0.0071 0.2657 1.7798 0.0078 0.2844 1.9225

Training Results
Metrics &

TABLE 6. Performance evaluation during AC-G fault at line 8-9.

Testing Results
Test - 1 Test - IT Test - 111 Test - IV Test -V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0059 0.0208 2.0079 0.0061 0.4343 2.0280 0.3598 0.4416 2.0246 0.3631 0.4818 2.0487 0.3852 0.4928 2.0796 0.4442 0.5046 2.1048
MSE 0.0001 0.0021 5.0471 0.0001 0.1943 5.1398 0.1768 0.2075 5.1188 0.1821 0.2882 5.3817 0.2146 0.3137 5.6445 0.2883 0.3740 5.8885
RMSE 0.0097 0.0456 2.0247 0.0098 0.4408 2.2671 0.4205 0.4552 2.2625 0.4267 0.5369 2.3198 0.4633 0.5601 2.3758 0.5369 0.6115 2.4266

Training Results
Metrics &

TABLE 7. Performance evaluation during B-G fault at line 4-5.

Testing Results
Test - 1 Test - IT Test - IIT Test - IV Test -V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0241 0.0028 1.4218 0.0242 0.4447 1.4149 0.0706 0.4283 1.3245 0.0398 0.4463 1.3561 0.0610 0.4472 1.3983 0.0443 0.4493 1.3502
MSE 0.0018 0.0027 2.8014 0.0018 0.2047 2.7434 0.0079 0.1891 2.2492 0.0049 0.2062 2.5426 0.0066 0.2071 2.8303 0.0059 0.2101 2.5262
RMSE 0.0426 0.0518 1.6737 0.0430 0.4524 1.6563 0.0887 0.4348 1.4997 0.0698 0.4541 1.5945 0.0813 0.4550 1.6824 0.0769 0.4584 1.5894

Training Results
Metrics &

The output y; is predicted FL, represented as yPredicted regard, various performance metrics are used to validate the
After obtaining the predicted FL, the performance and proposed model, such as MAE, MSE, and RMSE, which
effectiveness of the proposed model are evaluated. In this reflect the performance of the proposed WNN model. The
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TABLE 8. Performance evaluation during BC fault at line 4-5.

Testing Results
Test - 1 Test - I1 Test - IIT Test - IV Test-V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0128 0.0200 1.7823 0.0139 0.4872 1.7592 0.2091 0.5025 1.9561 0.2530 0.5057 2.0239 0.1205 0.4972 1.7396 0.0954 0.4962 1.8122
MSE 0.0004 0.0228 4.0291 0.0005 0.2408 3.9585 0.0560 0.2584 5.4053 0.0815 0.2619 5.8589 0.0241 0.2523 3.8226 0.0146 0.2509 4.3631
RMSE 0.0204 0.1509 2.0007 0.0225 0.4907 1.9896 0.2366 0.5084 2.3249 0.2855 0.5117 2.4205 0.1555 0.5023 1.9552 0.1207 0.5009 2.0888

Metrics Training Results

TABLE 9. Performance evaluation during BC-G fault at line 4-5.

Testing Results
Test - 1 Test - I1 Test - IIT Test - IV Test-V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0079 0.0010 1.6837 0.0068 0.2516 1.6514 0.0717 0.2539 1.7188 0.0742 0.2519 1.6583 0.0256 0.2825 1.8921 0.0258 0.2705 1.6692
MSE 0.0002 0.0010 3.7267 0.0001 0.0640 3.6031 0.0074 0.0664 4.0357 0.0098 0.0644 3.6506 0.0014 0.1130 3.7924 0.0014 0.0830 3.6947
RMSE 0.0126 0.0322 1.9305 0.0106 0.2531 1.8982 0.0861 0.2576 2.0089 0.0992 0.2538 1.9107 0.0378 0.3258 1.9882 0.0377 0.2881 1.9222

Training Results
Metrics g

TABLE 10. Performance evaluation during A-G fault at line 7-8.

Testing Results
Test -1 Test - I1 Test - IIT Test - IV Test-V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0104 0.0015 1.8558 0.0111 0.5000 1.8611 0.0103 0.5007 1.8606 0.0131 0.5015 1.8603 0.0174 0.5000 1.8632 0.0287 0.5647 1.9436
MSE 0.0003 0.0015 4.3743 0.0003 0.2500 4.3814 0.0004 0.2515 4.3735 0.0007 0.2529 4.3766 0.0011 0.2500 4.4013 0.0017 0.3956 5.2488
RMSE 0.0168 0.0385 2.0915 0.0185 0.5000 2.0932 0.0193 0.5015 2.0913 0.0259 0.5029 2.0920 0.0334 0.5000 2.0979 0.0418 0.6290 2.2910

Training Results
Metrics g

TABLE 11. Performance evaluation during AB fault at line 7-8.

Testing Results
Test - 1 Test - I1 Test - I1T Test - IV Test -V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0223 0.0038 1.7580 0.0228 0.0038 1.7607 0.0390 0.3471 1.7144 0.0451 0.4148 1.6380 0.0320 0.3015 1.7689 0.0542 0.4067 1.7059
e MSE 0.0019 0.0034 4.3035 0.0019 0.0034 4.3221 0.0059 0.1824 3.9859 0.0064 0.3278 3.6377 0.0026 0.1140 4.4269 0.0097 0.2880 4.0395
RMSE 0.0436 0.0583 2.0745 0.0433 0.0583 2.0790 0.0770 0.4271 1.9935 0.0798 0.5725 1.9073 0.0507 0.3377 2.1040 0.0986 0.5367 2.0098

Training Results
Metrics g

TABLE 12. Performance evaluation during ABC fault at line 7-8.

Testing Results
Test - 1 Test - IT Test - ITI Test - IV Test-V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0096 0.0002 1.8783 0.0106 0.5467 1.7331 0.0257 0.5557 2.2224 0.1416 0.5623 2.5640 0.0839 0.5735 2.8567 0.0848 0.5495 1.8845
MSE 0.0003 0.0007 4.3632 0.0003 1.5695 3.8632 0.0222 1.6260 7.5259 0.0318 1.6209 10.0490 0.0113 1.6298 12.2920 0.0130 0.6043 4.9886
RMSE 0.0159 0.0129 2.0888 0.0182 1.2528 1.9655 0.0471 1.2751 2.7433 0.1783 1.2732 3.1700 0.1065 1.2767 3.5059 0.1138 1.2667 2.2335

Training Results
Metrics g

TABLE 13. Performance evaluation during AB-G fault at line 7-8.

