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ABSTRACT Stock market prediction relies heavily on combining different features due to the complex
factors affecting stock prices and varying datasets. This study introduces a new method for feature fusion that
improves predictions for traders and investors. We focus on three key types of technical analysis: momentum,
trend, and volatility, and combine them using four different fusion strategies. These strategies include
combinative fusion-based feature set (CFFS), adaptive feature-weighted fusion-based feature set (AWFES),
feature-type fusion-based optimized feature set (FTFOFS), and feature-based optimized fusion feature set
(FOFFES). The Aquila optimization technique is used to enhance these feature sets, adjusting feature weights
to improve accuracy. We tested the performance of these optimized feature sets using forecasting models like
decision tree (DT), naive bayes (NB), support vector regression (SVR), and multi-layer perceptron (MLP).
The effectiveness of our approach is compared with other optimization methods, such as genetic algorithm
(GA) and particle swarm optimization (PSO), over a 10-year period (2012-2022) with data from State Bank
of India (SBI) and ICICI Bank Ltd (ICBK). The models predict short-term stock movements (3, 7, and
15 days ahead), and we evaluate their performance using various metrics like mean absolute error (MAE)
and correlation coefficient (R%). Our results show that the FOFFS-Aquila method significantly improves the
MLP’s predictions compared to other models. We also provide insights into the efficiency of the MLP based
on FOFFS-Aquila, including its statistical validity and execution time.

INDEX TERMS Aquila optimizer, feature fusion, momentum indicators, stock market analysis, trend
indicators, volatility indicators.

I. INTRODUCTION

Stock market analysis enables the investors and traders to gain
an edge in this financial market. The study of this market
through past and current data helps with making informed
decisions on buying or selling the assets. The stock market
analysis is basically comprising of fundamental analysis and
technical analysis [1]. The fundamental analysis is based
on company’s financial statements, balance sheets, income
statement and cash flow statements to ascertain the revenue,
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expenses and the profits made by the company whereas;
the technical analysis involves study of past and present
price action to forecast the future price movements, vol-
ume, demand and supply of the stocks in the market [2],
[3]. There is a huge need of technical research in the study
of past stock prices to forecast the future price and trends
which shows the magnitude and direction of the share prices.
This portrays a meaningful insight on the sharp rise or falls
in the price of the share and shows the stocks which are
in high demand and traded in huge volumes. The types
of stock market forecasting activities such as forecasting
of stock price movement and the values are commonly
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known as classification and regression problems respectively
(4], [5].

Financial investors and traders are increasingly using
computer-assisted algorithmic trading strategies, leverag-
ing soft computing, machine learning, and deep learning
tools to enhance their stock trading processes due to their
excellent performance in nonlinear regression [2], [3], [4].
However, when modeling financial time series with soft
computing, machine learning, or deep learning strategies,
data preprocessing or feature engineering presents a signif-
icant challenge [5], [6]. Effective feature engineering, which
involves manipulating data at the feature level, has proven
crucial for improving model training, accuracy, and predic-
tive ability. Among feature engineering strategies, feature
augmentation and feature fusion are prominent methods. Fea-
ture augmentation involves increasing the number of features
by adding or modifying existing ones to create synthetic
features. In contrast, feature fusion focuses on selecting an
optimal subset of features from combined feature sets through
ranking techniques [7], [8]. This approach aims to enhance
the predictive accuracy of forecasting models by integrating
and refining features rather than just expanding them.

Feature fusion offers several advantages, including reduc-
ing dimensionality and computational complexity by com-
bining relevant features, which can lead to more efficient
and effective models. It also improves the robustness and
generalizability of predictive models by integrating diverse
feature sets, capturing a broader range of information. Addi-
tionally, feature fusion can address issues of data redundancy
and noise by selecting the most informative features, thus
enhancing the overall performance of forecasting models [9],
[10]. The scope of feature fusion extends to various appli-
cations, including stock market prediction, where it can
significantly enhance the accuracy of predictions by integrat-
ing different types of technical indicators and market data. Its
versatility makes it applicable across various domains where
feature-level integration can lead to better model performance
and insights.

Additionally, in the financial markets like, stock trading,
the traders and investors generally use various technical
quantitative tools such as momentum, trend and volatil-
ity indicators to forecast the movements, sentiments and
psychology of the markets through graph patterns, various
signals and oscillator [11], [12]. Traders most often choose
the indicators that work best for their trading analysis, and
they also combine the technical indicators with more tech-
nical analysis tools to provide a better quantitative nature
to the automated decision-making systems. The literature
suggests that the best use of technical tools in tandem with
other technical indicators improves reliability and productiv-
ity [11], [12], [13], [14], [15], [16]. The advantages of fusion
approaches have also been explored in this financial mar-
ket to develop more accurate and robust forecasting models
in comparison to single forecasting models. The design of
optimized feature fusion framework with the help of those
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technical tools and indicators is the key idea behind this study

to design a stock trading framework. The primary objectives

that underpin the creation of this feature fusion framework
for stock market prediction are as follows:

(a) To delve into the realm of ensemble learning at the
feature level, amalgamating predictions from various
technical tools and indicators. This approach aims to
achieve superior predictive accuracy compared to using
individual predictors in isolation.

(b) To leverage a diverse array of independent models capa-
ble of handling both linear and non-linear features. This
diversity enhances the framework’s adaptability to dif-
ferent types of market dynamics.

(c) To harness the power of technical indicators in con-
structing ensemble sets of features. These sets, when
combined, have the potential to significantly enhance
prediction accuracy through this feature-level ensemble
approach.

The manuscript’s contributions and novelty can be summa-

rized as follows:

a) This work presents a feature-level fusion approach
that combines a wide range of technical analy-
sis tools, including momentum, trend, and volatility
indicators such as momentum, trend, and volatility
indicators [11], [12], [13], [14], [15], [16], includ-
ing fast stock oscillator (FSO), slow stock oscillator
(SSO), rate of change (RoC), community channel
index (CCI), relative strength index (RSI), simple
moving average (SMA), exponential moving average
(EMA), displaced moving average (DMA), T3 moving
average (T3MA), volatility ratio (VR), average true
range (ATR), Bollinger bands (BBs), Keltner channel
(KC), etc. aiming to enhance the informativeness and
resilience of feature sets for stock market prediction
by encompassing three categories of technical analysis
tools.

b) The paper introduces four diverse fusion strate-
gies: combinative fusion based feature set (CFFS),
adaptive feature weighed fusion based feature set
(AWEFS), feature type fusion based optimized feature
set (FTFOFS), and feature-based optimized fusion fea-
ture set (FOFFS), which exploit various approaches to
combine features and indicators, synergistically boost-
ing predictive accuracy in the ensemble model.

¢) The paper employs the Aquila optimizer [17], [18],
[19], [20], [21], a nature-inspired optimization tech-
nique, to optimize weights in FTFOFS and FOFFS,
mimicking Aquila bird’s hunting behavior to enhance
feature selection and thereby improving ensemble
performance.

d) The effectiveness and robustness of the proposed
feature-level ensemble methods are thoroughly demon-
strated through rigorous evaluation using four fore-
casting models and a range of evaluation metrics
including mean absolute error (MAE), mean relative
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error (MRE), Nash-Sutcliffe coefficient (NSE), scatter
index (SI), correlation coefficient (R2), and Theil’s
U [22], [23].

e) The practical applicability of the proposed methods
is demonstrated through their application to actual
financial data from State Bank of India (SBI) [24]
and ICICI Bank Ltd (ICBK) [25] spanning a decade,
with short-term predictions for 3 days, 7 days, and
15 days ahead, highlighting the real-world effective-
ness of the feature-level fusion techniques in stock
market prediction.

f) The research notably advances feature engineering in
financial time series analysis by emphasizing its pivotal
role in data pre-processing and feature manipulation
to substantially elevate the precision and predictive
capacity of forecasting models.

g) The paper tackles the obstacles encountered by finan-
cial traders and investors in implementing algorithmic
trading tactics by amalgamating soft computing and
machine learning approaches, with the introduced
feature-level ensemble methods furnishing a blueprint
for automating stock trading procedures.

h) The innovative ensemble technique strives to enhance
predictive accuracy beyond individual predictors by
harnessing a diverse range of technical indicators and
fusion strategies.

i) The study’s results hold potential for elevating forecast-
ing accuracy in the financial realm, thereby enriching
decision-making for traders and investors through
informed insights.

