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ABSTRACT Predicting delays in metro and tram services is a complex task that requires advanced
approaches, such as powerful machine learning tools. This study addresses this topic by applying the
XGBoost and Bayesian Optimization (BO) algorithms, which offer a prediction horizon of 15 minutes
instead of the next-station prediction, which leaves a very short time for the operator to react if we want
to use the prediction for the next station. Our research strongly emphasizes methodological validation, with
daily evaluations against real-time data. This process is reinforced by collaboration with the Operational
Control Center (OCC) to ensure robustness. The 15-minute delay strikes a balance, giving control center
operators sufficient notice to orchestrate traffic management, mitigate disruption, and take timely action.
With an exemplary real-world accuracy of 95%, the results of our model have been validated by the OCC.
Future efforts will include the seamless integration of predictive capabilities into real-time display systems
for the OCC, providing innovative information to optimize traffic flows and ensure punctuality in urban rail
systems.

INDEX TERMS Urban rail systems, train departure delay prediction, extreme gradient boosting machine,
Bayesian optimization, operational control center, planned timetable, real timetable, predictive algorithms
to assist the OCC in preventing metro and tramway delays up to 15 minutes in advance.

I. INTRODUCTION
Rail operations, particularly those linked to trams andmetros,
perceive the rail network as a shared resource set. They must
manage access to these resources safely while complying
with the throughput and service quality objectives expected
by the rail system. This means ensuring traffic safety,
protecting train access to the tracks, and preserving the
passenger experience [1]. On each railway line, operations
are characterized by very high traffic flow, resulting in
short intervals between trains. The operations department,
managed by theOCC system, is responsible for implementing
the transport plan by optimizing delays for each train
throughout the day, whilemanaging equipment, drivers, lines,
and ensuring passenger information.
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Delays pose a significant challenge for OCC, particularly
during peak hours. This problem tends to get worse over
time, creating a domino effect in which one delay can lead
to another. Although procedures have been implemented to
reduce delays by OCC, the main challenge lies in the time
constraints to regulate the line. This time limitation has
repercussions on preceding and following trains, as well as
on the overall flow of traffic. As a result, delays frequently
exceed 5 minutes, causing passengers to crowd together on
platforms. The frequency of this traffic depends on the time
elapsed between the initial incident causing the delay and the
regulatory intervention of the operators.

Several state-of-the-art approaches employ machine learn-
ing, especially deep learning models, to predict railway
delays. These models often utilize historical data, weather
conditions, and other relevant features to make accurate
predictions [2]. However, the real-time applicability of these
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models remains a concern. The predictions generated are typ-
ically instantaneous, leaving railway operators with minimal
time to react and implement preventive measures [3]. In the
realm of predicting delays in public transportation systems,
various approaches have been explored to effectively antici-
pate potential incidents [4]. Among previous works, machine
learning models have emerged as a promising strategy to
address this complex issue. The existing methodologies in
railway delay prediction, although powerful, fall short of
addressing the time-sensitive nature of operational decision-
making. The inability to provide timely predictions means
that operators are often unable to take proactive measures to
mitigate the impact of delays [5]. The gap between prediction
generation and implementation hinders the practical utility
of these advanced models in real-world railway operations.
In contrast to the current landscape, our research addresses
the limitations of existing delay prediction models.

In the dynamic rail transportation landscape, real-time
delay prediction plays a central role in optimizing operations
and improving overall efficiency. The use of artificial intel-
ligence techniques for predicting delays throughout the daily
running of trains helps solve the problem of timemanagement
to regulate traffic. This provides operators with more time to
anticipate delays and take action by reducing the likelihood
of the impact on other trains. Railway systems are intricate
networks where the synchronization of numerous factors
is essential to maintain a seamless flow of operations [6].
Delays, whether caused by unforeseen events, passenger
behavior, or scheduled events, can have cascading effects on
the entire network. The utilization of advanced algorithms
such as XGBoost [3] offers a promising avenue for predicting
delays with a level of precision that can significantly impact
decision-making and resource allocation. XGBoost, well-
known for its efficiency in handling structured data and
feature importance, is utilized independently in this context.
This powerful algorithm is chosen for its ability to consider
diverse attributes influencing delays by creating a robust
model capable of capturing the temporal patterns inherent in
train movements throughout the day, focusing solely on the
capabilities of this algorithm.

We propose a multifaceted approach inspired by [3], using
XGBoost and BO. Our method differs in two important
ways: first, the type of input used, and second, the prediction
horizon.While in [3] predictions aremade for the next station,
we propose to predict within a 15-minute window into the
future, covering at least the next five stations. The aim is
to unravel the complexities of real-time delay prediction in
rail systems and to highlight the potential of XGBoost to
transform the use of operational data through tailored pre-
processing. By venturing into real-time rail operations with
this 15-minute forecast window, we are enabling operators to
react quickly and use predictions effectively. Predicting and
managing delays is becoming central to ensuring the smooth
and efficient operation of transport services. This research
explores the intricacies of delay forecasting and addresses
the challenges of implementing these forecasts in real-world

scenarios, with a particular focus on harnessing the power of
XGBoost.

The inputs to the model described in our methodology
are based on the LSTM approach [2], which incorporates
historical data for each output. In our case, this includes the
journey history for each train. The introduction of a novel
approach, where forecasts are issued 15 minutes before the
expected delay time, ensures that operators receive timely
predictions. This advance notice allows them to proactively
implement corrective measures, minimizing disruption to
the timetable and improving the passenger experience. The
primary objective of this study is to provide delay information
15 minutes before a train arrives at a station, using the
predictive power of XGBoost.The immediate relevance of
these forecasts is critical for operators, giving them a
critical time advantage in managing delays and mitigating
their impact on timetables and operational efficiency. This
proactive approach provides rail operators with a valuable
opportunity to respond effectively to potential delays, thereby
optimizing service.