Testing Results
Test - 1 Test - I1 Test - 11T Test - IV Test -V
WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM WNN DT SVM
MAE 0.0318 0.0145 2.1618 0.0318 0.4979 2.1617 0.1377 0.4984 2.1723 0.0346 0.5099 2.2026 0.2456 0.5201 2.2586 0.0480 0.5010 2.1725
MSE 0.0022 0.0117 5.7304 0.0022 0.2479 5.7663 0.0280 0.2484 5.8253 0.0029 0.2716 6.1657 0.0909 0.2930 6.7132 0.0053 0.2541 5.8218
RMSE 0.0469 0.1080 2.3938 0.0472 0.4979 2.4013 0.1674 0.4984 2.4136 0.0541 0.5211 2.4831 0.3015 0.5413 2.5910 0.0729 0.5041 2.4128

Training Results
Metrics &

aforementioned metrics denote the prediction error rate, and
each one is defined as follows [49], [50]: MAE, commonly
used for regression models, measures the average magnitude
of the errors between actual and predicted FL values,
calculated as follows:

T
1 “tual dicted
MAE = — ]; |(ygetual _ypredictedy) (6)

VOLUME 12, 2024

MSE, another crucial metric, measures the average of the
squared differences between actual and predicted FL values,
and is expressed as follows:

T
1 “tual redicted \2
MSE = - ;(y;;ww ¥ ) (7

RMSE, a quadratic metric, is determined by taking the square
root of the mean of the squared differences between the actual
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TABLE 14. Actual and predicted fault location with error during C-G fault at line 8-9.

Actual Fault Location (km)

Predicted Fault Location (km) and Error for different Test cases

Test - 1 Error Test - I1 Error Test - I1I Error Test - IV Error Test -V Error
3.25 3.2549 -0.0049 3.2485 0.0015 3.2632 -0.0132 3.2404 0.0096 3.2120 0.0380
7.25 7.2493 0.0007 7.2491 0.0009 7.2460 0.0040 7.2458 0.0042 7.2557 -0.0057
11.25 11.2418  0.0082 11.2494  0.0006 11.2424 0.0076 11.2309 0.0191 11.2275  0.0225
15.25 15.2548  -0.0048  15.2499  0.0001 15.2530  -0.0030 15.2416 0.0084 15.2391 0.0109
19.25 19.2548  -0.0048  19.2503  -0.0003 19.2517 -0.0017 19.2432 0.0068 19.2412  0.0088
23.25 232456  0.0044  23.2503  -0.0003 23.2441 0.0059 23.2393 0.0107 232370  0.0130
27.25 27.2492  0.0008  27.2503  -0.0003 27.2485 0.0015 27.2508 -0.0008  27.2519  -0.0019
31.25 31.2366  0.0134  31.2501  -0.0001 31.2313 0.0187 31.2240 0.0260  31.2215  0.0285
35.25 352528 -0.0028  35.2499  0.0001 35.2482 0.0018 35.2298 0.0202 352218  0.0282
39.25 39.2443  0.0057  39.2498  0.0002 39.2451 0.0049 39.2462 0.0038  39.2472  0.0028
43.25 432306 0.0194 432496  0.0004 43.2503 -0.0003  43.2755 -0.0255  43.2823  -0.0323
47.25 47.2585 -0.0085  47.2496  0.0004 472576  -0.0076 ~ 47.2704  -0.0204  47.2747  -0.0247
51.25 51.2487  0.0013 51.2497  0.0003 51.2387 0.0113 51.2489 0.0011 51.2398  0.0102
55.25 552556 -0.0056  55.2497  0.0003 55.2615 -0.0115  55.2801 -0.0301  55.2897  -0.0397
59.25 59.2610  -0.0110  59.2500  0.0000 59.2808 -0.0308  59.3097 -0.0597  59.3189  -0.0689
63.25 63.2472  0.0028  63.2503  -0.0003 63.2541 -0.0041 63.2745 -0.0245  63.2817  -0.0317
67.25 67.2503  -0.0003  67.2506  -0.0006  67.2567 -0.0067  67.2642  -0.0142  67.2658  -0.0158
71.25 712351  0.0149  71.2510 -0.0010  71.2348 0.0152 71.2372 0.0128  71.2387  0.0113
75.25 752623  -0.0123  75.2513  -0.0013 75.2591 -0.0091 752524 -0.0024 752511  -0.0011
79.25 79.2687  -0.0187  79.2515  -0.0015 79.2617 -0.0117  79.2500 0.0000  79.2461 0.0039
83.25 83.2525  -0.0025  83.2515 -0.0015 83.2507 -0.0007 83.2483 0.0017 83.2408  0.0092
87.25 87.2629 -0.0129  87.2512  -0.0012 87.2595 -0.0095 87.2515 -0.0015  87.2494  0.0006
91.25 91.2605 -0.0105  91.2505  -0.0005 91.2404 0.0096 91.2501 -0.0001  91.2449  0.0051
95.25 95.2634  -0.0134 952492  0.0008 95.2611 -0.0111 95.2585 -0.0085  95.2571  -0.0071

STEP 1

XN

Activation Function

Predicted Fault Location

Weight
Bias
Adjustment

&

Error _ _@,_ Actual Fault
Location

STEP I U STEP II

FIGURE 4. Step by step working of wide neural network.

and predicted FL values. The formula for RMSE is as follows:

136572

T
! [ dicted 2
RMSE = T kz_;(yzctua _yire icted @)

where T is the number of input data, y““"“l is the actual

output and yP"edic’ed is the output of the WNN model. The
training algorithm plays a vital role in tuning the connection
weights w and biases b. The step-by-step process of the

VOLUME 12, 2024
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FIGURE 5. Residuals in predicted fault location during C-G fault at line 8-9.
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FIGURE 8. Residuals in predicted fault location during AB fault at line 7-8.
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TABLE 15. Actual and predicted fault location with error during AC fault at line 8-9.

Actual Fault Location (km)

Predicted Fault Location (km) and Error for different Test cases

Test -1 Error Test - II Error Test - III Error Test - IV Error Test -V Error

1.75 1.7497 0.0003 1.7499 0.0001 1.7497 0.0003 1.7496 0.0004 1.7495 0.0005
6.75 6.7474 0.0026 6.7503 -0.0003 6.7482 0.0018 6.7470 0.0030 6.7453 0.0047
11.75 11.7540  -0.0040  11.7509  -0.0009 11.7548  -0.0048 11.7540  -0.0040  11.7538  -0.0038
16.75 16.7438  0.0062 16.7492  0.0008 16.7437 0.0063 16.7438 0.0062 16.7437  0.0063
21.75 21.7573  -0.0073  21.7512 -0.0012  21.7573  -0.0073  21.7572  -0.0072  21.7572  -0.0072
26.75 26.7427  0.0073  26.7487  0.0013 26.7425 0.0075 26.7427 0.0073  26.7425  0.0075
31.75 31.7529  -0.0029  31.7519  -0.0019  31.7526  -0.0026 ~ 31.7532  -0.0032  31.7542  -0.0042
36.75 36.7489  0.0011 36.7489  0.0011 36.7537  -0.0037  36.7484 0.0016  36.7508  -0.0008
41.75 41.7454  0.0046  41.7494  0.0006 41.7444 0.0056 41.7453 0.0047  41.7528  -0.0028
46.75 46.7494  0.0006  46.7503  -0.0003  46.7556  -0.0056  46.7494 0.0006  46.7458  0.0042
51.75 51.7517  -0.0017  51.7517  -0.0017  51.7542  -0.0042  51.7512  -0.0012  51.7477  0.0023
56.75 56.7517  -0.0017  56.7507  -0.0007  56.7533  -0.0033  56.7516  -0.0016  56.7509  -0.0009
61.75 61.7553  -0.0053  61.7543  -0.0043 61.7557  -0.0057  61.7553  -0.0053  61.7556  -0.0056
66.75 66.7403  0.0097  66.7483  0.0017 66.7418 0.0082 66.7401 0.0099  66.7374  0.0126
71.75 717542 -0.0042  71.7502  -0.0002  71.7540  -0.0040  71.7543  -0.0043  71.7556  -0.0056
76.75 76.7509  -0.0009  76.7501  -0.0001 76.7511 -0.0011 76.7509  -0.0009  76.7510  -0.0010
81.75 81.7505  -0.0005  81.7505  -0.0005 81.7508  -0.0008  81.7504  -0.0004  81.7488  0.0012
86.75 86.7506  -0.0006  86.7503  -0.0003 86.7532  -0.0032  86.7504  -0.0004  86.7463  0.0037
91.75 91.7471  0.0029  91.7460  0.0040 91.7500 0.0000 91.7469 0.0031 91.7443  0.0057
96.75 96.7511  -0.0011  96.7501  -0.0001 96.7509  -0.0009  96.7512  -0.0012  96.7520  -0.0020