In summary, the manuscript introduces a novel feature
ensemble framework that harnesses technical analysis tools
and Aquila optimizer for stock market prediction. It com-
bines diverse indicators, innovative fusion strategies, and
nature-inspired optimization to improve predictive accuracy
and demonstrate practical applicability in real-world financial
data. The research offers valuable insights into feature engi-
neering and its impact on financial time series forecasting,
making a notable contribution to the field.

The remaining sections of this paper are organized as fol-
lows; in Section II we review literatures of feature level fusion
or ensemble strategies and the use of technical indicators in
the financial market forecasting. The methodologies adopted
for this study along with the broad scope of this work are
depicted in Section III. The experimentation and result anal-
ysis along with the key observations, expected contributions
and impact of the study are also discussed in Section IV and
finally, the Section V presents the conclusion and future scope
of this work.

Il. RELATED WORKS

Artificial intelligence and machine learning are crucial for
stock market prediction because they analyze large datasets
and detect complex patterns that traditional methods might
miss. Techniques like decision trees (DT), naive Bayes (NB),
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support vector regression (SVR), and multi-layer perceptron
(MLP) each offer unique strengths for forecasting. DTs
are interpretable and visualize decision-making processes,
NB uses probability to manage independence assumptions,
SVR handles non-linear relationships, and MLPs model com-
plex patterns through multiple layers [1], [2], [3], [4], [5],
[6]. Feature engineering [7], [8], [9], [10], especially fea-
ture fusion, significantly enhances model performance by
integrating various trend indicators like moving averages,
relative strength index (RSI), and moving average conver-
gence divergence (MACD). This approach combines multiple
data perspectives, improving the model’s ability to capture
intricate market trends and boost predictive accuracy [11],
[12], [13], [14], [15], [16]. This section discusses various
feature fusion strategies proposed utilizing various machine
learning techniques.

Zhang et al. [26] introduced the collaborative attention
transformer fusion model (CoATSMP) for stock movement
prediction, which integrates textual and price data through
sophisticated fusion techniques, achieving improved accu-
racy and trading profits. Nejad et al. [27] addressed generative
associative networks (GANS’) training instability with a
novel framework combining DRAGAN and feature match-
ing, which enhances stability and accuracy, outperforming
long short-term memory (LSTM) and other GAN variants.
Albahliet al. [28] used a deep learning approach with an auto
encoder and DenseNet-41, processing ten years of Yahoo
Finance data to provide reliable buy, sell, or hold signals.
Bareket and Parv [29] focused on a 70-day forecasting
horizon using artificial neural network (ANN) and support
vector machine (SVM) models with innovative indicators
and techniques, enhancing predictability for major indices.
Sun et al. [30] proposed a hybrid CEEMDAN-LSTM-
Light GBM model optimized with Simulated Annealing,
which improved accuracy and fitting compared to single
LSTM and other hybrids. Aksehir et al. [31] developed
the ICE2DE-MDL model, combining entropy and secondary
decomposition with various machine learning techniques to
forecast stock prices with notable accuracy and low error met-
rics. Yan [32] integrated AdaBoost-based feature selection
with LSTM to predict stock index futures, showing superior
performance over other models. Vanguri et al. [33] intro-
duced a competitive swarm feedback algorithm-based deep
LSTM classifier, demonstrating enhanced prediction accu-
racy through advanced feature fusion. Alotaibi [34] proposed
a three-phase model involving feature extraction, selection
with RDAWA, and ensemble prediction, showcasing its effec-
tiveness against conventional methods. Chauhan et al. [35]
utilized LSTM and gated recurrent units (GRU) models with
particle swarm optimization (PSO) for Nifty 50 index predic-
tion, achieving high accuracy and precision through effective
ensemble and optimization techniques.

The studies, such as [26] and [31], focused on enhancing
model performance through advanced architectures and opti-
mization techniques but often overlook the development of
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innovative feature engineering methods. While [28] and [33]
utilized a variety of features and fusion techniques, they
frequently rely on static features or fixed technical indicators.
Research by [34] employs hybrid models for feature selec-
tion but may not fully address the complexities of adapting
features to evolving market conditions. Additionally, studies
like [30] and [35] show the benefits of ensemble and hybrid
models but do not thoroughly evaluate or compare differ-
ent feature fusion techniques. Many approaches focus on
either temporal or non-temporal features without effectively
integrating both. There is an opportunity to advance feature
engineering by incorporating dynamic and domain-specific
features, combining diverse data types such as textual data
and sentiment analysis in real-time, and developing adaptive
feature selection methods that can evolve with market con-
ditions. Further research is needed to evaluate how various
feature fusion strategies impact model performance and to
develop scalable methods that can handle large volumes of
real-time data efficiently.

IIl. METHODOLOGIES AND OVERALL ARCHITECTURE
DESCRIPTION

This proposed feature fusion-based ensemble architecture for
stock market forecasting goes through five stages of experi-
mentation. The SBI [24] and ICBK [25] stock data has been
collected for last 10 years from 2012 to 2022 in the first
phase, and thenin the second phase, the momentum, trend and
volatility indicators as mentioned in Section I are computed
based on the data collected during first phase to obtain three
categories of feature sets. The third phase depicts four types
of proposed ensemble-based strategies to obtain feature sets
such as CFFS, AWFS, FTFOFS and FOFFS (as detailed
below) which are evaluated based on four predictive networks
such as DT, NB, SVRand MLP [1], [2], [3], [4], [S], [6] in the
fourth phase of experimentation and finally, the performance
of the proposed ensemble strategies are evaluated and vali-
dated.The schematic representation of the proposed feature
fusion strategies is depicted in Figure 1.

The proposed ensemble-based feature fusion strategies
are borrowed from the information fusion approach of
machine learning to improve the performance of the pre-
dictors by fusing the new features constructed based on
the three indicators as mentioned above and combin-
ing them through various proposed fusion approaches.
Here, the CFFS is one of the simplest forms of feature
fusion proposed by combining all the computed fea-
tures based on momentum, trend and volatility indicators
named as combinative fusion (Figure 2) represented as
(Feature set momenum, Feature set yenq, Feature setyoaiiiry)-
The second category of feature set fusion is based upon adap-
tively assigning weights (w1, wy and wz) to the features and
forming a combined feature set named as AWFS (Figure 3)
presented as (w1 x Feature set omentum, W2 X Feature set yong,
w3 X Featureset ,jqsjiry)- The third and fourth categories of
feature set fusion strategies such as; FTFOFS and FOFFS
are focused on generation of optimized feature sets based
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on Aquila optimizer [17], [18], [19], [20], [21] (pseudo
code is available in Section III-B). The FTFOFS (Figure 4)
basically forms combined weighted feature set and then tries
to optimize the assigned weights to the features and returns
optimized weights for each feature type giving rise to genera-
tion of feature type fusion-based feature sets and represented
as, ([Wl Jix1 Feamresetmomentum) , ([W2] Ix1 Feamresettrend) s
(Iws)y 1 Feature setyolaiitiry)-

Stock Market
Datasets (SBI & ICBK)

Features Features
{FS0, 550, RoC, CCl, RSI) (SMA, EMA, DMA, T3MA) (VR, ATR, BBs, KO)

Generation of Feature Sets using Technical Indicators

L Momentum-based Trend-based Features L Volatility-based

Combinative Adaptive Feature Feature Type Fusion Fegtl:.re b:r':d

Fusion based Weighted Fusion based Optimized ?:J;':"

Feature Set based Feature Set Feature Set e
(CFFS) (AWFS) (FTFOFS)

(FOFFS)

Feature Fusion based Feature Sets Generation

Decision Tree Naive Bayesian SUE';::::;C:M Multi-Layer
DTy (NB) SVR) ILP)

Perceptron

Evaluation of Forecasting Models using Features Generated from Feature Fusion Strategies

o] i i i i

Convergence Predictive Gtatistical Execution
Curves Curves Validation Time

Performance Evaluation and Validation

FIGURE 1. Overview of the proposed feature-level fusion strategies.