This paper is structured as follows: In the ‘‘Related work’’
section, we review previous studies on rail delay prediction.
The ‘‘Methodology’’ section describes the delay problems
and identifies the factors that influence train departure delays
with our approach to the influence of past delays on future
train journeys using the three rail datasets presented in
this section.’’Use case’’ presents the real data set extracted
from a railway control center for training our model in the
‘‘XGBOOST’’ section, which presents the training of our
approach to the influence of past delays on future train paths,
using BO to optimize the XGBOST parameters. In addition,
we provide performance metrics from our experimental study
on real data, including results shared with the OCC. Finally,
we summarise our results, draw conclusions, and suggest
possible extensions of this research.

II. RELATED WORK
The field of railway delay prediction has witnessed signifi-
cant advancements in recent years, with a particular emphasis
on leveraging machine learning algorithms, especially deep
learning models, for precise forecasting. Several studies have
explored the application of these sophisticated techniques to
predict delays in real-time scenarios. However, a common
limitation observed in existing works is the instantaneous
nature of predictions, presenting practical challenges for
railway operators.

Predicting delays in metro or tram systems is generally
a significant challenge due to the complexity of collecting
data and availability from various sources, encompassing
multiple formats, including static and temporal data. The task
becomes intricate as it involves understanding and integrating
heterogeneous information to develop robust prediction mod-
els. The diversity in data formats, coupled with the dynamic
nature of traffic in public transportation systems, makes delay
modeling an exciting yet complex endeavor. This complexity
necessitates innovative approaches and advanced algorithms
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to fully leverage the potential of available data and provide
accurate real-time predictions.

Railway data learning and modeling are constantly evolv-
ing fields that have practical applications in rail traffic
management, predictive infrastructure maintenance, and
passenger safety [6]. Numerous studies have been conducted
in the literature to improve railway systems performance
and efficiency by exploiting data generated by various
equipment such as sensors, and signaling systems [2], [8].
Machine learning techniques, especially neural networks, are
widely used to model and predict railway outputs (delays).
Linear models have been mostly superseded by complex
models [2], [8], [9], including deep neural networks to
predict train arrival delay at the next station using Extreme
Learning Machine (ELM) with nine characteristics plus the
Particle SwarmOptimization (PSO) algorithm to optimize the
hyper-parameters of ELM [5], that have greater accuracy and
performance, and have the ability to extract valuable insights
from unprocessed and unstructured data using gradient
boosting (XGBoost) prediction model that captures the
relation between the train arrival delays and various railway
system characteristics [10]. The latest technological advances
allow large volumes of data to be processed and analyzed
in real time, thus allowing operators to make knowledgeable
rapid decisions. To summarize, the current state of rail data
learning and modeling involves the increased utilization
of machine learning techniques, and the integration of
multimodal techniques using three different methods to
define inputs including normalized real number, binary
coding, and binary set encoding inputs [11].
In [12], the authors successfully demonstrated the use

of LSTM for predicting train delays, taking into account
specific temporal patterns in train movements. These works
highlighted LSTM’s capability to handle long-term time
sequences, making them promising candidates for modeling
delays in dynamic environments like public transporta-
tion networks [13]. Contrasting with our XGBoost-based
approach, our proposal also incorporates the past history of
each train using the LSTM principle, resulting in a lighter
and faster model compared to LSTM. On the other hand,
boosting-based approaches, including XGBoost, have also
been explored successfully in train arrival delay prediction.
The study [3] proposes a data-driven method that combines
Extreme Gradient Boosting (XGBoost) and a Bayesian
Optimization (BO) algorithm to predict train arrival delays
at the next station by handling complex and heterogeneous
datasets, making it a relevant choice for modeling delays
in constantly evolving transport systems. While LSTM is
a type of Recurrent Neural Network (RNN) [7], other
members of the RNN family have also been explored for
delay prediction. The applied model accurately predicts flight
delays, addressing challenges posed by massive data and
dependencies. In comparison to traditional methods, the
Deep Learning (DL) model demonstrates superior precision,
accuracy, sensitivity, recall, and F-measure. Evaluation of
imbalanced and balanced datasets highlights the model’s

effectiveness, surpassing both traditional methods and a
previous RNN model in forecasting flight delays. The
innovative approach presented here represents a promising
advancement in enhancing accuracy and reliability in flight
delay prediction.

The authors in [5] introduce the integration of ELM PSO
into the railway delay prediction landscape representing
a novel and promising direction, offering both accuracy
and practicality concerning urban railway operations. This
methodology, as well as focusing on time-advantaged predic-
tions, distinguishes our approach from conventional models
and contributes to the ongoing development of effective delay
prediction strategies in the transport sector.

In addition, various other models have been explored in
the literature for the prediction of delays in transportation
systems [7], [14]. The diversity of these approaches reflects
the ongoing effort to find the most effective methods for
capturing the complexities inherent in real-time transporta-
tion data.SVM (Support Vector Machine) is a machine
learning algorithm [15], that has shown promise in modeling
and predicting delays. Studies such as [16] have explored
the use of SVM for classification and regression tasks
related to transportation delays. SVM’s ability to handle
non-linear relationships and high-dimensional data makes
it a noteworthy candidate for delay prediction, but its
performance may depend on the tuning of hyperparameters
and the nature of the data.

The method we propose in the following section differs
from the work described by the authors on a crucial
point. All the predictions described cover the next station,
whereas we propose predictions for a horizon of 15 minutes,
corresponding to at least the fifth station after the current
station. This approach gives the OCC the necessary time to
react and use these forecasts in the field. The choice of a
15-minute horizon can be adapted to the needs of each OCC.
For example, it is possible to extend the forecast horizon
to 20 minutes, although this could reduce the accuracy of
the model. Conversely, the horizon can be reduced to 10 or
5minutes for greater accuracy, but this may not give operators
enough time to react. Egis-rail chose a 15-minute horizon
based on the expertise of the PCC.