TABLE 16. Actual and predicted fault location with error during AC-G fault at line 8-9.
Actual Fault Location (km) Predicted Fault Location (km) and Error for different Test cases

Test -1 Error Test - II Error Test - III Error Test - IV Error Test -V Error

1.6 1.5910 0.0090 1.5910 0.0090 1.5890 0.0110 1.6054 -0.0054 1.5884 0.0116
6.6 6.6021 -0.0021 6.6021 -0.0021 6.6109 -0.0109 6.5993 0.0007 6.3205 0.2795
11.6 11.6008  -0.0008  11.6008  -0.0008 11.5915 0.0085 11.6061 -0.0061  11.5245  0.0755
16.6 16.6015 -0.0015  16.6015  -0.0015 16.5892 0.0108 16.5938 0.0062 16.6141  -0.0141
21.6 21.5992  0.0008  21.5992  0.0008 21.5857 0.0143 21.5888 0.0112  21.7116  -0.1116
26.6 26.5990  0.0010  26.5990  0.0010 26.5883 0.0117 26.5872 0.0128  26.7682  -0.1682
31.6 31.5991  0.0009  31.5991 0.0009 31.5933 0.0067 31.5905 0.0095  31.7856  -0.1856
36.6 36.5997  0.0003  36.5997  0.0003 36.5982 0.0018 36.5799 0.0201 36.7710  -0.1710
41.6 41.6001  -0.0001  41.6001  -0.0001 41.6017  -0.0017  41.6014  -0.0014  41.7317  -0.1317
46.6 46.6004  -0.0004  46.6004  -0.0004  46.6041 -0.0041 46.5868 0.0132  46.6718 -0.0718
51.6 51.6006  -0.0006  51.6006 -0.0006  51.6042  -0.0042  51.5911 0.0089  51.6016  -0.0016
56.6 56.6005 -0.0005  56.6005  -0.0005 56.6022  -0.0022  56.5683 0.0317  56.5275  0.0725
61.6 61.6003 -0.0003  61.6003  -0.0003 61.5986 0.0014 61.5993 0.0007  61.4572  0.1428
66.6 66.6001  -0.0001  66.6001  -0.0001 66.5946 0.0054 66.5725 0.0275  66.4004  0.1996
71.6 71.5998  0.0002  71.5998  0.0002 71.5905 0.0095 71.5979 0.0021 71.3664  0.2336
76.6 76.5997  0.0003  76.5997  0.0003 76.5872 0.0128 76.5863 0.0137 763632  0.2368
81.6 81.5996  0.0004  81.5996  0.0004 81.5863 0.0137 81.5864 0.0136  81.4024  0.1976
86.6 86.5997  0.0003  86.5997  0.0003 86.5885 0.0115 86.5854 0.0146  86.4940  0.1060
91.6 91.6000  0.0000  91.6000  0.0000 91.5952 0.0048 91.5870 0.0130  91.6498  -0.0498
96.6 96.6003  -0.0003  96.6003  -0.0003 96.6071 -0.0071 96.5892 0.0108  96.8816  -0.2816

proposed scheme is shown in Figure 4. The initial weights
and biases are generated randomly and are used to create
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the WNN output in step 1 [51]. Step 2 involves calculating
the error value by subtracting the predicted output from
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TABLE 17. Actual and predicted fault location with error during B-G fault at line 4-5.

Actual Fault Location (km)

