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ABSTRACT A novel adaptive heart rate monitoring and filtering system based on algebraic distance mini-
mization has been designed. This system uses frequency-modulated continuous-wave radar for non-contact
monitoring of parameters such as respiration, heart rate, and heart rate variability (HRV). By employing an
improved algebraic distance minimization technique, the system suppresses static noise from the environ-
ment, enhances the signal-to-noise ratio of the intermediate-frequency signal, and reduces the complexity
of subsequent signal processing. To address issues such as low-frequency interference from radar signals
reflecting off fixed targets around the subject and the impact of respiratory harmonics on heart rate
measurement, this study introduces a respiratory harmonic filter and an adaptive notch filter to eliminate
higher-order respiratory harmonic interference. This approach allows for the adaptive decomposition and
reconstruction of vital sign signals and final estimation of respiratory heart rate based on the relationship
between harmonics. Comparative experiments with intensive care unit medical equipment have validated
the superiority and robustness of the proposed algorithm. Experimental results show that the RMSE and
MRE of the method are 2.66% and 2.7%, respectively. After multiple measurements across various subjects,
the method achieved an average accuracy of 96.5%, demonstrating higher measurement accuracy than other
methods in all cases. Additionally, the algorithm also enables the detection of heart rate variability.

INDEX TERMS FMCW radar sensor, minimization of algebraic distance, harmonic elimination, adaptive
filtering, heart rate variability.

I. INTRODUCTION
Respiratory rate and heart rate are important parameters that
reflect the status of the body’s signs and provide key infor-
mation about the body’s physiological state and health [1],
[2], [3], [4]. Currently in medicine, measurements are mainly
performed by electrocardiography (ECG) and photoplethys-
mography (PPG), however, these methods require electrodes
to be glued to the chest, limbs, and other specific locations,
and the measurement method is not convenient enough [5],
[6]. Frequency Modulated Continuous Wave (FMCW) radar
makes it easier to capture minute movements due to its high
sensitivity and millimeter wavelength. Meanwhile, FMCW
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radar-based detection of human vital signs has the advantages
of non-contact, non-invasion of privacy, and all-weather,
which has become a research hotspot in recent years. [7],
[8], [9], [10], [11], [12], [13], [14]. FMCW radar is more
sensitive to phase information in echoes, in [15], [16], [17],
[18], [19] researchers designed algorithms to extract heart
rate information in the phase information part of the echo.
For example, in [15], researchers proposed a peak detection
algorithm for detecting vital signs, which accurately detects
periodic features thus obtaining phase sequence informa-
tion. The researchers in [16] chose different chirp indices
from each FMCW frame structure to sample the phase vari-
ations at different sampling times and used the minimum
interpolation method to obtain high resolution heartbeat
signals. In [17], the researchers used the fully integrated
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empirical mode decomposition with adaptive noise (CEEM-
DAN) approach, it is concluded that human vital signs
are extracted in radar phase information with high accu-
racy. In [20] and [21], researchers obtained high-precision
heart rate respiration detection results by heart rate respira-
tion detection in different postures. Some researchers have
increased the accuracy of vital signs by improving the radar
antenna based on the phase algorithm [22], [23].
Generative artificial intelligence (GAI)models have shown

considerable potential in the healthcare field [24], particularly
in vital signs monitoring. However, challenges related to
ethics, fairness, privacy protection, and regulations cannot be
overlooked [25]. Once these limitations are addressed, the
future prospects for GAI in correcting misinformation and
validation will be very promising [26].

When measuring respiratory heart rate by millimeter-wave
radar, there are some physical interferences that can affect
the accuracy of the respiratory heart rate estimation, and
the most important factors are two major aspects. On the
one hand, stationary targets around the detected person as
well as radar transceiver antenna coupling can cause low-
frequency interference. On the other hand, higher harmonics
such as the second and third harmonics of respiration can
interfere with the heart rate information. To overcome the
above problems, researchers have improved the estimation
accuracy of vital signals by varying the signal-to-noise ratio
of vital signals [27], [28], [29]. In [30], [31], [32], and [33] the
researchers then reduced the system DC offset as well as the
static object interference signal bymeans of filtering to obtain
a relatively pure template signal. Researchers have focused
both on the elimination of respiratory high harmonics. For
example, in [34], the authors designed an algorithm for heart-
beat signal extraction based on Adaptive Notch Filter (ANF)
and Empirical Wavelet Transform (EWT). The harmonics
of respiration are suppressed, which in turn improves the
heart rate information accuracy. The researchers proposed
an improved fully integrated empirical mode decomposition
method of phase cumulative linear interpolation combined
with adaptive noise to address the effects of harmonics of
respiratory signals, adaptively decomposing radar vital signs
to extract heartbeat signals and estimating heart rate, in [35].
The researchers in [36] combined the variational modal
decom-position (VMD) algorithm with information from the
second harmonic of the heartbeat to indirectly achieve heart
rate estimation by estimating the spectral peaks of the second
harmonic signals, which avoids the strong interference of
respiratory signals and their higher harmonics on heart rate
estimation. In [37], researchers used cascaded notch filters
having a respiratory harmonic controlled by the estimated
fundamental respiratory frequency to eliminate respiratory
harmonics, employing an adaptive algorithm to obtain robust
estimates against motion artifacts and noise. To separate the
respiratory and heartbeat components while maintaining sig-
nal integrity, researchers have also processed the acquired
radar signals using a classical linear filtering algorithm [38],