III. METHODOLOGY
Under normal circumstances, the OCC is responsible for
managing the traffic of each train-station pair throughout
the day. Their main objective is to achieve the targets set
by minimizing delays for each train-station pair. They also
try to optimize the flow of passengers on the platforms.
Delays in particular are an increasing challenge over time.
A significant correlation has been observed between the
increase in delays and the number of passengers on platforms.
The aim is to help OCC anticipate delays through a real-time
forecasting program. The obstacle they face is the lack of
time to anticipate delays immediately. The problem is that
delays increase progressively over time, disrupting the whole
line.
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FIGURE 1. The fundamental concept of a 15-minute prediction window: consider t5, departing from s5 in
real-time, and estimate its arrival within the next 15 minutes at s12.

Our specific objective is to develop a method of delay
prediction that would allow OCC to have information on
the expected delays for each train-station pair 15 minutes
in advance. This would make it possible to effectively
anticipate, according to predefined procedures, the addition,
deletion, delay, or advance of trains. The ultimate goal is to
ensure constant intervals between two trains at a given station.
The distinguishing feature of our approach is its ability to
predict delays over a 15-minute horizon, giving the OCC
a sufficient window of opportunity to implement proactive
measures.

Figure 1 shows the basic concept of a 15-minute prediction
window for a given train, denoted ti, where i belongs to
the set of trains running during the day. The idea is to
use the history of the trains that precede and follow ti,
as well as the times at which the train passes through the
preceding stations (shown in grey). The aim is to study the
past behavior of trains and its potential impact on the future
behavior of train ti over the next 15 minutes. By adopting this
approach, the model aims to provide the railway operations
manager with predictive information 15 minutes before the
arrival of train ti at the next station sj+e, where e is an
estimate of the next station in the future of ti for the
next 15 minutes. By integrating historical data and relying
on complex time patterns, this approach aims to improve
operational visibility. This allows operators to obtain critical
information in advance, facilitating more efficient traffic
management. Let’s look at the present moment, marked by
the departure of t5 from station S5 at 04:07 PM. We examine
the actual departure times of the trains that preceded and
followed t5 over the past hour. By comparing the actual time
t=04:07 PM with the planned time (PTT) of t5, we estimate
that the arrival time of t5 at the station in the next 15 minutes
is t+15=04:22 PM, which means that our t5 should arrive

at station S12 within 15 minutes. Using an XGBOOST
prediction model we predict whether t5 will be on time, late,
or early at S12 in the next 15 minutes, based on the estimated
arrival time. This comprehensive process involves analyzing
historical departure patterns and future forecasts to make
real-time predictions for the specific train in question.

Accurately predicting train delays 15 minutes before they
occur requires a thorough understanding of traffic pat-
terns, train movement dynamics, and environmental factors
affecting the system. Figure 2 presents our methodology
for building a 15-minute prediction model using a dataset
from an OCC in a French city. This methodology required
meticulous preparation phases to prepare the data for our
learning model(4). This rigorous preparation ensures that the
data fed into our models is accurate, reliable, and suitable
for training. Our data preparation phases are outlined in
Figure 2. The first phase of pre-processing, Data Cleaning (1),
involved resolving issues in the raw data, such as removing
duplicate lines and correcting outliers. Additionally, string
data, such as station names, were encoded to be usable for
model training. Once this initial cleaning phasewas validated,
the second phase, Data Enrichment (2), began. This phase
enhanced the dataset with inter-station data by calculating
the standard deviation and average time between consecutive
stations. Key information, such as predicted delays, actual
intervals between trains, and predicted travel times between
stations, was also calculated. These enriched features aimed
to improve the model’s understanding of the temporal and
spatial dynamics within the train network. Additionally,
a scraping method was employed to extract weather data
for 2017, providing crucial information for effective model
training. Data engineering (3) details howwe utilized the data
in our learning model (4), with three data sets explained in the
following sections.
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FIGURE 2. Data processing methodology, sources and engineering.

The choice of XGBoost is explained by its remarkable
ability to process heterogeneous data and capture complex
temporal dependencies [17]. Our approach leverages the
power of XGBoost to provide a comprehensive solution,
perfectly tailored to the specific operational needs of the
OCC. XGBoost stands out for its excellence in processing
various types of data based on feature selection and error
correction [18], offering essential flexibility to manipulate
the variety of railway information [3]. Additionally, XGBoost
excels at optimizing model performance. Its ability to
compile quickly compared to other models, such as neural
networks like LSTM, represents a significant advantage.
This efficiency in the compilation process allows for faster
implementation and increased responsiveness, thus meeting
the operational requirements of the OCC. A notable feature
of XGBoost is its ability to retain context over long periods,
making it particularly suited to capturing the complex
temporal patterns inherent in streetcar movement data [19].
By integrating these benefits, our approach aims to improve
the quality of forecasts and strengthen the OCC’s ability to
make informed decisions in real time for more efficient rail
traffic management.

Through this meticulous data pre-processing and the
utilization of advanced machine learning techniques, our
research seeks to empower the OCC with a predictive tool
capable of not only anticipating delays with a 15-minute lead
time but also ensuring that the predictions are based on a
refined and high-quality dataset. This combination of robust
data pre-processing and advanced modeling techniques is
integral to the success of our approach in enhancing
the operational efficiency and reliability of train services
managed by the OCC.

A. INPUT DATA: OPERATION DATA XOP
After completing the data engineering (3) outlined in
Figure 2, we have aggregated all pertinentXOP data to initiate

the analysis and model testing for delay prediction. These
carefully selected variables serve as predictors in our delay
prediction model, each making a unique contribution to the
modeling of delays. This selection enables a comprehensive
understanding of the studied system’s various temporal
and contextual aspects. To ensure clarity regarding their
respective scales, we have specified the associated units for
each variable.