Predicted Fault Location (km) and Error for different Test cases

Test - I Error Test - II Error Test-III  Error  Test-IV Error Test -V Error
1.6 1.5893 0.0107 1.5893 0.0107 1.5385 0.0615 1.5683 0.0317 1.6213 -0.0213
6.6 6.5980 0.0020 6.5980 0.0020 6.5380 0.0620 6.5713 0.0287 6.5906 0.0094
11.6 11.6021  -0.0021  11.6021  -0.0021 11.5281 0.0719 11.5689 0.0311 11.5952  0.0048
16.6 16.5936  0.0064 16.5936  0.0064 16.5424  0.0576 16.5883 0.0117 16.5638  0.0362
21.6 21.6157  -0.0157  21.6157 -0.0157  21.5600  0.0400  21.6007  -0.0007 21.5756  0.0244
26.6 26.5969  0.0031 26.5969  0.0031 26.5356  0.0644  26.5796 0.0204  26.5608  0.0392
31.6 31.6005 -0.0005  31.6005  -0.0005 31.5249  0.0751 31.5834 0.0166  31.5602  0.0398
36.6 36.5978  0.0022  36.5978  0.0022 36.5273  0.0727  36.5831 0.0169  36.5319  0.0681
41.6 415978  0.0022 415978  0.0022 41.5288  0.0712  41.5857 0.0143  41.5446  0.0554
46.6 46.5990  0.0010  46.5990  0.0010 46.5315  0.0685  46.5886 0.0114  46.5708  0.0292
51.6 51.5997  0.0003  51.5997  0.0003 51.5337  0.0663  51.5903 0.0097  51.5753  0.0247
56.6 56.6012  -0.0012  56.6012  -0.0012  56.5382  0.0618  56.5933 0.0067  56.5487  0.0513
61.6 61.6017 -0.0017 61.6017 -0.0017  61.5417  0.0583  61.5949 0.0051 61.5322  0.0678
66.6 66.6018 -0.0018  66.6018  -0.0018  66.5450  0.0550  66.5956 0.0044  66.5467  0.0533
71.6 71.6012  -0.0012  71.6012  -0.0012  71.5478  0.0522  71.5953 0.0047  71.5563  0.0437
76.6 76.6001  -0.0001  76.6001  -0.0001 76.5502  0.0498  76.5942 0.0058  76.5541  0.0459
81.6 81.5988  0.0012  81.5988  0.0012 81.5525  0.0475 81.5925 0.0075  81.5616  0.0384
86.6 86.5978  0.0022  86.5978  0.0022 86.5553  0.0447  86.5911 0.0089  86.5603  0.0397
91.6 91.5983  0.0017  91.5983  0.0017 91.5595  0.0405  91.5910 0.0090  91.5566  0.0434
96.6 96.6015 -0.0015 96.6015  -0.0015 96.5666  0.0334  96.5936 0.0064  96.5385  0.0615
TABLE 18. Actual and predicted fault location with error during BC fault at line 4-5.
Actual Fault Location (km) Predicted Fault Location (km) and Error for different Test cases
Test - 1 Error Test-1I  Error Test-III Error Test-IV  Error Test-V Error
1.45 1.4502  -0.0002 1.4365 0.0135 1.4329 0.0171 1.4466 0.0034 1.4128 0.0372
6.45 6.4486 0.0014 6.4265 0.0235 6.4219 0.0281 6.4373 0.0127 6.4064 0.0436
11.45 11.4489  0.0011 114315  0.0185 11.4268 0.0232 11.4396  0.0104  11.4281 0.0219
16.45 16.4659  -0.0159  16.4239  0.0261 16.3910  0.0590 16.4324  0.0176  16.4414  0.0086
21.45 21.4428  0.0072  21.4195 0.0305 21.4293 0.0207  21.3912  0.0588  21.1068  0.3432
26.45 264463  0.0037 263916 0.0584 263674  0.0826 264185  0.0315 264311 0.0189
31.45 31.4485  0.0015  31.3855  0.0645 31.3678 0.0822 314110 0.0390 31.4335 0.0165
36.45 36.4490 0.0010 36.3766  0.0734 36.3592  0.0908  36.4013  0.0487 36.4423  0.0077
41.45 414512 -0.0012  41.3696  0.0804  41.3471 0.1029 413989  0.0511  41.4511  -0.0011
46.45 46.4530  -0.0030  46.3627  0.0873 46.3389  0.1111 46.3945  0.0555 46.4593  -0.0093
51.45 51.4529  -0.0029 513568 0.0932  51.3306  0.1194  51.3887  0.0613  51.4629 -0.0129
56.45 56.4516  -0.0016  56.3517  0.0983 56.3225 0.1275 56.3851 0.0649  56.4630  -0.0130
61.45 61.4498  0.0002  61.3462  0.1038 61.3153 0.1347  61.3806  0.0694 61.4605 -0.0105
66.45 66.4481  0.0019  66.3415  0.1085 66.3084  0.1416  66.3765  0.0735  66.4560  -0.0060
71.45 71.4475  0.0025  71.3375  0.1125 71.3021 0.1479 713733 0.0767  71.4496  0.0004
76.45 76.4482  0.0018  76.3340 0.1160  76.2964  0.1536  76.3703  0.0797  76.4420  0.0080
81.45 81.4500  0.0000  81.3310  0.1190 81.2911 0.1589  81.3676  0.0824  81.4330  0.0170
86.45 86.4520 -0.0020  86.3285  0.1215 86.2864  0.1636  86.3651 0.0849  86.4216  0.0284
91.45 91.4526  -0.0026  91.3263  0.1237 91.2820  0.1680  91.3630  0.0870  91.4063  0.0437
96.45 96.4492  0.0008  96.3242  0.1258 96.2778 0.1722 963609  0.0891  96.3846  0.0654

the actual output. Step 3 involves adjusting the initialized
weights in all links and biases in all neurons to minimize
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the error by propagating the error backward. In this regard,
the limited-memory Broyden, Fletcher, Goldfarb, and Shanno

VOLUME 12, 2024



V. Yuvaraju et al.: Applications of Artificial Intelligence and PMU Data: A Robust Framework

IEEE Access

TABLE 19. Actual and predicted fault location with error during BC-G fault at line 4-5.

Actual Fault Location (km)

Predicted Fault Location (km) and Error for different Test cases

Test - 1 Error Test - I1 Error Test - I11 Error Test - IV Error Test-V Error

4.75 47534 -0.0034  4.7563 -0.0063 4.7379 0.0121 4.7550 -0.0050  4.7550  -0.0050
9.75 9.7507  -0.0007 9.7481 0.0019 9.7483 0.0017 9.7487 0.0013 9.7497 0.0003
14.75 14.7494  0.0006 14.7408  0.0092 14.7379 0.0121 14.7481 0.0019 14.7887  -0.0387
19.75 19.7474  0.0026 19.7418  0.0082 19.7544  -0.0044 19.7342 0.0158 19.7342  0.0158
24.75 247488  0.0012  24.7451  0.0049 24.7470 0.0030 24.7400 0.0100  24.7400  0.0100
29.75 29.7506  -0.0006  29.7508  -0.0008  29.7638  -0.0138  29.7435 0.0065  29.7434  0.0066
34.75 347515  -0.0015  34.7533  -0.0033 34.7443 0.0057 34.7482 0.0018  34.7482  0.0018
39.75 39.7518  -0.0018  39.7572  -0.0072  39.7491 0.0009 39.7533  -0.0033  39.7533  -0.0033
4475 447515  -0.0015  44.7586  -0.0086  44.7471 0.0029 447549  -0.0049 447549  -0.0049
49.75 49.7507  -0.0007  49.7583  -0.0083  49.7552  -0.0052  49.7540  -0.0040  49.7540  -0.0040
54.75 547496  0.0004  54.7558  -0.0058  54.7405 0.0095 547536 -0.0036  54.7536  -0.0036
59.75 59.7489  0.0011 59.7532  -0.0032  59.7527  -0.0027  59.7507  -0.0007  59.7507  -0.0007
64.75 64.7486  0.0014  64.7494  0.0006 64.7518  -0.0018  64.7473 0.0027  64.7473  0.0027
69.75 69.7487  0.0013  69.7457  0.0043 69.7324 0.0176 69.7443 0.0057  69.7443  0.0057
74.75 747494 0.0006  74.7430  0.0070 74.7645 -0.0145 747422 0.0078  74.7422  0.0078
79.75 79.7503  -0.0003  79.7418  0.0082 79.7410 0.0090 79.7413 0.0087  79.7413  0.0087
84.75 84.7512  -0.0012  84.7426  0.0074 84.7660  -0.0160  84.7424 0.0076  84.7424  0.0076
89.75 89.7513  -0.0013  89.7460  0.0040 89.7405 0.0095 89.7465 0.0035  89.7465  0.0035
94.75 947502  -0.0002  94.7523  -0.0023 947760  -0.0260  94.7533  -0.0033  94.7533  -0.0033

TABLE 20. Actual and predicted fault location with error during A-G fault at line 7-8.
Actual Fault Location (km) Predicted Fault Location (km) and Error for different Test cases