[39]. The re-searchers in [40], [41], and [42] used adaptive
notch filters for filtering respiratory harmonics, which is cur-
rently a more efficient filteringmethod and plays a significant
role in solving the problem that heart rate accuracy is easily
interfered by respiratory harmonics.

The above methods contribute in signal preprocessing as
well as signal decomposition as well as frequency estimation.
In this paper, we propose an algebraic distance minimization
(ADM) Adaptive Notch Filter (ANF) heart rate respiration
system based on FMCW radar. It is a unique signal processing
method to extract the signals of human body signs based
on the characteristics of the complex plane and frequency
domain by suppressing the low-frequency interferences of
the radar system and the respiratory harmonics to the heart-
beat signals at the software level. The algebraic distance
minimization method processes radar intermediate frequency
signals in the complex plane. First, it estimates the cen-
ter offset of the signal representing the human vital signs.
Then, by applying an arctangent transformation to the esti-
mated vital sign signal’s complex plane center using real-time
sampled signals, it obtains the instantaneous chest displace-
ment amplitude of the human body. Due to the nature of
the arctangent function, the phase is constrained within -
π to π , requiring phase unwrapping to obtain the actual
chest displacement amplitude. After the algebraic distance
minimization preprocessing, to further eliminate reflections
from stationary objects and the impact of respiratory harmon-
ics on heart rate information extraction, an ANF heart rate
estimation system is used to remove respiratory harmonics.
The preprocessed signal is divided into I/Q signals, which
are filtered by Low-Pass Filters (LPF) and Band-Pass Fil-
ters (BPF) to separate respiratory and heartbeat components.
The I/Q signals are then demodulated using Complex Signal
Demodulation (CSD) to combine them. Finally, an Adaptive
Respiratory Harmonic Elimination Filter (RHEF) processes
the respiratory frequency signal, removing higher-order har-
monics of the respiratory signal, and combined with the
high-pass filtered heartbeat signal, is processed by the ANF
for estimation. The final heart rate is estimated based on the
relationship between harmonics. After obtaining the instan-
taneous heart rate using the ADM-ANF algorithm, the HRV
features are analyzed to assess the effectiveness and superi-
ority of this algorithm.

II. FMCW RADAR VITAL SIGNS DETECTION PRINCIPLE
FMCW radar transmits a signal with linearly varying fre-
quency. This signal, after being reflected by an object,
is received by the radar antenna. The transmitted and the
echo signals from the target are mixed and filtered, resulting
in an intermediate frequency (IF) signal containing crucial
distance information. Analysis of the IF signal allows for
deter-mining the distance to human targets. The schematic
diagram of FMCW radar transmission and reception signals,
as well as the intermediate frequency (IF) signal, is shown
in Fig. 1.
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FIGURE 1. Schematic diagram of radar transceiver signal and IF signal.

The transmit signal of the FMCW radar is,

St = At cos(2π f0t + π
B
Tc
t2 + 8(t)) (1)

where f0 is the carrier frequency of the radar, Tc is the signal
scan period, B is the bandwidth of the radar signal, At is the
amplitude of the signal, and 8(t) is the phase variation. The
corresponding expression for the radar reflected signal is,

Sr = Ar cos(2π f0(t − td ) + π
B
Tc

(t − td )2 + 8(t − td )) (2)

where Ar is the amplitude of the received signal and td is the
time delay of the signal. It is expressed as,

td =
2(R+ d(t))

c
(3)

where R is the fixed distance between the radar and the human
body, d(t) is the micromotion distance from the human chest,
and c is a fixed value of the speed of light. The IF signal,
whose amplitude, phase and frequency are related to the dis-
tance between the human body and the radar, can be obtained
by mixing the transmitted and received signals and then low-
pass filtering, and the expression of the IF signal is,

SIF

= AIF cos
[
2π

2Bd0
cTc

t+
4πd(t)

λ
+ 8(t) − 8(t − td )

]
+n(t)

(4)

where n(t) is the noise in the environment and caused by the
radar itself, λ represents the wavelength of the radar.