Let xi,j ∈ XOP where XOP = (S,R,PTT ,RTT ,AI ,A,D,

PI ,P,AT ,Y ), the overall set of data grouping different
categories of operation data, each identified by a specific
letter. Using this notation, each element of the set XOP is
associated with a specific category of information related to
trains, stations, planning, and departure times as shown in
Table 1, Where:
• ti: Train number throughout each day, T =

t1, t2, . . . , t40.
• sj: Station number, S = s1, s2, . . . , s21.
• ptti,sj : Planned departure time of ti at the current station
sj ( ptti,sj ∈ PTT ).

• rtti,sj : Real departure time of ti at the current station
sj (rtti,sj ∈ RTT ).

• aisj : Average time of the planned timetable between the
current sj and the previous station sj−1 (Seconds).

• asj : Average time spent at the current station sj
(Seconds).

• d : Day of the week.
• piti,sj : Planned time interval between two consecutive
trains ti and ti+1 (seconds).

piti,sj ∈ PI | piti,sj = ptti,sj − ptti+1,sj (1)

• pti,sj : Planned travel time for a ti between sj and sj+1.

pti,sj ∈ P | pti,sj = ptti,sj+1 − ptti,sj (2)

• at: Average temperature for a day using WebScraping
methods.
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• yti,sj : The actual departure delay time of the train ti at
the current station sj indicates the difference between
the real departure time and planned departure time
(seconds).

yti,sj ∈ Y | yti,sj = rtti,sj − ptti,sj (3)

B. INPUT DATA : PREVIOUS TRAIN DELAYS Y PAST

The principle of previous delays relies on collecting and
utilizing historical delay data from XOP as illustrated in
Figure 2 phase (3), regarding a train to anticipate its future
delays. The central idea is to create a specific dataset for
each train ti referred to as previous delays of the train (Y past ),
which consolidates the historical delays of train ti across
all stations, considering the preceding trains. The Figure 2
illustrates this concept, depicting the comprehensive dataset,
denoted as ypastti,sj,rtti,sj

, ti ∈ T ,sj ∈ S and rtti,sj ∈ RTT ,
capturing the historical delays of train ti in all stations
as a list. This data set is formed by the union of the
delays of all previous trains of ti on the entire network
of stations, as presented in Table 2, where ypast1 represents
the first delay of a previous train in a station and ypasth
represents the last delay of a previous train before the
current time. In the context of the data set XOP =

(S,R,PTT ,RTT ,AI ,A,D,PI ,P,AT ,Y ), it is noted that
there exists a subset Y past representing all previous train
delays for a train ti at a station sj with a real departure at
rtti,sj This subset is such that the previous delays fall within a
one-hour window in the past, as shown in the grey window in
Figure 2. For each train ti, where yti,sj represents the delay of
this train ti at station sj, we define the set of previous delays,
denoted as ypastti,sj,rtti,sj

, as:

ypastti,sj,rtti,sj
= {ytk ,sl | tk ∈ T , sl ∈ S,

rt (tk ,sl ) < rt (ti,sj) and rt (tk ,sl ) > rt (ti,sj) − 3600} (4)

where:
• Y past

ti,sj,rtti,sj
is the subset of previous train delays for the

train at the station at the real departure time rtti,sj .
• ytk ,sl is the delay of train tk at station sl .
• rttk ,sl is the real departure time of train tk at station sl .
• The condition rttk ,sl < rtti,sj ensures that we only
consider delays of trains that have already left the
stations before the real departure time rdti,sj .

• The condition rttk ,sl > rtti,sj − 3600 ensures that we
only consider delays of trains that have left the stations
within the one-hour window before the real departure
time rtti,sj .

This approach allows the construction of a specific dataset
for each train, encompassing historical delays across all
stations while considering the delays of trains preceding
the train in question. By examining the cumulative delay
history of the train, considering station-by-station varia-
tions and interactions with preceding trains on the same
track, the predictive model can capture specific temporal
trends and relationships for that particular train. Thus, this

methodology highlights the importance, in our particular
context, of applying a unified approach to temporal data
using simple machine learning models such as XGBoost,
rather than opting for complex alternatives such as LSTM.
The primary goal is to simultaneously optimize computation
time and memory usage. The integration of XGBoost as a
machine learning model aims to maximize computational
efficiency and resource management. Simple models such as
XGBoost are characterized by their speed in both training
and deployment, resulting in significant time savings. This
approach underlines the importance of preferring simpler and
more efficient methods for processing temporal data while
retaining the flexibility to opt for more complex models when
the complexity of the temporal relationships justifies it.

C. INPUT DATA: FUTURE OPERATING STATUS 15 MINUTES
AHEAD XOP+15

The data set XOP = (S,R,PTT ,RTT ,AI ,A,D,PI ,P,

AT ,Y ), there exists a subset XOP+15 designed to encompass
future information about train ti at a station within a
15-minute time window as shown in Figure 1,2 phase (3).
The detailed process is as follows:

• Current operating data of train ti at station sj is
considered, including information such as the real
departure time rtti,sj .

• An estimation is made for the arrival of train ti at station
s(j+e) within a 15-minute window in the future.

• The anticipated position of train ti in the next 15 minutes
is determined based on the PTT as shown in Figure 2.

• The subset XOP+15 is formed, encompassing both cur-
rent and future data for train ti. It integrates information
related to the real departure, the estimated future arrival,
and the predicted position within the next 15 minutes as
shown in Figure 2 for train 5 in station 12.

Let x+15(ti,jj+e,rtti,sj )
∈ XOP+15 such that x+15(ti,jj+e,rtti,sj )

=

{ti, sj, rtti,sj , s(j+e), pt(ti,sj+e)}, where:

• s(j+e) represents the estimated station for a train ti within
the next 15 minutes.

• pt(ti,sj+e) denotes the planned departure time of train ti at
station s(j+e).