Predictive
Accuracies

In contrast to FTFOFS, the FOFFS (Figure 5) forms com-
bined weighted feature sets and returns optimized weights
based on each feature set to form a fusion-based fea-
ture set and mentioned as, ([wil|xs Featuresetmomentum),
([wz] x4 Featuresettrend) , ([W3] x4 Featuresetvola,gm,), where
wi : [wiiwiewizwiawis] ks, wa @ [waiwaowazwogli«a, and
w3t [W31w3ow3zwaslxa.

The FTFOFS and FOFFS mainly focus on optimized deci-
sion variables (weights of the predictive model) utilizing
the Aquila optimization algorithm namely FTFOFS-Aquila
and FOFFS-Aquila. In FOFFS-Aquila, optimal weights are
adaptively chosen to create a combined weighted feature set,
incorporating various technical indicators such as momen-
tum, trend, and volatility. Through this process, FOFFS effec-
tively combines weighted feature sets and returns optimized
weights for each set, forming a fusion-based feature set. The
FOFFS model offers distinct advantages. Its dynamic weight
adaptation permits nuanced adjustments to feature contribu-
tions. By considering features from multiple categories of
technical indicators and selecting the most influential ones,
this approach captures a diverse range of informative features,
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FIGURE 2. The CFF feature-level fusion strategy.
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FIGURE 3. The AWFS feature-level fusion strategy.

Momentum-based Trend-based Volatility-based
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Finalizing the Predictive Model by
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Weights Parameters

Computing MAE and Updating the

FIGURE 4. The FTFOFS-Aquila feature-level fusion strategy.

potentially leading to improved predictive performance. The
data-driven selection process and emphasis on optimizing
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feature sets align seamlessly with the overarching goal of
enhancing prediction accuracy. Consequently, this model’s
superiority is evident due to its adaptiveness, comprehen-
sive technical indicator utilization, and data-driven feature
selection, collectively contributing to superior prediction
outcomes.

Momentum-based Trend-based Volatility-based
Features Features Features

Concatenation of Features to form Feature Set

| Test Data l—

| Training Data

wy w, W. h
Update
(W1, XFERtUTE. St gyl Waightawith
([w.l, xFeature Set,.,); Aquila
(W], xFeature Set, )] D;?'gr:'r’:;r‘:"
Feature Set Generation N
L 2
Formation of
Combined [ oT ] [ NB ] [ SVR ] [ M ]
Feature Set — —
using Updated Finalizing the Predictive Model by
Optimized Computing MAE and Updating the
Weights

Parameters

FIGURE 5. The FOFFS-Aquila feature-level fusion strategy.

A. PROPOSED OPTIMIZED FEATURE LEVEL
FUSIONSTRATEGIES BASED ON
AQUILA OPTIMIZATION
The Aquila optimization is a nature-inspired optimization
algorithm proposed by Laith Abualigah et al. [17] being
inspired by the hunting behaviour of a dark brown colored
eagle type bird generally seen in the northern hemisphere.
They basically hunt the grounded preys such as; rabbits,
hares, squirrels, snakes etc. based upon their talons and speed.
The hunting behavior of these birds is based on four natural
methodologies are discussed below [17], [18], [19], [20],
[21] which are simulated to obtain the optimized values of
weights w1, wo and w3 which are further used for designing
the optimized version of FTFOFS and FOFFS feature fusion
strategies.
(a) High soar and vertical stoop (hovering in the air at a
great height), commonly termed as called as expanded
exploration and mathematically it is represented in

Equation (1).
NS (CI 4+ 1)
CI
= NSpest (CI) x | 1 — M

+ (NSrmv (CI) — NSpesi(CI) x rand) (1)

where, NSpcy (CI) = 2 P NS;(chyYyj =
1,2,...,VS;

NS is the first method representing new solution, CI
is the current iteration; M/ is the max iteration; NSpes;
is the best solution; ( — 1%) is used to control the
exploration; NSy is the location mean value; rand

is the random value; and VS is the variable size.
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(b) Contour flight and short glide attack (after recog-
nizing the prey area, technique of flying at a constant
altitude and to make a circle above the prey), commonly
known as narrowed exploration and can be represented
using Equation (2).

where, Levy (D) = ¢ X ==5;0 =

NS2 (CI+1) =NSpes: (CI) x Levy(D)+(NSgsr (CI)
@)

— (sp — 8q) X rand)

rxo. [ TA+B)xsine(%E)

B s p—1
[ral F(#)XﬂXZ(T>

¢ = 0.01; ry and rp are random numbers between 0
and 1; B = 1.5; s, and s, represent the spiral shape
of the search area where prey isdetected and computed

as; s, =

z X cos(0), s, = z x sin(0); z can be

computed as z = z1 + SV x SS5;0 = —p x SS + 61;

3xm

0 = =57; z) represents the number of search cycles
between [11020]; SV is small fixed value (0.00565);
SS is the search space representing the dimension
and ¢ is another small fixed value with 0.005; NS,
is the second method of representing the new solu-
tion; and NSgsg (CI) is the random solution range
between 1 to n.

(c) Low flight with slow decent attack (recognizing the

prey and exploring the area with slow landing to attack

the prey), known as expanded exploitation and is rep-
resented using Equation (3).

NS3 (CI + 1) = (NSpest (CI) — NSy (CI))
x p — rand + ((Upound — Lpound)
3

where, NS3 is the third method of representing the new

X rand + Lpoynd) X T

solution; NSpes; (CI) is the approximate location of the
prey until the i iteration i.e. until the best solution

is obtained; NSyv (CI) is the location mean value as

given in Equation (1) at /" iteration; rand is a random
value between 0 and 1; the exploitation adjustment

parameters p and t (fixed to a small value 0.1);Lpouna

and Upoyuna shows the lower and upper bund of the given

problem respectively.
(d) Walking and Grab the Prey (walking on the land, get-
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ting closer to the prey and attack), known a narrowed

exploitation and is represented in Equation (4).

NS3 (CI + 1) = Qf X NSpest (CI)
— (Motion| x NS (CI) x rand)
— Motiony x Levy (D)
+ rand x Motion

2xrand—1

0 (CD=CI t-m7 ;

Motiony =2 x rand — 1; and
CI

M)

Motion, =2 x (1 —

“

where, NS3 is the fourth method of representing the
next iteration of CI;the quality function Qf is basically

used to equilibrium the search strategies;the various
motions of prey during elope is represented as Motion
and Motion,, where Motion, represents the decreasing
values from O fo 2 representing the flight slope of the
Aquila that is used to follow the prey during elope
from the first location (1) to last location (CI) i.e.
the behaviour of Aquila; and NS (CI) is the current
solution at the i iteration; rand value ranges between
Orol; Levy(D) is the levy flight distribution function
computed using Equation (2).

The flowchart (Figure 6) and working principle of this
Aquila optimizer (for 50 iterations) is be given below as
pseudo-code which has been used in the proposed FTFOFS
and FOFFS to obtain the optimized version of weights
w1, wo and w3 is detailed below;

Pseudocode 1 Working Principle of Aquila Optimizer
Step 1. For fifty iterations initialize w1, wo and wz;
Step 2. Fori = 1: nPS (nPS is the n number of population
size)
Calculate MAE using randomly initialized weighted
features;
Forj = 1 : i iterations
Ifj < %MI (MI is the maximum iteration)
If rand < 0.5
Apply high soar with vertical
(expanded  exploration) and
wi, wo and w3 using Equation (1);
Else
Apply contour flight with short glide
attack (narrowed exploration) and update
w1, wa and w3 using Equation (2);
End if
Else
If rand < 0.5
Apply low flight with slow decent attack (expanded
exploitation) and update wi,wy and wsz using
Equation (3);
Else
Apply walking and grab the prey(Narrowed
Exploitation) and update wi,wy and w3 using
Equation (4);
End if
Calculate fitness using the updated weights
(w1, wp and w3) and keep the best
If fitness (CI + 1) < fitness (CI)
Return best weighted features.