Test - 1 Error Test - 11 Error Test - 11T Error Test - IV Error Test -V Error

1.5 1.4980 0.0020 1.4980 0.0020 1.4976 0.0024 1.4981 0.0019 1.4972 0.0028
6.5 6.5025  -0.0025 6.5025 -0.0025 6.4988 0.0012 6.5000 0.0000 6.5013 -0.0013
11.5 11.4984  0.0016 11.4984  0.0016 11.4965 0.0035 11.4973 0.0027 11.5005  -0.0005
16.5 16.4929  0.0071 16.4929  0.0071 16.4934 0.0066 16.4933 0.0067 16.4938  0.0062
21.5 21.4957  0.0043  21.4957  0.0043 21.5160  -0.0160  21.5179  -0.0179  21.5379  -0.0379
26.5 26.5024  -0.0024  26.5024  -0.0024  26.5021 -0.0021 26.5019  -0.0019  26.4971  0.0029
31.5 31.5027 -0.0027  31.5027 -0.0027  31.5034  -0.0034  31.5030  -0.0030  31.5008  -0.0008
36.5 36.5031 -0.0031  36.5031  -0.0031 36.5036  -0.0036  36.5035  -0.0035 36.5032  -0.0032
41.5 41.5028 -0.0028  41.5028  -0.0028  41.5034  -0.0034  41.5034  -0.0034 41.5028  -0.0028
46.5 46.5015 -0.0015 46.5015  -0.0015  46.5021 -0.0021 46.5021 -0.0021  46.5014  -0.0014
51.5 51.4999  0.0001 51.4999  0.0001 51.5003  -0.0003  51.5002  -0.0002 51.4997  0.0003
56.5 56.4980  0.0020  56.4980  0.0020 56.4985 0.0015 56.4985 0.0015  56.4982  0.0018
61.5 61.4969  0.0031 61.4969  0.0031 61.4974 0.0026 61.4974 0.0026  61.4971  0.0029
66.5 66.4968  0.0032  66.4968  0.0032 66.4971 0.0029 66.4971 0.0029  66.4970  0.0030
71.5 714978  0.0022  71.4978  0.0022 71.4980 0.0020 71.4980 0.0020  71.4979  0.0021
76.5 76.4998  0.0002  76.4998  0.0002 76.4999 0.0001 76.4999 0.0001 76.4998  0.0002
81.5 81.5021 -0.0021  81.5021  -0.0021 81.5021 -0.0021 81.5021 -0.0021  81.5022  -0.0022
86.5 86.5037 -0.0037  86.5037 -0.0037  86.5036  -0.0036  86.5036  -0.0036  86.5038  -0.0038
91.5 91.5030 -0.0030  91.5030  -0.0030  91.5028  -0.0028  91.5028  -0.0028  91.5030  -0.0030
96.5 96.4975  0.0025  96.4975  0.0025 96.4973 0.0027 96.4973 0.0027  96.4976  0.0024

(L-BFGS) back-propagation algorithm [52], [53], [54] is
used during the back-propagation process. The L-BFGS is
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used to solve high-dimensional minimization problems when
the objective function and its gradient can be calculated
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TABLE 21. Actual and predicted fault location with error during AB fault at line 7-8.

Actual Fault Location (km)

Predicted Fault Location (km) and Error for different Test cases

Test - 1 Error Test - I1 Error Test - 111 Error Test - IV Error Test-V Error

3.25 3.2527  -0.0027 3.2562 -0.0062 3.2553 -0.0053 3.2496 0.0004 3.2551 -0.0051
8.25 8.2463 0.0037 8.2829 -0.0329 8.2422 0.0078 8.2573 -0.0073 8.2669  -0.0169
13.25 13.2558  -0.0058  13.2556  -0.0056 13.2631 -0.0131 13.2540  -0.0040  13.2515  -0.0015
18.25 18.2451  0.0049 18.2489  0.0011 18.2501 -0.0001 18.2477 0.0023 18.2535  -0.0035
23.25 232585 -0.0085 23.2412  0.0088 23.2567  -0.0067  23.2550  -0.0050 23.2419  0.0081
28.25 28.2473  0.0027  28.2443  0.0057 28.2579  -0.0079  28.2588  -0.0088  28.2546  -0.0046
33.25 33.2483  0.0017  33.2459  0.0041 33.2391 0.0109 33.2491 0.0009  33.2482  0.0018
38.25 38.2500  0.0000  38.2468  0.0032 38.2495 0.0005 382518  -0.0018  38.2484  0.0016
43.25 432525 -0.0025 43.2487  0.0013 43.2485 0.0015 432542 -0.0042  43.2500  0.0000
48.25 482536 -0.0036  48.2499  0.0001 48.2494 0.0006 48.2547  -0.0047  48.2506  -0.0006
53.25 53.2530 -0.0030  53.2493  0.0007 53.2508  -0.0008  53.2540  -0.0040 53.2501  -0.0001
58.25 582512 -0.0012  58.2482  0.0018 58.2570  -0.0070  58.2515  -0.0015  58.2489  0.0011
63.25 63.2491  0.0009  63.2463  0.0037 63.2418 0.0082 63.2485 0.0015  63.2461  0.0039
68.25 68.2474  0.0026  68.2451 0.0049 68.2561 -0.0061 68.2464 0.0036  68.2444  0.0056
73.25 73.2469  0.0031 73.2453  0.0047 73.2494 0.0006 73.2448 0.0052  73.2452  0.0048
78.25 78.2482  0.0018  78.2473  0.0027 78.2454 0.0046 78.2456 0.0044  78.2464  0.0036
83.25 83.2506  -0.0006  83.2517 -0.0017  83.2544  -0.0044  83.2475 0.0025  83.2510  -0.0010
88.25 88.2533  -0.0033  88.2556  -0.0056  88.2519  -0.0019  88.2493 0.0007  88.2535  -0.0035
93.25 93.2532  -0.0032  93.2556  -0.0056  93.2485 0.0015 93.2478 0.0022 932542 -0.0042
98.25 98.2450  0.0050  98.2492  0.0008 98.2517  -0.0017  98.2389 0.0111 98.2466  0.0034

TABLE 22. Actual and predicted fault location with error during ABC fault at line 7-8.
Actual Fault Location (km) Predicted Fault Location (km) and Error for different Test cases

Test - 1 Error Test - I1 Error Test - 11T Error Test - IV Error Test -V Error

4.75 4.7606  -0.0106  4.7605 -0.0105 4.7590 -0.0090 4.7290 0.0210 4.7479 0.0021
9.75 9.7641 -0.0141 9.7643 -0.0143 9.6868 0.0632 9.7536 -0.0036  9.7602  -0.0102
14.75 147503  -0.0003  14.7502  -0.0002 14.7056 0.0444 14.7278 0.0222  14.7603  -0.0103
19.75 19.7411  0.0089 19.7413  0.0087 19.7640  -0.0140  19.7157 0.0343 19.7563  -0.0063
24.75 247488  0.0012  24.7478  0.0022 24.7462 0.0038 24.7105 0.0395  24.7526  -0.0026
29.75 29.7418  0.0082  29.7418  0.0082 29.7498 0.0002 29.7025 0.0475  29.7510  -0.0010
34.75 347433 0.0067  34.7433  0.0067 34.7487 0.0013 34.7016 0.0484 347506  -0.0006
39.75 39.7480  0.0020  39.7480  0.0020 39.7473 0.0027 39.7030 0.0470  39.7508  -0.0008
44.75 44.7526  -0.0026  44.7526  -0.0026  44.7502  -0.0002  44.7059 0.0441 447527  -0.0027
49.75 49.7562  -0.0062  49.7562  -0.0062  49.7561 -0.0061  49.7090 0.0410  49.7548  -0.0048
54.75 547584  -0.0084 54.7584  -0.0084  54.7463 0.0037 54.7130 0.0370  54.7570  -0.0070
59.75 59.7594  -0.0094  59.7594  -0.0094  59.7510  -0.0010  59.7207 0.0293  59.7580  -0.0080
64.75 64.7561  -0.0061  64.7561  -0.0061 64.7501 -0.0001 64.7122 0.0378  64.7589  -0.0089
69.75 69.7531  -0.0031  69.7531  -0.0031 69.7548  -0.0048  69.7130 0.0370  69.7596  -0.0096
74.75 74.7490  0.0010  74.7490  0.0010 74.7441 0.0059 74.7087 0.0413  74.7582  -0.0082
79.75 79.7451  0.0049  79.7451 0.0049 79.7530  -0.0030  79.7075 0.0425  79.7578  -0.0078
84.75 84.7429  0.0071 84.7429  0.0071 84.7473 0.0027 84.7066 0.0434  84.7555  -0.0055
89.75 89.7440  0.0060  89.7440  0.0060 89.7503  -0.0003  89.7092 0.0408  89.7530  -0.0030
94.75 94.7499  0.0001 94.7499  0.0001 947526 -0.0026  94.7158 0.0342 947501  -0.0001