In summary, this subset XOP+15 is used to represent the
future data of the train and is used in conjunction with the
sets XOP and Y past which represent the operational variables
(timetables) of the trains and the set of past delays of a train
in a station respectively, note that the global data set for our
training model is X = XOP ∩ Y past

∩ XOP+15, as shown in
Table 1. The problem of predicting delays Y is formulated
under the mathematical representation:

ŷ(ti,sj) = f (x(ti,sj,rt(ti,sj))), x(ti,sj,rt(ti,sj)) ∈ X , ŷ(ti,sj) ∈ Ŷ
+15

(5)

where X is the global dataset resulting from the fusion of
current features XOP and previous delays Y past and the future
elements XOP+15. This formulation expresses the functional
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TABLE 1. Feature exploration for delay prediction y+15.

dependence between the combined features and the target
variable. The approach, XGBoost, is employed as a prediction
function f to model this complex relationship.

IV. USE CASE
Due to the sensitivity and confidentiality requirements of the
data provided by our industrial partner, specific details of
lines, timetables, and other operational information cannot
be disclosed. This is a precautionary measure to protect
confidential information relating to the operation of the
transport network concerned. We are fully committed to
ensuring the security and confidentiality of the data while
allowing in-depth analysis of operational performance based
on the general information available in our dataset.

The utilization of real-world data in the process of data
modeling is of paramount importance as it ensures the
accuracy and dependability of the outcomes. In this context,
the actual operational data employed in the study was
sourced from a collaborative effort with a railway control
center responsible for managing 21 stations and 40 trains
operating during the day. This raw dataset encompasses
critical information such as PTT (Planned Time Table),
RTT (Real Time Table), train numbers, station names, and
platform details [20].

Our database, spanning three months from September 1,
2017, to December 31, 2017, provides a comprehensive
snapshot of train operations, encompassing railway lines.
Specifically focusing on 21 stations, with two distinct tracks
labeled 0 from S1 to S21 and 1 from S21 to S1, this dataset
was selected to capture a representative and diverse range
of scenarios and operating conditions, thereby enhancing the
robustness of our study.

The utilization of real-world data, despite the necessary
confidentiality constraints, significantly contributes to the
validity of the data modeling process. This authenticity
ensures that the models developed are more adaptable to
real-world situations, fostering a better understanding of
the phenomena under investigation. Moreover, the use of
genuine data results in more relevant recommendations for
policymakers and practitioners, as the models are grounded
in the intricacies of actual operational scenarios. The train
line connects a bustling metropolis to a distant suburb,
passing through 21 stations. Each day, multiple trains travel
between these two points, carrying passengers for their daily
commutes as shown in Figure 2.
In the departure planning phase of PTT, each day begins

with the scheduled departure times for each train. Throughout
the day, the trains move according to their PTT, stopping at

different stations. Each train remains on schedule PTT until
it reaches its final destination at station 21. On arrival at
each station, the system evaluates several factors, including
the scheduled departure time and the actual departure time
recorded in the RTT database, any difference between these
times gives rise to delay assessments, calculated based on
the difference between the actual departure time and the
scheduled departure time. The railway day ends when the
last train has completed its journey and arrived at the last
station 21. This scenario highlights the intricacies of the daily
management of a train line. The inclusion of real and planned
departure time for each train allows for an assessment of
punctuality and the handling of potential delays.

V. XGBOOST
This integrated methodology aims to improve train delay
prediction using a comprehensive approach that exploits the
specific benefits of XGBoost while incorporating Bayesian
Optimisation. To achieve this, we have taken a careful
approach to data pre-processing, including cleaning, nor-
malization, and variable encoding. An important innovation
in our methodology is the enrichment of the model by
incorporating the delays of previous trains. To do this,
we used a sliding time window to capture the temporal
relationships between past, present, and future. This allowed
us to incorporate the temporal dynamics of the data,
recognizing that past delays can have a significant impact on
current and future delays, as shown in Figure 1.
Our approach to pre-processing the data by keeping past

information as input showed that the model converged
significantly better in the end. On the other hand, if we
exclude historical data and restrict ourselves to operational
data, the model fails to accurately predict reality. This
underlines the importance of including historical data to
obtain more reliable forecasts. Our methodology is based
on the concept of capturing the complex relationships
between the past, present, and future. We aim to model
temporal wealth and leverage sequential information to its
fullest extent, enhancing the model’s predictive performance.
This choice of architecture improves the model’s ability to
learn from long-term dependencies, which is crucial in the
context of train delays, where complex temporal patterns can
significantly influence future outcomes.

In our study aimed at predicting train delays, we delved
into the utilization of the XGBoost model, a particularly
robust and popular machine-learning technique. XGBoost,
short for eXtreme Gradient Boosting, is an ensemble method
based on decision trees. XGBoost excels in handling complex
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data with non-linear relationships. It amalgamates multiple
weak models (weak decision trees) to form a robust model.
Its ability to handle heterogeneous datasets makes it an ideal
choice for our problem, where train delays are influenced
by a variety of factors. We can express the prediction of the
XGBoost model F(X ), as follows:

F(X ) =
K∑
k=1

fk (X ), (6)

where K is the number of trees in the ensemble, fk represents
the prediction of the k-th tree, and X is the vector of
explanatory variables [17].

A. BAYESIAN OPTIMIZATION FOR HYPERPARAMETER
A critical aspect of optimizing the performance of an
XGBoost model lies in judiciously tuning its hyper-
parameters. To achieve this effectively, we opted for a
Bayesian optimization approach. This iterative method
intelligently explores the optimal values for hyper-parameter
θ , which would maximize the accuracy of our model.
These hyper-parameters are essential for tuning the XGBoost
model to achieve the right balance between complexity and
generalization, thereby improving its predictive performance
on unseen data. In the context of the XGBoost code, let B
represent the objective function mathematically defined as
follows according to [21].

B(θ) = −RMSE (7)

where: θ ={max_depth,learning_rate,subsample,

colsample_bytree}, are the hyper-parameters to be
optimized.
• max_depth: the maximum depth of a tree. Deeper
trees can capture more complex patterns in the data.
A higher max_depth allows the trees to have more
nodes, potentially capturing intricate patterns but can
lead to over-fitting.

• learning_rate: the step size at each iteration
while moving toward a minimum of the loss function.
A smaller learning_rate makes the optimization
process more robust by taking smaller steps, but it may
require more boosting rounds.