In the measurement of small changes in chest displacement
with millimeter-wave radar, the frequency change of the IF
signal is very weak, but the phase change is obvious, so it
is difficult to recover the motion model of the human respi-
ratory heart rate through the processing of the amplitude and
frequency information, andwemainly deal with the change of
the phase in the IF signal and then extrapolated the change of

the human respiratory heart rate. After deriving the simulated
IF signal in order to turn it into a digital signal that can be
processed by the machine we need to sample the IF signal,
generally we refer to this operation as fast time sampling Ts,
assuming that the total number of fast time samples is m, and
in each frame we have a lot of chirps, the chirp sampling
rate extracted from each frame, we refer to it as slow time
sampling Tf , with the total number of samples being n. So the
signal at the first sampling point in the first chirp we sample in
each frame is. Fig. 2 shows the radar data sampling diagram.
So the signal at the Nth sampling point in the Mth chirp we
sampled in each frame is,

s [n,m] = A exp(j(2π fIFnTf +
4π
λ
d(nTf + mTs))) (5)

FIGURE 2. Radar data sampling.

The radar echo signal is output as an I/Q signal after
quadrature mixing, the human respiration and heartbeat infor-
mation is extracted through subsequent signal processing.
Where the expression of the output I/Q signal is shown below,

I (t)=AI cos
[
4πx(t)

λ
+
4πd0

λ
+8(t)−8(t −

2d0
c

)
]

(6)

Q(t)=AQ cos
[
4πx(t)

λ
+
4πd0

λ
+8(t)−8(t −

2d0
c

)
]
+

π

2
(7)

III. VITAL SIGNS EXTRACTION ALGORITHM
During FMCW radar operation, the RF front-end’s FMCW
generator continuously produces a scanning signal with a
frequency that linearly varies over time and emits it through
the transmitting antenna. The electromagnetic waves radiated
are reflected off the human target. The receiving antenna
of the radar receives the reflected echoes from the human
body. These echoes undergo orthogonal mixing with the
local oscillator signal and subsequent low-pass filtering,
resulting in the production of an intermediate frequency
signal. However, IF signals also contain coupling from
radar transceiver antennas and reflective interference from
static objects around the subject, so each IF signal sam-
pled at slow time needs to be filtered for static clutter
suppression.

134368 VOLUME 12, 2024



M. Li et al.: Adaptive Heart Rate Monitoring System Based on Algebraic Distance Minimization

A. ALGEBRAIC DISTANCE MINIMIZATION ALGORITHM
In the same test scenario, other static objects caused by the
clutter signal slow time to remain unchanged, and the static
environment clutter amplitude is generally greater than the
dynamic human body’s respiratory chest undulation. The
IF signal can generally be represented as follows,

B (t) = Asejθs + A (t) ej
4πy(t)

λ (8)

The first term is the static low-frequency interference, As is
the amplitude and θs is the offset and the second term is
the information about the subject, A(t) is the signal strength
and y(t) is the amplitude of chest rise and fall. Since static
low-frequency interference is generally larger in amplitude
than subject information, it can greatly interfere with the
extraction of human information, an algebraic distance mini-
mization method is introduced to reduce the effect of noise
and outliers. Fig. 3 is a schematic diagram of the signal
complex plane.

FIGURE 3. Signal complex plane schematic diagram.

In order to reduce the effect of the DC offset in the
radar echo, so the Algebraic distance minimization method
(ADM), or ADM processing for short, is introduced to make
the circle of sign signals containing human body information
in the complex plane more convergent to the origin of the
complex plane. Where the general form of the circle equation
is,

axT x + bx + c = 0 (9)

where a ̸= 0,b = (b1, b2) and c are the coefficients to be
computed to fit the circle from x. The above equation can be
rewritten as,(

x1 +
b1
2a

)2

+

(
x2 +

b2
2a

)2

=
||b||

2

4a2
−
c
a

(10)

From this the center coordinate z = (z1, z2) can be deter-
mined as respectively,

z = (z1, z2) =

(
−
b1
2a

, −
b2
2a

)
(11)