analytically [53]. The network outputs (predicted FL) and

biases, and the procedure (WNN training) is continued until

error are computed again with the adapted weights and a satisfying FL output y; is obtained corresponding to the
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TABLE 23. Actual and predicted fault location with error during AB-G fault at line 7-8.

Actual Fault Location (km)

Predicted Fault Location (km) and Error for different Test cases

Test - 1 Error Test - I1 Error Test - 111 Error Test - IV Error Test -V Error
2.5 2.5134 -0.0134 25134 -0.0134  2.5020 -0.0020  2.5019 -0.0019  2.5309 -0.0309
6.5 6.5002 -0.0002  6.5002 -0.0002  6.5061 -0.0061  6.5234 -0.0234  6.5089 -0.0089
10.5 10.4940  0.0060 10.4940  0.0060 10.5026 -0.0026  10.5011 -0.0011  10.5099  -0.0099
14.5 14.5001  -0.0001  14.5001  -0.0001  14.4921 0.0079 14.5098 -0.0098  14.5199  -0.0199
18.5 18.4988  0.0012 18.4988  0.0012 18.4912 0.0088 18.4964 0.0036 18.5106  -0.0106
22,5 225020  -0.0020  22.5020  -0.0020  22.4855 0.0145 22.4905 0.0095 225192 -0.0192
26.5 26.5018 -0.0018  26.5018  -0.0018  26.4918 0.0082 26.4964 0.0036 26.5133  -0.0133
30.5 30.5021  -0.0021  30.5021  -0.0021  30.4906 0.0094 30.4977 0.0023 30.5190  -0.0190
345 345016  -0.0016  34.5016  -0.0016  34.4953 0.0047 34.5049 -0.0049 345163  -0.0163
38.5 38.5020  -0.0020  38.5020  -0.0020  38.4984 0.0016 38.5019 -0.0019 385173  -0.0173
425 425013 -0.0013 425013  -0.0013  42.5035 -0.0035  42.4980 0.0020 42,5137  -0.0137
46.5 46.5000  0.0000 46.5000  0.0000  46.5060 -0.0060  46.5026 -0.0026  46.5111  -0.0111
50.5 50.4993  0.0007 50.4993  0.0007 50.5074 -0.0074  50.4902 0.0098 50.5083  -0.0083
54.5 54.4994  0.0006 54.4994  0.0006 54.5065 -0.0065  54.5082 -0.0082  54.5061  -0.0061
58.5 58.4993  0.0007 58.4993  0.0007 58.5052 -0.0052  58.5243 -0.0243 585043  -0.0043
62.5 62.4985  0.0015 62.4985  0.0015 62.5042 -0.0042  62.4793 0.0207 62.5049  -0.0049
66.5 66.4982  0.0018 66.4982  0.0018 66.4994 0.0006 66.4963 0.0037 66.5005  -0.0005
70.5 70.4990  0.0010 70.4990  0.0010 70.4942 0.0058 70.5196 -0.0196  70.5002  -0.0002
74.5 74.4999  0.0001 74.4999  0.0001 74.4920 0.0080 74.4927 0.0073 74.4982  0.0018
78.5 78.5001  -0.0001  78.5001 -0.0001  78.4892 0.0108 78.4888 0.0112 78.4976  0.0024
82.5 82.5011  -0.0011 825011  -0.0011  82.4879 0.0121 82.5187 -0.0187  82.4964  0.0036
86.5 86.5013  -0.0013 86.5013  -0.0013  86.4905 0.0095 86.4963 0.0037 86.4952  0.0048
90.5 90.5011  -0.0011  90.5011 -0.0011  90.4958 0.0042 90.4875 0.0125 90.4932  0.0068
94.5 94.5001  -0.0001  94.5001 -0.0001  94.5069 -0.0069  94.5105 -0.0105  94.4908  0.0092
98.5 98.4978  0.0022 98.4978  0.0022 98.5231 -0.0231  98.4855 0.0145 98.4872  0.0128

values of the input variables x and the error is acceptably
small.

IV. RESULTS AND DISCUSSION

This section discusses the performance of the proposed FL
estimator for different types of faults occurring in various TL
sections of the considered power system.

A. PERFORMANCE OF THE PROPOSED FAULT LOCATOR
FOR VARIOUS FAULTS

Table 4 shows the various performance metrics of the
proposed FL estimator for single line to ground fault (C-G) at
lines 8-9. The performance metrics are compared with other
ML algorithms such as DT and SVM. Concerning Table 1,
different test cases are considered for C-G fault in the same
line section. The FL for test cases lies between 3.25 km and
95.25 km with a step size of 4 km. The FIAs for 5 test cases
is 0°, 15°, 45°, 75°, and 105° respectively. The performance
metrics are analyzed for both training and testing datasets.
Table 4 shows that the WNN-based proposed fault locator
identifies the FL with minimum error compared with other
ML algorithms. The various performance metrics, such as
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MAE, MSE, and RMSE, clearly show the effectiveness of the
proposed FL scheme for both training and testing. Similarly,
the error metrics are calculated for AC and AC-G faults in
line sections 8-9 and are presented in Table 5 and Table 6,
respectively.

In addition, TLs 4-5 and 7-8 are considered for the FL
estimation problems. In TL sections IV-V, three different
types of faults (B-G fault, BC fault, and BC-G fault) are
considered with three different sets of FIAs for testing the
proposed scheme. For every test case, the fault locations are
also modified. The performance metrics for both training and
test cases are shown in Table 7-9 for the above-mentioned
faults. In TL 7-8, different types of faults such as A-G fault,
AB fault, ABC fault, and AB-G fault are considered for FL
estimation problem. The performance metrics of the proposed
FL estimation scheme are shown in Table 10-13 for the
aforementioned faults in lines 7-8. Table 4-13 show that,
for all the fault types with different test cases, the proposed
fault locator identifies the FL with lesser error than other
techniques. The performance metrics for various faults on
FL are used to calculate the estimated FD from the relay
point. In this regard, the percentage FL error and the absolute
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TABLE 24. Performance of the proposed scheme with different features during C-G fault at line 8-9.