Step 3.

stoop
update

Step 4.

Step 5.

B. THE WORKING PRINCIPLES OF CFFS, AWFS, FTFOFS
AND FOFFS

The working principles of four proposed strategies are
shown below for easy reference to the readers as Pseu-
docode 2, Pseudocode 3 and Pseudocode 4 and Pseudocode 5
respectively.
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Start

[ Initialize the parameters of Aquila Optimization algorithm |

l Set the current iteration CI = 1 |

c=cr+1
Calculate the fitness values and determine the best solution
Yes j,/ } B No
J—/\ cr= 3MI ,—1
Y 7
Yes lf rmu(l S _No pd If rnnd . _No
*\ <05 P [_ <05 ,,/_J
P
Update the Update the Update the Update the
current solution current solution current solution current solution
using Equation (1) using Equation (2) using Equation (3) using Equation (4)
l—l |
No
Ifcr=MiI
| ves
Retumn the best solution and its fitness function

End

FIGURE 6. Flowchart of Aquila optimization algorithm.

Pseudocode 2 Working Principle of CFFS

Step 1. Input original historical stock data;

Step 2. Compute momentum based features such as; FSO,
SSO, RoC, CCI and RSI, then augment with original
stock data (five more features);

Step 3. Compute trend based features such as; SMA, EMA,
DMA and T3MA, then augment with original stock
data (four more features);

Step 4. Compute volatility based features such as; VR, ATR,

BBs and KC, then augment with original stock data

(four more features);

Split the datasets into training and testing sets in

70:30 ratio;

Step 6. Formation of combined feature set of training data
Iterate over number of iterations
Formation of combined weighted feature set such as;

Step 5.

Fetaureset omentum,
Fetaureset jyong and

Fetaureset olaility;

Generated feature set is set as input to the predictors;
Compute MAE(based on MLP);
Update weights;
Step 8. Similarly, formation of feature sets for test data;
Step 9. Record performance of the predictive models;

C. TECHNICAL INDICATORS

The design of datasets in this study utilizes a variety of
technical analysis indicators, including the FSO, SSO, RoC,
CCI, RSI, SMA, EMA, DMA, T3MA, VR, ATR, BBs and
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Pseudocode 3 Working Principle of AWFS
Step T to Step 5 is same as CFFS
Step 6. Initialization of random weights;
Step 7. Formation of combined weighted feature set of train-
ing data
Iterate over number of iterations;
Formation of combined weighted feature set such as;

w1 X Fetaureset omentum
wy X Fetaureset yenq and

w3 x Fetaureset,olaijity;

Generated feature set is set as input to the predictors;
Compute MAE (based on MLP);
Update the weights;
Step 8. Similarly, formation of feature sets for test data;
Step 9. Record performance of the predictive models;

Pseudocode 4 Working Principle of FTFOFS

Step T to Step 6 is same as AWFS

Step 7. Formation of combined weighted feature set for
training data with three weights (wy, wo and w3)
such as;

w1 X Fetaureset yomentum, W2 X
Fetaureset g and wi x

Fetaureset olaility

Initialization of optimization parameters;
Iterate over number of iterations;
Decision variables (w1, wo and w3) are passed to
the predictors;(Obtained through Aquila optimiza-
tion algorithm)
Returned Calculate MAE (based on MLP) is consid-
ered as cost of the predictive models;
Returns three optimized weights for each feature
type (i.e. momentum based, trend based and volatil-
ity based);
Step 8. Formation of combined feature set for test data such

as;

([Wl Iix1 Fetauresetmomemum) )

([W2]1>< 1 FetaureSEttrend) s

([W3]l x1 Fetauresetvolatilily)

Step 9. Record performance of the predictive models;

KC [11], [12], [13], [14], [15], [16]. These indicators
are organized into three categories—momentum, trend, and
volatility—and used both individually and in augmented form
to facilitate feature-level fusion. Integrating these diverse
range of these indicators significantly enhances stock market
prediction models. Momentum indicators like FSO and RoC
assess the strength and speed of price movements, aiding
in the identification of entry and exit points. Trend indica-
tors, such as SMA and EMA, reveal market direction and
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Pseudocode 5 Working Principle of FOFFS

Step T to Step 6 is same as AWFS and FTFOFS

Step 7. Formation of combined weighted feature set for
training data with thirteen weights (wy, wo and w3)
such as;

([W1]1><5 Fetauresetmomenmm) )
([WZ]I x4 Fetauresettrend) )

(w311 xa Fetaureset olaiity)
wi wniwipwiwiawislixs
wa : [worwaawaswoalixa
w3 @ [w3iwsaw3zwsalixa

Initialization of optimization parameters;
Iterate over number of iterations; Decision
variables Wi1... W15, W21 ... W25, W3] ...
w3s) are passed to the predictors;(Obtained
through Aquila optimization algorithm)
Returned Calculate MAE (based on MLP) is
considered as cost of the predictive models;
Returns thirteen optimized weights based on
each feature;

Step 8. Formation of combined feature set for test data;

Step 9. Record performance of the predictive models;

trend persistence, crucial for recognizing long-term patterns.
Volatility indicators, including BBs and ATR, measure price
fluctuations and market stability, providing insights into mar-
ket risk. This multi-faceted approach enriches the feature set,
capturing a broader spectrum of market behaviors, improving
predictive accuracy, and enhancing the model’s resilience to
varying market conditions for more robust and actionable
insights.

IV. EXPERIMENTATION, RESULTS AND DISCUSSIONS

The empirical aspects of the research are comprehensively
covered within this section, encompassing details related to
the system configuration, utilized packages, stock datasets,
technical analysis tools deployed for feature augmentation
and fusion, experimentation parameters, and an array of
performance evaluation metrics. This section also outlines
the experiment procedures, result analysis, model evaluation,
and validation processes. The experimental evaluations are
conducted within the Google Colab environment, employing
a Windows 7 platform equipped with a 64-bit architecture
and 4GB of RAM in an Intel i3 configuration. Google
Colab provides an effortlessly configurable platform with
access to GPUs, enabling seamless Python coding and
execution directly in the researcher’s web browser. Addi-
tionally, it offers facile sharing capabilities and harnesses
the capabilities of well-regarded libraries for data analysis
and visualization, including Keras, Numpy, Pandas, Sklearn,
Datetime, and Stats models. For the experimental study, two
prominent financial institutions are chosen as subjects. In this
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study we have used the SBI and ICBK stocks for experi-
mentation by taking the historical data for the period of 3rd
September 2012 to 3rd September 2022 for 10 years with
2496 number of samples and four financial attributes or fea-
tures such as open price, low price, high price and close price
with a 70:30 ratio of training and testing samples. Central to
this study, the utilization of three distinct categories of techni-
cal quantitative tools—momentum, trend, and volatility—are
underscored for feature expansion. The resultant expanded
features are then harnessed for both feature augmentation and
feature fusion within the ensemble framework.

A. PARAMETERS SETTING

The parameters setting for this experimentation are evaluated
under different values and the best values are chosen for
experimentation of genetic algorithm (GA) [36], [37], particle
swarm optimization (PSO) [35] [38], and Aquila [17], [18],
[19], [20], [21] is summarized in Table 1.

TABLE 1. Various optimization techniques and prediction strategies and
their associated values.

Techniques | Parameters and their associated values
Number of decision variables=3; Maximum
number of iterations =50

GA . . .
Population size=10; Selection
method=Roulette wheel
Number of decision variables=3; Maximum
number of iterations =50
Number of particles=10; Inertia weight=1

PSO . . . .