The radius is determined to be,

r =

√
||b||2

4a2
−
c
a

(12)

Therefore, a subsequent ANF heart rate respiration system
can be performed to process this filtered signal, perform
phase demodulation, and calculate the angle information after
subtracting the center point from the I/Q signal as follows,

2(t) =
4πy(t)

λ
= arctan

(
x2 − z2
x1 − z1

)
(13)

The results of the data before and after processing by alge-
braic distance minimization are shown in Fig. 4. The blue
part represents the signal before processing, while the red part
shows the effect after algorithm processing. It can be clearly
concluded that the algorithm filters out the ambient static
clutter efficiently and restores the algebraic circle containing
the human body sign information to the zero point of the
complex plane as much as possible.

FIGURE 4. ADM algorithm processing.

Phase overlap of the sampled signals occurs when the
amplitude of the human body swing is large, and in order to
distinguish the chest rise and fall corresponding to different
phases, it is necessary to do phase unwrapping work on
the sampled signals. Performing the fast Fourier transform
on the intermediate frequency signal corresponding to each
chirp, the real and imaginary components of the FFT at
the frequency of the spectrum’s peak point are extracted.
The phase-sequence waveform over time is then obtained by
computing the phase using the inverse trigonometric func-
tion, arctan(I/R). Perform phase unwinding of the arctangent
phases to obtain the final phase time series. The phase time
series before and after unwinding are shown in Fig. 5.

B. IMPROVED ADM AND ANF ALGORITHMS FOR
RESPIRATORY SIGNALING
In practical data processing, the respiration signal is easy to
measure due to its low frequency and obvious amplitude,
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FIGURE 5. Phase time series before unwinding (above). Phase time series
after unwinding (below).

but there are high harmonics such as second and third har-
monics of respiration, which, together with the environment
and the radar itself, make it more difficult to extract the
heart rate information. Therefore, after filtering the IF signal,
we use the ANF heart rate estimation system to eliminate
the respiratory harmonics. The system comprises a bandpass
filter (BPF), a low-pass filter (LPF), a complex signal de-
modulation (CSD) module, an adaptive notch filter ANF
Hr (z) for measuring the respiratory rate, a filter (RHEF)H(z)
for removing respiratory harmonics, and an additional ANF
Hh (z) for measuring the heartbeat rate. The heart rate infor-
mation is difficult to measure and will be accompanied by the
interference of respiratory harmonics, so it is quite important
to obtain the frequency of the respiratory signal first, the
signal is processed by an algebraic distance minimization
system, the filtered quadrature IF signal is passed through
a low-pass filter (LPF) to obtain the desired respiratory sig-
nal for the signal processing, and then through the complex
signal demodulator to the combination of quadrature signals
Ir (n) and Qr (n). After CSD processing the respiratory sig-
nal is obtained through the designed ANF Hr (z) system to
determine the respiratory frequency, and at the same time
the real-time respiratory frequency signal is introduced into
the respiratory harmonic elimination filter (RHEF)H(z) for
respiratory harmonic filtration, and this filter processes the
CSD-processed heart rate information and the introduced
respiratory frequency signal, which is processed based on the
respiratory harmonic filtration. The filtered signal is finally
processed in the ANF Hh (z) system to derive the desired
heartbeat frequency. Where the data flow is shown in Fig. 6.
First, the filtered I/Q signal separates the respiratory and

heartbeat components via low-pass and band-pass filters.

FIGURE 6. ADM-based adaptive algorithm for respiratory heart rate
signaling.

FIGURE 7. Second-order IIR filter structure.

Since the respiratory frequency is lower than the heartbeat
frequency, the LPF is used to obtain the respiratory signal,
and then the I/Q signals are combined by the complex signal
demodulation CSD. Finally, the respiratory frequency is pro-
cessed by an adaptive respiratory notch filter. The respiratory
filter Hr (z) contains a second-order IIR filter with all-pass
filter characteristics. structure illustrated in Fig. 7 [37].