Features Considered

Results Metrics
Voltage, Current, Phase angle  Voltage Magnitude Alone  Current Magnitude Alone

MAE 0.00367 0.07233 0.09900
Training ~ MSE 0.00002 0.01848 0.01654
RMSE 0.00470 0.13593 0.12861
MAE 0.00368 0.07792 0.09937
Test I MSE 0.00002 0.02286 0.01652
RMSE 0.00476 0.15120 0.12853
MAE 0.00548 0.09042 0.16902
Test 11 MSE 0.00005 0.02166 0.05252
RMSE 0.00703 0.14717 0.22916
MAE 0.00902 0.10060 0.28973
Test I1I MSE 0.00013 0.01660 0.15449
RMSE 0.01115 0.12883 0.39305
MAE 0.01017 0.10104 0.32771
Test IV MSE 0.00017 0.01427 0.19607
RMSE 0.01294 0.11946 0.44280
MAE 0.00873 0.10421 0.27898
Test V MSE 0.00012 0.01846 0.14187
RMSE 0.01117 0.13587 0.37666

average error percentage of FL are calculated using Eq. (9)
and Eq. (10) [15].

A — P
Errory (%) = 2 =T 100 )
T
L E %
Absolute average error(%) = 'w (10)

where, Errory (%) is the k™ error(%), L is the total line length,
and T is the number of input data. For illustration, consider
the C-G fault in lines 8-9. Table 14 shows the actual and
predicted FL with an error during the C-G fault at lines 8-9.
The average FL is estimated for 24 different fault locations
lies between 3.25 km and 95.25 km with a uniform step
size of 4 km. The negative sign in the error indicates that
the estimated FL is greater than the actual FL. It is inferred
from Table 14 that the error in the predicted FL is lesser and
is in the order of 1072 to 1073. Furthermore, the average
prediction error for the C-G fault in lines 8-9 has been
calculated, resulting in an error value of 0.0095. It shows
the effectiveness of the proposed WNN-based fault locator.
Figure 5 shows the residuals in predicted FL for the C-G fault
in line sections 8-9. It indicates the error range for all the fault
locations of each test case. Figure 5(a) shows the residuals in
predicted FL for test case I with a FIA of 0°. It is clear that
the aforementioned fault locations lies between 3.25 km and
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95.25 km with a step size of 4 km and have a minimum error
range.

Similarly, Figure 5(b)-5(e) show the error analysis for the
rest of the test cases with FIAs of 15°, 45°, 75°, and 105°,
respectively. It is observed from Figure 5(a)-5(e) that the
residuals and their range for all the test cases are lesser.
In addition to Table 14, Figure 5 describes the performance
of the proposed fault locator with detailed residual analysis.
Similarly, the line-to-line fault (AC) and double line-to-
ground (AC-G) fault in lines section 8-9 are considered,
and the actual and predicted FL with errors are shown in
Table 15 and Table 16, respectively, for the aforementioned
faults. In addition, the line-to-line (AC) fault is considered
for the analysis of residuals in predicted FL for different test
cases and is shown in Figure 6(a)-6(e). It is inferred from
Table 15 and Figure 6 that the proposed fault locator estimates
the FL with an error of £0.03. This shows the efficacy of
the proposed fault locator. Similarly, Table 16 shows the
actual and predicted FL for the AC-G fault. Additionally,
to demonstrate the accuracy of the proposed scheme, the
average prediction errors for line-to-line (AC) and double
line-to-ground (AC-G) faults have been calculated, yielding
error values of 0.0032 and 0.032, respectively.

The errors in the FL for different types of faults, such as
B-G fault, BC fault, and BC-G fault on TL 4-5, are presented
in Table 17-19, respectively. The aforementioned tables show
the effectiveness of the proposed fault locator in estimating
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TABLE 25. Performance of the proposed scheme with different features during BC-G fault at line 4-5.

. Features Considered
Results Metrics

Voltage, Current and Phase angle  Voltage Magnitude Alone  Current Magnitude Alone

MAE 0.00794 0.06391 0.21840

Training ~ MSE 0.00016 0.00613 0.07498
RMSE 0.01261 0.07828 0.27382

MAE 0.00678 0.06208 0.18940

Test I MSE 0.00011 0.00570 0.05967
RMSE 0.01065 0.07553 0.24428

MAE 0.07174 0.28057 2.23220

Test II MSE 0.00741 0.10897 7.01130
RMSE 0.08607 0.33010 2.64790

MAE 0.07419 0.09351 4.06510

Test 111 MSE 0.00985 0.01593 23.34400
RMSE 0.09924 0.12620 4.83160

MAE 0.02560 0.08680 3.48790

Test IV MSE 0.00141 0.01198 17.06400
RMSE 0.03780 0.28686 4.13090

MAE 0.02583 0.06841 0.33549

Test V MSE 0.00142 0.00832 0.28403
RMSE 0.03771 0.09121 0.53294

TABLE 26. Performance of the proposed scheme with different features during AB fault at line 7-8.

Features Considered

Results Metrics
Voltage, Current, Phase angle  Voltage Magnitude Alone  Current Magnitude Alone

MAE 0.02226 0.11516 0.21766

Training MSE 0.00190 0.02169 0.08107
RMSE 0.04362 0.14728 0.28472

MAE 0.02280 0.12485 0.21766

Test1 MSE 0.00188 0.02704 0.08107
RMSE 0.04331 0.16444 0.28472

MAE 0.03896 0.20479 0.30533

Test 1T MSE 0.00593 0.10900 0.15838
RMSE 0.07700 0.33016 0.39798

MAE 0.04507 0.27433 0.47827

Test I11 MSE 0.00636 0.24146 0.36154
RMSE 0.07977 0.49138 0.60128

MAE 0.03198 0.13280 0.24334

Test IV MSE 0.00257 0.02971 0.10181
RMSE 0.05068 0.17235 0.31908

MAE 0.05421 0.26985 0.26348

Test V MSE 0.00973 0.19061 0.13177
RMSE 0.09863 0.43659 0.36300

the FL. For illustration, the residuals in the predicted FL for cases are shown in Figure 7(a)-7(e). Similarly, four different
single line to ground (B-G) fault on TL 4-5 with different test types of faults (A-G fault, AB fault, ABC fault, and AB-G
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TABLE 27. Performance of the proposed scheme with different features during ABC fault at line 7-8.

Features Considered

Results Metrics
Voltage, Current, Phase angle  Voltage Magnitude Alone  Current Magnitude Alone

MAE 0.00957 0.05683 0.49773
Training ~ MSE 0.00025 0.00573 0.45244
RMSE 0.01593 0.07572 0.67263
MAE 0.01056 0.05940 0.13370
Test I MSE 0.00033 0.00603 0.07313
RMSE 0.01818 0.07763 0.27042
MAE 0.02571 0.71865 2.06980
Test 11 MSE 0.02216 0.75191 5.50290
RMSE 0.04707 0.86713 2.34580
MAE 0.14163 1.76240 2.75080
Test III MSE 0.03179 4.50260 9.73500
RMSE 0.17829 2.12190 3.12010
MAE 0.08387 1.82400 3.26230
Test IV MSE 0.01135 4.88300 3.64400
RMSE 0.10652 2.20980 3.69380
MAE 0.08481 0.61287 2.39020
Test V MSE 0.01295 0.54266 7.29110
RMSE 0.11380 0.73665 2.70020

TABLE 28. Average absolute prediction error in fault location.