Inertia weight damping ratio =0.99; Personal

learning coefficient =1.5

Global learning coefficient=2.0

Number of decision variables=3; Maximum
Aquila number of iterations =50

Number of particles=10; Beta=1.5; U=0.00565;

Alpha=0.1; Delta=0.1

B. EXPLANATORY ANALYSIS AND RESULT DISCUSSION

For setting of the experimentation, we choose both technical
indicators and ensemble approach to serve as baseline of
this experimentation. As discussed in Section III, the pro-
posed CFFS, AWFES, FTFOFS-GA, FTFOFS-PSO, FTFOFS-
Aquila, FOFFS-GA, FOFFS-PSO and FOFFS-Aquila feature
level fusion strategies are evaluated utilizing four standard
predictive models such as DT, NB, SVR and MLP for all
three short term predictive days such as 3 days, 7 days and
15 days ahead of prediction. The datasets presented in Table 2
and Table 3 delves into a comprehensive analysis of predic-
tive accuracies using MAE for the SBI and ICBK datasets
respectively. The study intricately explores various predictors
and prediction horizons, concurrently calculating percent-
age improvements achieved by the proposed feature fusion
strategies compared to the baseline (CFFS). Within Table 2,
it becomes evident that the FTFOFS-Aquila consistently
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TABLE 2. Predictive accuracies observed by MAE for SBI dataset.

Proposed Feature Fusion Strategies
Predictors Predi.ction FTFOFS- | FTFOFS- | FTFOFS- | FOFFS- | FOFFS- | FOFFS-
Horizon CFFS AWFS . .

GA PSO Aquila GA PSO Aquila

DT 0.069 0.059 0.0589 0.0588 0.0576 0.0688 0.0588 0.0578
NB 0.0689 0.0589 0.0579 0.0578 0.0572 0.0602 0.0562 0.0552
SVR 3 Days 0.065 0.045 0.0448 0.0442 0.0439 0.0651 0.0451 0.0431
MLP 0.0601 0.0401 0.0389 0.0288 0.0388 0.0521 0.0321 0.0221
DT 0.2110 0.1841 0.2284 0.1770 0.2432 0.2553 0.1784 0.1837
NB 0.1803 0.1815 0.2490 0.2224 0.1635 0.2565 0.2081 0.2008
SVR 7 Days 0.2305 0.2272 0.2026 0.1881 0.1807 0.2278 0.1578 0.1963
MLP 0.2409 0.2263 0.1937 0.2050 0.1711 0.1802 0.1657 0.1300
DT 0.4703 0.4130 0.4247 0.4470 0.4479 0.4416 0.3268 0.2086
NB 0.4792 0.4111 0.4271 0.4669 0.4145 0.4406 0.3079 0.1570
SVR 15 Days 0.4410 0.3860 0.3929 0.4440 0.4471 0.4267 0.2556 0.2097
MLP 0.4545 0.4489 0.4471 0.4448 0.4578 0.4321 0.2383 0.1548

TABLE 3. Predictive accuracies observed by MAE for ICBK dataset.
Proposed Feature Fusion Strategies
Predictors Predi.ction FTFOFS- | FTFOFS- | FTFOFS- | FOFFS- | FOFFS- | FOFFS-
Horizon |  CFFs AWFS . ,

GA PSO Aquila GA PSO Aquila

DT 0.2110 0.1841 0.2284 0.1770 0.2432 0.2553 0.1784 0.1837
NB 0.1803 0.1815 0.2490 0.2224 0.1635 0.2565 0.2081 0.2008
SVR 3 Days 0.2305 0.2272 0.2026 0.1881 0.1807 0.2278 0.1578 0.1963
MLP 0.2409 0.2263 0.1937 0.1711 0.2050 0.1802 0.1300 0.1757
DT 0.4064 0.4536 0.4536 0.4188 0.4213 0.4497 0.2919 0.2401
NB 0.4576 0.4267 0.4267 0.4637 0.4813 0.4765 0.3523 0.2158
SVR 7 Days 0.4033 0.4279 0.3932 0.4220 0.3924 0.4322 0.2913 0.2177
MLP 0.4466 0.3834 0.3750 0.4021 0.4520 0.4043 0.2972 0.2154
DT 0.4767 0.5941 0.5443 0.5749 0.5869 0.5061 0.3434 0.1653
NB 0.5723 0.5607 0.5979 0.6066 0.5009 0.4678 0.2807 0.2140
SVR 15 Days 0.6015 0.4512 0.5209 0.5823 0.5218 0.5851 0.3086 0.1833
MLP 0.5479 0.5636 0.4868 0.5605 0.4989 0.4817 0.2658 0.1114

achieves enhancements of about 1% to 2% across multi-
ple predictors during a 3-day prediction interval, affirming
its stability. For a 7-day forecast, FTFOFS-Aquila impres-
sively showcases improvements ranging from 13% to 19%,
underscoring its efficacy. Remarkably, both FTFOFS-Aquila
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and FOFFS-PSO strategies demonstrate substantial enhance-
ments of around 25% for a 15-day prediction period,
highlighting their robustness for longer-term predictions.
Table3’s data provides a thorough analysis of predictive accu-
racies assessed using MAE for the ICBK dataset. Notably,
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within the 3-day prediction window, both FOFFS-Aquila and
FOFFS-PSO consistently exhibit improvements of approx-
imately 2% across diverse predictors, showcasing their
effectiveness. For the 7-day prediction horizon, FOFFS-
Aquila exhibits enhancements ranging from 10% to 20%,
signifying its strong performance. Over a 15-day prediction
period, the FTFOFS-Aquila strategy demonstrates substan-
tial improvements, reaching approximately 25% in specific
instances, thereby highlighting its potency for longer hori-
zons. These findings underscore the significance of specific
fusion strategies, especially FOFFS-Aquila, which signifi-
cantly enhance predictive accuracy. Furthermore, the MLP
consistently emerges as a top performer when compared with
all fusion strategies, including CFFS, AWFS, FTFOFS-GA,
FTFOFS-PSO, FTFOFS-Aquila, FOFFS-GA, and FOFFS-
PSO. The findings emphasize how FOFFS-Aquila effectively
enhances predictive accuracy across various horizons and
predictive models within the context of both the SBI and
ICBK datasets.

From the performance comparisons made above (Table 2
and Table 3), it is now understood that the FOFFS-Aquila
and FOFFS-PSO are performing well for both SBI and ICBK
stock datasets.

Hence, we further attempt to monitor the performance of
the two above well suited proposed optimized feature level
fusion strategies through various learning curves or conver-
gence curves which in turn represents time or experience
through various iterations in x-axis and the improvements
in learning process (based on MAE) in y-axis. The obtained
convergence curves of optimized variants of both FTFOFS
and FOFFS are shown in Figure 7 and Figure 8 for SBI
and ICBK datasets respectively based on MLP forecasting
model. From those two figures, it can be summarized that,
FOFFS-Aquila is converging very well for 15 days ahead of
prediction at around 10% iteration and for 7 days and 3 days
ahead of predictions; this fusion approach is converging very
well in comparison to rest of the optimized fusion approaches
at around 20" and 40™ iterations respectively for both SBI
and ICBK datasets.

From the convergence curves (Figure 7 and Figure 8)
now, it is observed that, the FOFFS fusion approach is
really outperforming the rest of the fusion approaches, and
then we again tried to observe the predictive accuracies of
optimized versions of FOFFS such as; FOFFS-GA, FOFFS-
PSO and FOFFS-Aquila for both SBI and ICBK datasets for
all three predictive horizons based on actual closing price
and predicted price as shown in Figure 9 and Figure 10
respectively.

The FOFFS-Aquila demonstrates robust and superior per-
formance across both the SBI and ICBK stock datasets,
as evidenced by its strong convergence in learning curves,
outperforming other fusion strategies. Notably, in the 15-day
prediction horizon, FOFFS-Aquila consistently achieves
accurate predictions with remarkable alignment between
actual and predicted stock values.
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Convergence curve of SBI 7 Days ahead data
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FIGURE 7. Convergence curves of SBI stock dataset for 3 days, 7 days and
15 days ahead of predictions.