• subsample: the fraction of observations that are
randomly sampled to grow trees during the training
process. A value less than 1.0 means that not all data
is used for training each tree.

• colsample_bytree: the fraction of observations
that are randomly sampled to grow each tree. Similar to
subsample, it helps to prevent over-fitting by using a
random subset of features for each tree.

RMSE =

√√√√1
p

p∑
l=1

(yl − ŷl)2, (8)

MAE =
1
p

p∑
l=1

|yl − ŷl | (9)

where:

• p is the total number of observations.
• yl is the actual value of the target variable for observation
l.

• ŷl is the predicted value for observation l.

In the Bayesian optimization process, these hyper-
parameters are optimized to find the combination that
minimizes the root mean squared error (RMSE) [22] in
the cross-validated results [23]. The objective function B
returns the negative of the mean of the root mean squared
errors because the optimizer seeks to maximize the objective
function. This mathematical representation captures the
essence of the objective function as used in the code for
Bayesian optimization with XGBoost.

The method described in the Algorithm 1 aims to
explain the details of optimizing the hyper-parameters of
an XGBoost. The parameter defines the potential ranges
for each hyper-parameter, including ‘‘maximum depth’’,
‘‘learning rate’’, ‘‘sub-sample ratio’’, and ‘‘column sub-
sample ratio’’. The objective is to minimize the Root Mean
Squared Error (RMSE). Initially, θbest is initialized as a zero
mean function and is iterative updated by optimizing the
acquisition α(θ ) to determine which hyper-parameters to
evaluate. The optimization process balances exploration and
exploitation by calculating the expected improvement and
then evaluating the objective function with the negation of
this improvement. The optimal hyper-parameters are updated
based on the optimization results. The Algorithm 1 adapts to
explore and exploit the hyper-parameter space θbest, aiming
to minimize the negative RMSE for the XGBoost model.

Using Bayesian Optimisation (BO), we can identify the
hyper-parameters that significantly optimize the results of our
predictions. We refine the model configuration by placing
the optimal combination of parameters to achieve more
accurate and reliable predictions. In summary, using BO
proves to be an effective strategy for attaining well-tuned
hyper-parameters, leading to a noticeable improvement in
prediction performance.

θbest = {

max_depth = 6,

learning_rate = 0.01,

subsample = 0.98,

colsample_bytree = 0.97}

Figure 3 illustrates the fundamental principle of our
methodology, which employs a combined approach of
Bayesian Optimization (BO) and the XGBoost algorithm to
build a predictive model for predicting train arrival delays.
This process begins with a training dataset representing 80%
of the overall data. After this partitioning, we specifically
apply Bayesian optimization to the training data to determine
the optimal hyper-parameters for XGBoost, represented
by θ , which maximizes model performance to achieve
optimal predictive accuracy. We use the beta parameters in
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Algorithm 1 Bayesian Optimization Algorithm for Hyper-Parameter Tuning

Data: θ space, X all

Result: θbest

θ space.max_depth← (3.30);
θ space.learning_rate← (0.01, 1);
θ space.subsample← (0.1, 1);
θ space.colsample_bytree← (0.1, 1);
B(θ)←−RMSE;
θbest← 0;
while θbest is not converged do

α(θ )← E[max(B(θbest)− B(θ ), 0)] ; /* Optimize acquisition function */
ov←−B(α(θ )) ; /* Sample the objective function */
θbest← update(ov) ; /* Update Parameters based on optimization results */
X ← no ; /* Update Data with new observations no */

end

FIGURE 3. BO-XGBoost architecture for predicting train arrival delays.

our XGBOOST model, with the training data spread over
99 folds for cross-validation, where this choice is made
according to a recursive function that tests divisions from 1 to
1000 and returns the best division by minimizing RMSE
and maximizing R2. This approach allows us to adapt the
XGBoost algorithm to the specific characteristics of the
dataset, improving its ability to capture complex relationships
within the data. The model was trained using 1400 decision
trees as shown in Figure V-A, and the selection of the
1400 trees, as explained for the function to optimize the
number of folds, was determined by a recursive function that
returns the optimal number of trees, as shown in Figure 3.

Once the model has been meticulously optimized, it under-
goes rigorous testing on the test dataset, representing 20%
of the overall data set spanning from December 12, 2017,
to December 31, 2017. This evaluation phase is crucial for
measuring the model’s real-world performance on unseen
data. Evaluation metrics, including accuracy, RMSE, and
mean absolute error (MAE), are then scrutinized to validate
the model’s precision, and ensure its effective generalization
to new data. Themodel’s accuracy on the test dataset serves as
a vital indicator of its ability to generalize effectively, thereby
guaranteeing its relevance and robustness when faced with
new, real-world data.
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FIGURE 4. General architecture of XGBOST with the hyper-parameters
used.

FIGURE 5. RMSE evaluation during XGBOOST training for 99-fold.

B. RESULT
We present the results of the evaluation of the test dataset,
including performance measures and an analysis of the
importance of variables in the XGBoost model. This analysis
provides crucial information on the factors that confirm the
accuracy of predictions on the data with our methodology,
which is based on the importance of the past in predicting the
future.

We begin our analysis of the results with the RMSE to vali-
date the performance of the XGBoost model using 90 training
trees. During the training phase, the model demonstrated
remarkable accuracy with an RMSE of 96 seconds as shown
in Figure 6, indicating a close match between predicted
and actual values in the training set. This RMSE value
underscores the model’s efficiency in minimizing prediction
errors while capturing the subtleties of relationships within
the training data. However, during evaluation on the test
set, the RMSE slightly increased to 107 seconds. While
this variation may be attributed to the presence of unseen
features in the test data, the model retains solid competence,
displaying a reasonable gap between predicted and actual
values. This observation highlights the need to balance the
model’s complexity during training while ensuring its ability
to generalize effectively to new data.