Techniques Type of fault
LG LL LLG LLL
ANFIS [31] 0.6314 0.4871 0.7508 NA
ANN [31] 0.9042 1.5564 0.5407 NA
DWT-ANFIS [31] 0.1833 0.2028 0.1208 NA
DGNN [41] 0.4442
Proposed 0.0121 0.0209 0.0139 0.0124

fault) are considered in TL 7-8, with four different sets of
FIAs for each type of fault, respectively. To show the efficacy
of the proposed scheme, the performance metrics on the
FL are shown in Table 20-23 for the above-said faults. For
illustration, the residuals in the predicted FL for different test
cases are shown in Figure 8(a)-8(e) for line-to-line (AB) fault
on TL 7-8. It is observed from Table 20-23 and Figure 8§ that
the proposed fault locator effectively identifies the FL with
lesser error. To demonstrate the effectiveness of the proposed
fault locator, the prediction errors for fault localization can
be calculated for all faults discussed in Tables 17 through
23. The overall prediction errors for LG, LL, LL-G, and LLL
faults are calculated and discussed in subsection C.

B. COMPARATIVE ANALYSIS OF PERFORMANCE METRICS
OF THE PROPOSED SCHEME WITH DIFFERENT FEATURES

Table 24 presents a comparative analysis of the performance
metrics for the proposed FL scheme when applied to a
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TABLE 29. Average training and testing performance.

. Training Testing
Techniques
MAE RMSE MAE RMSE
ANN [31] 2.6640 4.2290 3.2710 5.1710
ANFIS [31] 0.6640 1.1180 1.1420 1.8800
DWT-ANFIS [31] 2.1910 7.1990 2.1610 7.2340

SOM [31]
Proposed

0.0510 1.1290 3.6690 14.7440
0.0109 0.0192 0.0390 0.0566

single line-to-ground (C-G) fault on lines 8-9. This analysis
examines input features, including voltage and current magni-
tudes with phase angle, voltage magnitude alone, and current
magnitude alone. The percentage reductions in MAE, MSE,
and RMSE for Test I are also calculated for demonstration.
Specifically, the percentage reduction in MAE when all three
features are considered is compared with voltage magnitude,
and current magnitude alone is considered as a feature set.
The MAE reductions are 95.27% and 96.29%, respectively,
while MSE reductions are 99.90% and 99.86%, and RMSE
reductions are 96.85% and 96.23% for voltage and current
alone, respectively. Similarly, the percentage reductions in
these performance metrics for the other test cases can be
calculated. Table 24 illustrates that including phase angle
as a feature set significantly enhances the accuracy of the
estimated fault location compared to rest of the feature sets
with voltage and current magnitude alone. Correspondingly,
Table 25-27 detail the performance metrics for the proposed
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FL estimation scheme for different fault types, such as double
line-to-ground (BC-G) fault on lines 4-5, line-to-line (AB)
fault on lines 7-8, and triple line (ABC) fault on line 7-8,
respectively. It is evident from Table 25-27 that incorporating
phase angle in the input features consistently results in
more accurate fault location identification with minimal error
compared to using magnitude alone.

C. COMPARATIVE ANALYSIS WITH EXISTING TECHNIQUES
Table 28 presents a comparative analysis of the average
absolute prediction error for transmission line fault localiza-
tion. The different types of faults, such as L-G, LL, LL-G,
and LLL faults, are considered for analysis. The proposed
technique achieves the lowest prediction error for L-G faults
at 0.0121. The prediction errors obtained for LL, LL-G,
and LLL faults are 0.0209, 0.0139, and 0.0124, respectively.
The DGNN technique yields an overall prediction error of
0.442 for all fault types. Notably, in all fault categories and
localization, the proposed technique outperforms existing
methods, such as ANFIS, ANN, DWT-ANFIS, and DGNN.
Table 29 highlights the performance metrics of the proposed
fault localization scheme compared to existing techniques,
focusing on MAE and RMSE values for both the training and
testing phases. The proposed technique records the lowest
average MAE of 0.0109 and RMSE of 0.0192 during training.
In testing, it also achieves the lowest MAE and RMSE values
0f 0.0390 and 0.0566, respectively. These results indicate that
the proposed method performs better in training and testing
than the other fault localization techniques.

V. CONCLUSION

In this paper, a WNN-based fault locator was developed
for the WSCC 9-bus system using the MATLAB/Simulink
environment. In addition, the optimal PMU placement
is considered, ensuring PMUs are strategically placed to
achieve 100% system observability. The WNN was trained
using the PMU-derived features such as voltage and current
magnitudes and phase angles to estimate the fault location
by creating specific faults within the system. The analysis
of prediction errors revealed absolute prediction errors of
0.0121 for L-G faults, 0.0209 for LL faults, 0.0139 for
LL-G faults, and 0.0124 for LLL faults, demonstrating the
effectiveness of the proposed fault locator compared with
the existing techniques. Training and testing results indicated
significant MAE, MSE, and RMSE reductions when incorpo-
rating voltage, current, and phase angle features. Specifically,
the MAE is reduced by 95.27% and 96.29% compared to
voltage and current alone, respectively. MSE reductions were
99.90% and 99.86%, while RMSE reductions were 96.85%
and 96.23% for voltage and current alone, respectively.
These results underscore the importance of including phase
angle measurements to enhance fault location accuracy
beyond using voltage and current magnitudes alone. The
proposed WNN-based method was benchmarked against
other regression-based models, such as decision trees and
support vector machines, across various test scenarios at
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different fault locations. The performance metrics confirmed
the superior accuracy of the WNN-based fault location
scheme over other techniques. In future, the effect of
frequency domain features can also be thought of with WNN
for enhancing the performance of the proposed fault locator.

A. ABBREVIATIONS
Al Artificial intelligence

ANFIS Adaptive neuro-fuzzy inference system

ANN Artificial neural networks

DGNN Deep graph neural network

DL Deep learning

DT Decision tree

DTT Digital twin technology

DWT-ANFIS Discrete wavelet transform-Adaptive neu-
rofuzzy inference system

EmHW Embryonic hardware

FD Fault distance

FF-ANNC Firefly algorithm-trained ANN controller

FIA Fault inception angle

FL Fault location

FR Fault resistance

GPS Global positioning system

L-BFGS Limited-memory  Broyden, Fletcher,
Goldfarb, and Shanno

L-G Line-to-ground fault

LL Line-to-line fault

LL-G Double line-to-ground fault

LLL Triple line fault

LLL-G Triple line-to-ground fault

MAE Mean absolute error

MATLAB Matrix laboratory

ML Machine learning

MSE Mean squared error

OPP Optimal PMU placement

PMU Phasor measurement unit

PQ Power quality

ReLU Rectified linear unit

RMSE Root mean squared error

SG Smart grids

SOM Self-organizing map

SPV Solar photovoltaic

SVM Support vector machine

TL Transmission line

TLBO Teaching-learning-based optimization

WAMS Wide area monitoring system

WNN Wide neural network

WSCC Western system coordinating council
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