C. MODEL COMPARISON, EVALUATION AND VALIDATION

The performance assessment of the experimented forecasting
models, aimed at predicting the closing price of stock market
data through feature level fusion architecture, involves the
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Convergence curve of ICBK 7 Days ahead data
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FIGURE 8. Convergence curves of ICBK stock dataset for 3 days, 7 days
and 15 days ahead of predictions.

evaluation of seven key metrics: MSE, MAE, MRE, NSE,
SI, RZ, and Theil’s U [22], [23]. MSE quantifies the average
squared difference between predictions and actual values,
offering an overall measure of predictive quality. Smaller
MSE values indicate closer alignment between predictions
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and actual data, reflecting improved model fitting. MAE
is predominantly utilized to summarize the effectiveness of
machine learning-based forecasting models. It aids in formu-
lating learning algorithms towards optimization, providing
a measurable indication of prediction errors. A lower MAE
signifies heightened forecasting accuracy. MRE, the ratio
of absolute error to actual value, gauges the magnitude of
relative errors within a range of 0 to 1. NSE, proposed
by Nash and Sutcliffe, is a normalized statistic that mea-
sures the relative magnitude of residual variance or noise
in relation to actual data, with values close to 1 indicating
accuracy. SI assesses the suitability of root mean squared
error (RMSE) normalized to data mean, with an acceptable
SI value being less than 1. R? indicates how well a regression
line approximates actual data, with a range of 0 to 1 and
higher values signifying a better match. Theil’s U identifies
models with significant errors by measuring relative accu-
racy and emphasizing deviations for larger errors. The MSE,
MAE, MRE, NSE, SI, R2 and Theil’s U are computed using
the Equation (5), Equation (6), Equation (7), Equation (8),
Equation (9), Equation (10) and Equation (11) respectively.
Where, y; is the actual value, y; is the predicted value for n
sample size and ¢ is the time.

Table4 and Table 5 provide a comprehensive overview of
predictive accuracies achieved through various performance
measures for the SBI and ICBK datasets respectively. The
analysis focuses on three predictive models: FOFFS-GA,
FOFFS-PSO, and FOFFS-Aquila, spanning different predic-
tion horizons (3 days, 7 days, and 15 days).

1 R
MSE = — Z i — 5’ (5
1 R
MAE =~3%" |vi—3 ©
MRE = %ZZ’ZI (yi y— yi) o
n . — A. 2
NSE =1 — [—Z"=1 L y_’)z] @)
21 0=y
p (Yi*y_iz)
S1 = —2— ©)
R2 _ zi=1(yi —y)0i — ){) — (10)
D i =N 2 Gi =Y
. 2
n—1 (Vi1 "Vipq)
Theil'sU = | == (=) (11)

n—1 (Yipg1 Vi \ 2
1=1 Vig

For SBI datasets, Table 4 summarizes the predictive
performance of three models—FOFFS-GA, FOFFS-PSO,
and FOFFS-Aquila—across various metrics and prediction
horizons for the SBI dataset. The analysis reveals that
FOFFS-Aquila consistently delivers superior results com-
pared to the other models. For instance, in terms of MSE,
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FIGURE 9. Prediction curves of SBI dataset for (a) 3 days, (b) 7 days and (c) 15 days ahead of predictions.
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FOFFS-Aquila achieves the lowest values across all time
horizons, indicating the most accurate predictions. This trend
is also evident in Mean Absolute Error (MAE) and Mean
Relative Error (MRE), where FOFFS-Aquila outperforms
FOFFS-PSO and FOFFS-GA. In terms of Nash-Sutcliffe
Efficiency (NSE), FOFFS-Aquila maintains the highest
scores, suggesting the best fit between observed and predicted
values. Similarly, FOFFS-Aquila shows the most favorable
results for the Smoothing Index (SI) and R-squared (R?)
metrics, highlighting its effectiveness in minimizing errors
and capturing data variance. The model also demonstrates the
lowest Theil’s U Statistic, indicating its superior predictive
accuracy and reliability. Across all prediction horizons—
3 days, 7 days, and 15 days—FOFFS-Aquila remains the
most robust model, with performance generally declining as
the prediction horizon lengthens. This suggests that while
all models perform well in the short term, FOFFS-Aquila
provides the most reliable predictions over varying time
frames. The results underscore FOFFS-Aquila’s strength in
delivering accurate stock price forecasts and its potential as a
preferred model for financial predictions.

For ICBK dataset, Table 5 provides a comparative analysis
of the predictive performance of three models—FOFFS-GA,
FOFFS-PSO, and FOFFS-Aquila—across different predic-
tion horizons for the ICBK dataset. For the 3-day prediction
horizon, FOFFS-PSO achieves the lowest MSE and MAE
values, indicating the highest accuracy among the models.
FOFFS-Aquila follows closely, offering competitive results
in MSE, MAE, and MRE, but slightly trailing FOFFS-PSO
in NSE and R?. FOFFS-GA shows the highest values for
MSE and MAE, suggesting it is less effective compared to
the other models for short-term predictions. In the 7-day
prediction horizon, FOFFS-PSO continues to perform well
with lower MSE and MAE compared to FOFFS-GA, though
FOFFS-Aquila shows improved accuracy over FOFFS-GA,
particularly in MAE and NSE. FOFFS-GA’s performance
declines notably in this horizon, while FOFFS-PSO and
FOFFS-Aquila demonstrate better stability. For the 15-day
horizon, FOFFS-Aquila excels with the lowest MSE, MAE,
and MRE, showcasing its robustness in longer-term pre-
dictions. It also achieves the highest NSE and R2 values,
reflecting its strong model fit and accuracy. FOFFS-PSO
performs well but shows higher MSE and MAE com-
pared to FOFFS-Aquila. FOFFS-GA’s performance deteri-
orates further in this longer horizon, with the highest MSE
and MAE values. The FOFFS-Aquila consistently delivers
strong performance across all prediction horizons, partic-
ularly excelling in longer-term predictions. FOFFS-PSO
performs well in shorter horizons and shows competitive
results but does not match FOFFS-Aquila’s long-term accu-
racy. FOFFS-GA, while effective in some cases, generally
lags in performance, especially in longer prediction periods.
These results highlight FOFFS-Aquila’s effectiveness in pro-
viding accurate and reliable predictions across varying time
frames.
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Furthermore, a straightforward comparison has been
made with the existing literature based on stock market
forecasting with the proposed method and presented in
Table 6.

Finally, Table 7 presents the results of statistical vali-
dation for the FOFFS-Aquila predictive model using the
SBI and ICBK datasets, with a focus on paired compar-
isons against FOFFS-GA and FOFFS-PSO models across
different predictive horizons. The p — values and h —
values are indicative of the significance of the performance
differences between FOFFS-Aquila and the other models.
In the case of the SBI dataset, for all three predictive
horizons (3 days, 7 days, and 15 days), the p — values
for FOFFS-Aquila’s comparison against FOFFS-GA and
FOFFS-PSO are below the typical significance threshold
of 0.05. This suggests that FOFFS-Aquila exhibits sta-
tistically significant differences in predictive performance
compared to FOFFS-GA and FOFFS-PSO on the SBI dataset.
Similarly, for the ICBK dataset, FOFFS-Aquila shows sig-
nificant differences in predictive performance against both
FOFFS-GA and FOFFS-PSO across all predictive horizons.
The h — values of 1.0 indicate that the null hypothesis can-
not be rejected, suggesting that FOFFS-Aquila consistently
outperforms both FOFFS-GA and FOFFS-PSO in terms of
predictive accuracy for both datasets and across various
predictive horizons. Overall, these findings highlight the
superiority of FOFFS-Aquila in comparison to the other
two models, underscoring its potential as an effective pre-
dictive tool for financial analysis using the SBI and ICBK
datasets.