After validating our model with RMSE, indicating good
performance, Figure 6 presents two delay curves: one in blue
for predictions and the other in orange for actual data. This

FIGURE 6. Average of predicted and real delays for each day of the test
data.

figure demonstrates an almost perfect alignment between the
two curves for the test data. For example, on December 17,
2027, there was a delay of -200 seconds in reality and −185
seconds in prediction, resulting in a very small error that
increases at most to 10 seconds per day. However, for most
days, predictions accurately match the actual data.

Figure 7, shown for each hour of the day over the testing
period, illustrating delays as a function of time for each
day from December 17, 2017, to December 31, 2017. These
graphs highlight an increase in error between actual and
predicted data, reaching up to 30 seconds for each hour.
Nevertheless, there is a convergence in the rhythm of delays,
as shown in Figure 6. Figure 8 represents plots of actual
delays in blue, delays for predictions on training data in
green, and in red for predictions on test data. Observing
this graph suggests that both predictions follow a similar
trend and remain close to reality. The performance metrics
for the training data indicate an RMSE of approximately
100 seconds and an MAE of 60 seconds. Similarly, for the
test data, the RMSE is around 107 seconds, and the MAE
is approximately 65 seconds, as well as an R2 (Coefficient
of Determination) of about 0.94 for the training set and
0.92 for the test set, provides valuable insights into the
model’s accuracy and generalization capabilities. The RMSE
values indicate the average magnitude of prediction errors,
with lower values suggesting better precision. In this context,
the model exhibits reasonable accuracy, as evidenced by the
relatively low RMSE values. Furthermore, the R2 values
reflect the proportion of variance explained by the model,
with higher values indicating a better fit. The high R2

values for both training and test sets suggest that the model
effectively captures the underlying patterns in the data and
generalizes well to new observations. While the model
performs slightly better on the training set, the overall metrics
portray a robust and effective predictive model.

1) MODEL PERFORMANCE (SECOND VALIDATION)
The discussion of the results from the XGBoost-based
model for predicting delays in trains and metros played a
crucial role in validating the model’s effectiveness. Experts
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FIGURE 7. Average of predicted and real delays for each hour of the day on test data: 22-12-2017, 23-12-2017, 27-12-2017, 28-12-2017,
29-12-2017, 31-12-2017.

from the control center were pivotal in this assessment,
aiming to determine whether the model’s performance was
acceptable for operational use. During the discussion, experts
closely scrutinized the model’s results in comparison to
actual train delay data. A specific approach was adopted
to assess the model’s ability to anticipate delays, using the
default margin of error defined in the control centers for
each arrival. The experts decided to set a 5-minute error
margin for arrivals, with a total tolerance of 150 seconds for
delays and −150 seconds for advances. This approach has
enabled the establishment of precise criteria for evaluating
the model’s accuracy in predicting both delays and advances.
Consequently, it offers a comprehensive overview of the
forecasting performance, outlined as follows:

E = {e ∈ E | e = y− ŷ} (10)

Next, the set of admissible errorsE is divided into two subsets
TF (True Inside) and FI (False Inside) as shown in Figure 7,
utilizing set notation:

E = TI ∪ TF

TI = {ti ∈ TI | −150 ≤ ti ≤ 150}

TF = {tf ∈ TF | tf < −150 or tf > 150}

Furthermore, we can express the precision P in terms of set
cardinality, capturing the proportion of correct predictions
within the total number of elements in the E set:

P =
|TI |

|TI | + |TF |
(11)

This set-theoretic approach provides a comprehensive
evaluation of themodel’s precision by distinguishing between
correct predictions TI and incorrect predictions FI .
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FIGURE 8. Visualisation of actual and predicted delays, the blue curve for actual delays, green for training data predictions, and red for test data
predictions.

FIGURE 9. Distribution of prediction errors: Visualisation of the cloud of error points on the test data.

TABLE 2. Precision of margins above and below the expert’s margins. Green is the margin of error determined by the rail experts.

Subsequent analysis of the results demonstrated that the
XGBoost model accurately predicted delays in trams and
metros. Evaluating each arrival revealed that 95% of the test
data fell within the defined error margin using the P(%)
parameter. This observation indicates that the model can
predict train delays with an impressive accuracy of 95%

up to 15 minutes into the future, as depicted in Figure 9,
which represents the error cloud set E . Each color in
the figure 9 corresponds to the test data days, spanning
from 16/12/2017 to 31/12/2017. Out of the 63029 data
lines (departure times of trains for each station over the
16 days), 63 029 predictions of departure times were accurate
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TABLE 3. Evaluation of XGBoost model performance at stations:
Assessing RMSE, R2, and accuracy within (−150, 150) Margin.

with a 95% precision, comprising 95% true positives TI
and 5% false positives FI . This performance underscores
the model’s proficiency in forecasting train delays. This
remarkable performance confirms the effectiveness of the
XGBoost model in predicting delays, providing a robust
foundation for its operational application in the realm of
public transportation control.

The method of error margin proposed by railway control
operators demonstrates remarkable precision. The initial
margin, set at ±150 based on data with a 95% confidence
level, provides reliable stability. A thorough analysis reveals
that 86% of predictions are exceptionally accurate, with
a narrow margin of ±100. This margin, defined as twice
the standard deviation, encompasses nearly all data at 99%,
within a range of ±300 as presented in Table 2, allowing
for the identification of outliers that deviate from this range.
It is noteworthy that the remaining 1%, associated with peak
hours between 3:00 PM and 5:00 PM, appears to exceed
the ±300 margin, suggesting temporary variations linked to
the specific conditions of the French tourist city in question.
These findings attest to the robustness of the predictive
method while emphasizing the importance of considering
peak-hour peculiarities in a specific urban context.