The provided Figure 11 presents the execution times,
measured in minutes, for three distinct predictive periods
(3 days, 7 days, and 15 days) across two datasets: SBI and
ICBK. The data showcases the performance of three feature
fusion models—FOFFS-Aquila, FOFFS-PSO, and FOFFS-
GA—within this context. Upon analyzing the table, several
trends emerge. Notably, FOFFS-Aquila consistently exhibits
the shortest execution times across all predictive windows
for both datasets. For the SBI dataset, the execution times
for FOFFS-Aquila range from 12.1 minutes for a 3-days
prediction to 14.45 minutes for a 15-days prediction. Sim-
ilarly, in the ICBK dataset, the execution times range from
13.14 minutes to 13.52 minutes for the same predictive peri-
ods. FOFFS-PSO demonstrates intermediate execution times,
with a progression from 12.42 to 15.74 minutes for SBI and
from 14.51 to 14.42 minutes for ICBK. Conversely, FOFFS-
GA tends to yield the longest execution times, spanning
from 17.48 to 17.61 minutes for SBI and from 16.23 to
15.79 minutes for ICBK, as the predictive period increases.
The FOFFS-Aquila consistently boasts the fastest execu-
tion times across all predictive horizons for both datasets,
while FOFFS-PSO and FOFFS-GA showcase comparatively
slower performance, with FOFFS-GA often requiring the
longest execution times, particularly for longer predictive
intervals. This analysis underscores the nuanced relationship
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TABLE 4. Predictive accuracies observed through various performance measures for SBI dataset.

Predictive Prediction Performance Measures
Models Horizon MSE MAE MRE NSE SI R? Theil’s U
FOFFS-GA 0.0027 0.0521 -0.0002003 | -7.398*10"17 0.00018277 0.9695 0.2012
FOFFS-PSO 3 Days 0.0010 0.0321 | -0.00012344 | -2.808*10717 0.00011261 0.9754 0.1998
FOFFS-Aquila 0.0004 0.0221 | -0.00084987 | -1.331*10717 0.00077529 0.9897 0.1854
FOFFS-GA 0.0325 0.1802 | -0.00069356 | -8.871*10°18 0.00011408 0.9588 0.2101
FOFFS-PSO 7 Days 0.0275 0.1657 | -0.00063775 | -7.501*10"18 0.00096462 0.9609 0.2011
FOFFS-Aquila 0.0169 0.1300 | -0.00050035 | -4.617*10718 0.00059374 0.9705 0.1868
FOFFS-GA 0.1867 0.4321 | -0.00000017 | -1.198*10"20 0.00065807 0.9367 0.2238
FOFFS-PSO 15 Days 0.0568 0.2383 | -0.00091877 | -3.646*10"19 0.00020015 0.9532 0.2111
FOFFS-Aquila 0.0240 0.1548 | -0.00059684 | -1.538*10"19 0.00084459 0.9658 0.2049
TABLE 5. Predictive accuracies observed through various performance measures for ICBK dataset.
Predictive Prediction Performance Measures
Models Horizon MSE MAE MRE NSE SI R’ Theil’s U
FOFFS-GA 0.0325 0.1802 | -0.00059802 | -7.163*10"19 0.00008 0.9701 0.2262
FOFFS-PSO 3 Days 0.0169 0.1300 | -0.00043143 | -3.728*10°19 0.00004 0.9714 0.2004
FOFFS-Aquila 0.0309 0.1757 | -0.00058309 | -6.809*10"19 0.00005 0.9841 0.1989
FOFFS-GA 0.1635 0.4043 -0.0013 -6.865*10122 0.00044 0.9527 0.2238
FOFFS-PSO 7 Days 0.0883 0.2972 | -0.00098734 | -3.709*10"22 0.00024 0.9688 0.2185
FOFFS-Aquila 0.0464 0.2154 | -0.00071559 | -1.948*10"22 0.00012 0.9798 0.2124
FOFFS-GA 0.2320 0.4817 -0.0016 -7.335*10"20 0.00064 0.9411 0.2295
FOFFS-PSO 15 Days 0.0706 0.2658 | -0.00088493 | -2.233*10"20 0.00019 0.9628 0.2210
FOFFS-Aquila 0.0124 0.1114 | -0.00037089 | -3.923*10°19 0.00034 0.9742 0.2132

between execution efficiency and the chosen feature fusion
model, which plays a pivotal role in time-sensitive predictive
applications.

D. DISCUSSIONS,PRINCIPAL CONTRIBUTIONS

AND IMPACT

The manuscript introduces an innovative stock market predic-
tion approach blending technical analysis and optimization
in an ensemble framework. Notably, it presents a novel
feature-level fusion technique that combines momentum,
trend, and volatility indicators. This comprehensive fusion
generates robust feature sets, enhancing prediction accuracy
across diverse horizons. Additionally, the manuscript pro-
poses diverse fusion strategies—CFFS, AFWFS, FTFOFS,
and FOFFS—designed to synergize various indicators,
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thereby elevating ensemble model accuracy. By system-
atically integrating these strategies, the manuscript estab-
lishes a more robust and accurate stock market prediction
framework.

Moreover, the study introduces nature-inspired optimiza-
tion via the Aquila optimizer. This inventive use enhances
the ensemble model by selecting refined feature weights.
Techniques like expanded exploration (high soar and verti-
cal stoop), narrowed exploration (contour flight and short
glide attack), and both expanded and narrowed exploita-
tion (low flight with slow descent attack and walking
and grab the prey) are leveraged from the Aquila opti-
mizer to determine optimal feature set weights for FTFOFS
and FOFFS strategies. The feature sets for FTFOFS inc-
lude; ([w1l1x1Featureset momentum), ([W211x1Featureset yend ),
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TABLE 6. Comparison of stock prediction models.

Source Year | Networks Dataset Predictive | Time Performance Key Issues
Utilized Source Horizon Frame Observed
[34] 2021 | SVM, RF1, Saudi stock Short-term | Jan 2012 - RDAGW model: | Emphasizes
RF2, NN, and market Dec 2019 up to 98.75% selection; lacks
Red Deer evolving
Adopted Wolf features or real-
Algorithm time integration.
(RDAWA)
[28] 2023 | DenseNet-41 Yahoo Finance | Short, Jan 2011- MAPE score of Focuses on
with TT’s medium, Dec 2021 0.32 model
long-term performance
with existing
features.
[32] 2023 | LSTM, CSI1300 Short-term | Jan 1,2017 - | MAE score 0.48 | Lacks
AdaBoost Dec 31, integration of
2021 diverse or
dynamic feature
types.
[35] 2023 | RNNs, LSTM, | Nifty 50 index, | Short-term | Jan 4, 2000 - | LSTM & GRU Lacks evaluation
GRU NSE Apr 29, ensemble of feature fusion
2021 accuracy 57.72% | and
temporal/non-
temporal
integration.
[29] 2024 | ANN, SVM NASDAQI100, | Medium- Jan 1, 2010 - | NASDAQ100: Relies on
Dow Jones, term May 15, Accuracy 0.93, traditional
DAX 2022 AUC 0.82; Dow | indicators; lacks
Jones: Accuracy | evolving
0.94, AUC 0.84; | features.
DAX: Accuracy
0.65, AUC 0.66
[30] 2024 | CEEMDAN- Salesforce, Short-term | Jan 2013 - Accuracy over Limited
LSTM-SA- Alibaba, etc. Dec 2022 67% evaluation of
LightGBM feature fusion
techniques.
[33] 2024 | CSFA-based Yahoo Finance | Short-term | Jan 2012 - MAE 0.1418, Focuses on
Deep LSTM Dec 2022 MSE 0.1119, fusion but not
RMSE 0.2557 dynamic feature
integration.
Proposed | 2024 | FOFFS- SBI and ICBK | Short-term | 3rd Accuracy -
Aquila, DT, September improved by 1-
NB, SVR, 2012 to 3rd | 25%
MLP September
2022

(Iwsl1 x1Featureset yojasitiry). While the FOFFS forms the
feature sets like; ([wilixsFeatureset pomentum), ((W2lixa
Featureset yena), ([w3lixaFeaturesetojasiliry), Where wq
[Wiiwiawizwiawislixs, wa @ [wa1wowswaslixa, and w3 :
[W31w32w33w34l| xa-

The proposed fusion strategies (CFFS, AFWFES, FTFOFS,
and FOFFS) are rigorously evaluated with diverse pre-
dictive models (DT, NB, SVR, MLP) across 3, 7, and

187914

15-day predictions. Remarkably, FOFFS-Aquila consistently
enhances accuracy by 1-2%, 13-19%, and 25% for the
respective horizons. This is further highlighted by MLP’s
superior performance, underscoring FOFFS-Aquila’s effi-
cacy (Table 3 and Table 4).

The manuscript undertakes extensive experimentation
to validate its contributions. It systematically tests all
fusion strategies alongside predictive models, enhanced by
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Execution Performance of SBI and ICBK datasets

18
16 _—
14 _—
12 |
g 10 |
= 8 |
g 6 -
I =
]
<IN
3 days 7 days 15 days 3 days 7 days 15 days
SBI Dataset ICBK Dataset
B FOFFS-Aquila 12.1 13.2 14.45 13.14 13.21 13.52
B FOFFS-PSO 12.42 14.18 15.74 14.51 14.21 14.42
FOFFS-GA 17.48 16.51 17.61 16.23 17.23 15.79

FIGURE 11. Execution time taken (in minutes) for SBI and ICBK datasets by FOFFS-Aquila, FOFFS-PSO and FOFFS-GA for three predictive

days.

TABLE 7. Statistical validation of FOFFS-Aquila for SBI and ICBK dataset.

Paired P
Predictive l;_;:g:zc(t):: Il value ’_l value
Models
SBI Dataset
FOFFS-Aquila / 1.0
FOFFS-GA 3 days 0.0091 :
FOFFS-Aquila / 1.0
FOFFS-PSO 0.0061
FOFFS-Aquila / 1.0
FOFFS-GA 7 dave 0.0153
FOFFS-Aquila / Y 1.0
FOFFS-PSO 0.0044
FOFFS-Aquila / 1.0
FOFFS-GA 15 davs 0.0856
FOFFS-Aquila/ Y L0
FOFFS-PSO 0.0599
ICBK Dataset
FOFFS-Aquila / 1.0
FOFFS-GA 3 davs 0.0007
FOFFS-Aquila / Y 1.0
FOFFS-PSO 0.0078
FOFFS-Aquila / 1.0
FOFFS-GA 7 davs 0.0296
FOFFS-Aquila / v 1.0
FOFFS-PSO 0.0147
FOFFS-Aquila / 1.0
FOFFS-GA 15 days 0.0586
FOFFS-Aquila / 1.0
FOFFS-PSO 0.0342

optimization techniques. The evaluation is supported by
diverse learning and prediction curves, alongside meticulous
metric assessments. FOFFS-Aquila and FOFFS-PSO stand
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out, exhibiting strong convergence and exceptional predic-
tive performance in SBI and ICBK datasets. FOFFS-Aquila
excels in datasets, demonstrating robustness and accuracy in
learning curves. Particularly, in 15-day predictions, it consis-
tently aligns actual and predicted stock values. Performance
evaluations (Tables 5 and 6) substantiate FOFFS-Aquila’s
superiority across 3, 7, and 15-day predictions in terms of var-
ious metrics, underlining its efficacy in enhancing predictive
accuracy.

Statistical validation confirms FOFFS-Aquila’s significant
predictive performance against FOFFS-GA and FOFFS-PSO
models, showcasing its efficacy for financial analysis. The
Table 7 displays statistical validation for FOFFS-Aquila
against FOFFS-GA and FOFFS-PSO models in SBI and
ICBK datasets across different horizons. Low p-values
(<0.05) confirm FOFFS-Aquila’s significant predictive per-
formance. H-values of 1.0 support FOFFS-Aquila’s superi-
ority in predictive accuracy for both datasets and horizons,
showcasing its efficacy in financial analysis.

Further, execution time analysis underscores FOFFS-
Aquila’s efficiency, thereby providing a holistic perspective
on the model’s contributions, impact, and observed lim-
itations. Figure 6 illustrates execution times (in minutes)
for FOFFS-Aquila, FOFFS-PSO, and FOFFS-GA in SBI
and ICBK datasets across 3, 7, and 15-day predictions.
FOFFS-Aquila consistently exhibits the shortest times, while
FOFFS-GA tends to be the longest, highlighting the con-
nection between model choice and execution efficiency in
time-sensitive predictions.

The integration of CFFS, AFWFS, FTFOFS, and FOFFS
in the research serves several vital purposes and con-
tributes to the advancement of stock market prediction
methodologies. These fusion strategies address the following
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key challenges and offer significant contributions to the
field:

o The integration of these fusion strategies aims to
enhance the accuracy of stock market predictions.
By combining multiple technical analysis tools such
as momentum, trend, and volatility indicators, these
strategies create enriched and robust feature sets. This
leads to more accurate and reliable predictions, aiding
investors and financial analysts in making informed
decisions.

o Each fusion strategy harnesses the synergies among
different technical indicators. By integrating various
types of indicators, the strategies capture diverse
aspects of market behaviour, providing a more compre-
hensive view of stock trends. This synergy contributes
to improved predictive power, as different indica-
tors complement each other’s strengths and mitigate
weaknesses.

o The combination of different fusion strategies creates
an ensemble effect, where the strengths of individual
strategies are combined. This ensemble approach tends
to improve overall predictive accuracy by minimizing
biases and reducing overfitting.

o The integration of these strategies contributes to the
development of a comprehensive framework for stock
market prediction.

o The introduction of these fusion strategies represents
innovation and novelty in the field of financial analysis.
These strategies extend beyond traditional methods and
explore new avenues for leveraging technical analysis
indicators to enhance predictive accuracy.

o By providing more accurate predictions, these strate-
gies aid investors and financial experts in mak-
ing informed decisions about trading and portfolio
management. The improved accuracy can lead to
more favourable investment outcomes and reduced
losses.

E. LIMITATIONS AND FUTURE RECOMMENDATIONS

The study presents a robust approach to stock market pre-
diction through feature fusion and optimization, yet several
limitations and potential improvements can be identified.
The current work primarily focuses on intrinsic features
derived from technical analysis tools such as momentum,
trend, and volatility. To enhance predictive accuracy and
robustness, future research could incorporate external factors,
including macroeconomic indicators and sentiment analysis.
The study’s scope is limited to short-term predictions (3,
7, and 15 days); expanding this approach to longer-term
forecasts could offer valuable insights into its performance
across different market conditions. Although the MLP net-
work has proven effective, exploring alternative architectures
like recurrent neural networks (RNNs) or LSTM networks
may provide deeper insights into sequential data patterns.
Additionally, future work should consider qualitative aspects,
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aligning predictions with market trends, and evaluating
decision-making implications to offer a more comprehensive
understanding of the fusion strategies’ effectiveness. Further
experiments should investigate varying dimensions of feature
sets and complexity levels to assess how these strategies
adapt and perform under different conditions. By examining
these factors, we aim to refine our approach and enhance its
applicability.

V. CONCLUSION

Forecasting the time series trends and obtaining an accurate
market value over a period is a decision support process is
stock market data analysis which is typically a representative
of financial time series. The technical analysis of this finan-
cial market is regarded as a pattern recognition problem in
which, the forecasting models need to train with historical
data, technical analysis tools or indicators to predict the future
stock price. In this work, before involving the forecasting
models to predict the future price of the stocks, an attempt has
been made to obtain feature sets which can contribute more
accurate prediction through a fusion approach at feature level.
The intrinsic features obtained through three technical analy-
sis tools such as momentum, trend and volatility are fused
to form feature sets based on CFFS, AWEFS, FOFTFS and
FOFFS approaches. Then, the hunting behaviors of Aquila
optimizer are explored and simulated to obtain optimal values
of the weight vectors to generate optimized weighted feature
sets for FTFOFS and FOFFS approaches. The study presents
a comprehensive approach to predicting stock market trends
using feature fusion and predictive models.
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