The analysis of train delay prediction results for a 15-
minute future time window, using a one-hour interval
from the past, reveals the overall satisfactory performance
of the model. The results are presented in Tables 3, 4
and 5, evaluating key parameters such as R2 (coefficient
of determination), RMSE (root mean square error), and P
(precision). In Table 3, each station displays notable values,
with a maximum of 109 seconds for RMSE . Minimal values
for R2 and P, namely 0.89 and 93%, signify significant
adequacy of the model for each station. Table 4 highlights the
model’s daily performance, showcasing an overall precision

TABLE 4. Daily performance of XGBoost model evaluation based on
RMSE and R2, with precision within the (−150, 150) margin blue color
represents weekends (Saturday, Sunday).

TABLE 5. Performance per hour of XGBoost model evaluation based on
RMSE and R2, with precision within the margin (−150, 150).

of 100% for a quarter of the test data days. However, Table 5
underscores specific issues, particularly at the beginning of
the day, at 4 a.m., where the model faces challenges with
R2 due to reliance on previous delays. Although the RMSE
increases from 64 to 194 seconds at 2 p.m. due to real delay
peaks, precision and R2 remain high despite these challenges,
demonstrating the model’s robustness against variations
in real-world data. Furthermore, it is crucial to note the
relationship between precision (P) andRMSE , as a significant
inverse correlation becomes apparent. When an increase in
RMSE is observed at a specific hour, a simultaneous trend
of decreasing precision occurs, as illustrated in the attached
figure 8. This observation suggests a sensitivity of themodel’s
precision to fluctuations in prediction errors, emphasizing the
importance of closely monitoring these parameters together
for a more thorough evaluation of the model’s performance.
Thus, any notable deviation in RMSE could directly impact
the reliability of predictions, warranting particular attention
in the management and optimization of the model.
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TABLE 6. Comparative analysis of model performance with variable
deletion.

FIGURE 10. X Correlation table: Red for strong correlation, yellow for
moderate, and blue or white for no correlation.

FIGURE 11. XGBoost feature importance for previous delays over a
one-hour interval (Y past ).

FIGURE 12. XGBoost feature importance plot for operational data (XOP).

The XGBoost-based model has demonstrated exceptional
accuracy and robustness in predicting train arrival delays
within 15 minutes of future arrivals, providing a reliable tool
for public transport control. Accuracy analysis, operational
validation, and a detailed robustness assessment of the model
demonstrate its effectiveness and its ability to predict the
delay for every train leaving a station in order to use
these results in the control center. During the XGBoost
model training, all variables used proved to be important for
model convergence, even in the absence of clear correlations
between the input variables X and our output variable Y ,

representing the delay, as illustrated in Figure 10. Examining
the last column depicting the correlation between the delay
and other variables does not reveal significant correlations,
with values ranging between −0.06 and 0.14, except for
the average of previous delays, which exhibits a strong
correlation of 0.84 with the delay shown in Figures 11 and 12,
depicting variable importance after model training, show that
all variables have increasing importance up to 0.008. In con-
trast, the importance of previous delays in our model reaches
a significant value of 0.20. These results emphasize that even
in the absence of clear linear correlations, previous delays
play a crucial role in predicting the current delay, and their
substantial importance in the model reflects their significant
contribution to the overall model performance. During model
experimentation, we conducted tests by eliminating variables
with low correlation with the output, aiming to simplify
the model without compromising performance. However, the
results indicated that themodel did not converge satisfactorily
in this configuration. The RMSE increased significantly,
reaching 4 minutes, while the coefficient of determination
R2 decreased to 0.63 shown in Figure 10. This observation
can be explained by the fact that, even if certain variables
do not exhibit clear individual correlations with the output,
they might collectively contribute to delayed predictions. The
removal of these variables resulted in a loss of essential
information, hindering the model’s ability to capture the
complexity of relationships between input and output data.
Therefore, while the intention to simplify the model is
understandable, it is crucial to consider the overall impact of
variables on model performance, as arbitrary removal may
lead to a degradation of the model’s predictive capacity.

VI. CONCLUSION
The successful deployment of XGBoost in real-world railway
operations to predict delays has proven to be a significant
breakthrough in public transportation. Close collaboration
with control center experts has ensured the robustness and
reliability of the predictive model, allowing railway operators
to make informed decisions quickly and efficiently. By pro-
viding a 15-minute prediction window with an accuracy rate
of 95%, the model has empowered control center operators to
manage traffic, mitigate disruptions, and take timely actions
to minimize the impact of delays on schedules and passenger
experience. This strategic approach has not only optimized
operational efficiency but has also elevated the overall quality
of service for passengers, setting a new standard for real-time
delay prediction in railway systems.

Furthermore, it’s important to note that while our study is
based on real train data, the methodology is equally appli-
cable to metro systems. Whether the model is dynamically
refined for each use case or kept static for daily or weekly
predictions remains a question, as the current dataset does
not allow for experimental determination of the need for
retraining with the latest data, be it from the last hours, day,
month, or year. These questions merit exploration in future
articles with expanded datasets.
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Looking ahead, there are exciting opportunities to further
enhance the predictive capabilities of XGBoost and other
machine learning algorithms in railway operations. Future
research has the potential to delve deeper into the integration
of diverse data sources, including events throughout the day,
passenger flow patterns, passenger counting, and traveler
behaviors. Additionally, exploring the inclusion of sources
like maintenance logs and feedback from passengers could
further enrich the dataset, contributing to the development
of more comprehensive and precise prediction models. The
seamless integration of predictive capabilities into real-time
display systems at control centers has the potential to
revolutionize how traffic flow is optimized and on-time
performance is ensured in urban rail systems. By harnessing
the power of advanced analytics and artificial intelligence,
railway operators can proactively address challenges, antic-
ipate disruptions, and deliver a more resilient and responsive
transportation network.

Embracing innovation and continuous improvement will
be key in shaping the future of delay prediction and
management in railway operations, ultimately leading to
a more efficient, and sustainable. As a critical next step,
exploring how to integrate these predictive insights into
operators’ displays for maximum simplicity and usability
will be crucial. This ongoing commitment to advancement
ensures that our rail systems not only meet but exceed the
expectations of efficiency and reliability in the years to come.
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