The transfer function of the system is,

Hr (z) =
1
2

(1 + ρr ) + 2ρr (n) z−1
+ (1 + ρr ) z−2

1 + βr (n) z−1 + ρrz−2 (14)

where ρr is the squared pole radius of Hr (z) with a mag-
nitude of 0.96, βr (n) is the estimated respiratory frequency
correlation coefficient, and the control amplitude response
Hr (z) becomes zero, where βr (0) is set to 18, The complex
normalized mini-mum mean square algorithm is utilized to
vary the tap coefficient βr (n). which is implemented as,

βr (n+ 1)

= − (1 + ρr ) cos 2π
(
fr (n)
Fs

)
− ur

er (n) u∗
r (n− 1)

u2r (n− 1)
(15)

where Fs is the sampling frequency, ur (n) is the tapped input
signal to the second or-der IIR filter. ur is the step value
of 0.05 and ∗ denotes conjugate. Since the fundamental wave
of respiration occupies sr (n), the frequency of respiration is
estimated as the notch frequency. The estimated respiratory

rate
∧

fr (n) is given by the following equation,

∧

fr (n) =
Fs
2π

cos−1
{
−

βr (n)
1 + ρr

}
(16)
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C. RESPIRATORY HARMONIC FILTER AND HEART RATE
ESTIMATION
Due to the large amplitude of the second and third harmonics
of the respiratory signal, especially the third resonance can
interfere with the extraction of the heart rate information,
a respiratory harmonic filter, RHEF Hr (z), was designed,
which consists of cascaded notch filters. However, more
orders of notch filter settings would make the notch band-
width too wide to reduce harmonics, so two orders are set.

In addition, the estimated respiration frequency
∧

fr (n) deter-
mines the notch frequency, with its transfer function provided
by the following equation,

H (z) =

2∏
m=1

1
2

(1 + ρ) + 2βm (n) z−1
+ (1 + ρ) z−2

1 + βm (n) z−1 + ρz−2 (17)

where ρ denotes the square of the pole radius set to 0.98,
and βm is the tap coefficient corresponding to the (m+1)th
harmonic frequency of the breath. βm (n) denotes the,

βm (n) = − (1 + ρ) cos

2π
(m+ 1)

∧

fr (n)
Fs

 (18)

Based on the estimated respiratory rate
∧

fr (n), the notch
frequency of H(z) varies. Therefore, as the resulting output
signal of H(z), the proposed system can acquire the signal
that reduces the respiratory harmonics that interfere with the
heartbeat component. The narrow notch band of the notch
filter is effectively preserved by the RHEF, thereby reducing
the loss of the heartbeat component. The transfer function
Hh (z) of heart rate is denoted as,

Hh (z) =
1
2

(1 + ρh) + 2βh (n) z−1
+ (1 + ρh) z−2

1 + βh (n) z−1 + ρhz−2 (19)

where ρh is the radius of the square pole of Hh (z) and
has size 0.96, βh (n) is the estimated heart rate correlation
coefficient controlling for the magnitude response Hh (z)
becomes zero, where βh (0) is 115 and the tap coefficient is
changed using the following complex normalized least mean
square (NLMS) algorithm, the specific formula is realized as
follows,

βh (n+ 1)

= − (1 + ρh) cos 2π
(
fh (n)
Fs

)
− uh

eh (n) u∗
h (n− 1)

u2h (n− 1)
(20)

where Fs represents the sampling frequency and uh (n) rep-
resents the tapped input signal of the second-order IIR filter.
uh denotes a step value of 0.1 and ∗ denotes the con-jugate.
Based on the notch frequency and the tap coefficient βh (n),

the estimated heart rate
∧

fh (n) is defined as,

∧

fh (n) =
Fs
2π

cos−1
{
−

βh (n)
1 + ρh

}
(21)

Based on the above analysis, we propose an algebraic dis-
tance minimization ANF heart rate respiration system based

on FMCW radar, the data flow diagram is shown in Fig. 8.
The signal processing algorithm consists of three parts
by suppressing the effects of stationary targets around the
detected person as well as low-frequency interference caused
by the radar transceiver antenna coupling, and respiratory
harmonics on the heartbeat signal at the software level. The
radar IF signal is first processed by an algebraic distance
minimization algorithm to filter out the low frequency offset
of the radar system and the environmental static clutter signal,
and the processed orthogonal body signals are processed in
the designed ANF heart rate respiration system. Next, the
respiratory and heartbeat signals are filtered by the designed
low-pass filter and high-pass filter, respectively, where the
respiratory signal is estimated by the designed respiratory
filter ANF. Finally, the real-time respiratory frequency signal
is introduced into the respiratory harmonic elimination filter
RHEF to filter out the higher harmonics of the respiratory
signal, and combined with the high-pass filtered heartbeat
signal, Estimation was performed by an adaptive heart rate
filter ANF based on filtering out the respiratory high har-
monics, and final estimation of the respiratory heart rate
was performed by analyzing the relationship between the
harmonics.

D. HEART RATE VARIABILITY
Heart Rate Variability (HRV) is the natural fluctuation in
the time interval between heartbeats over a period of time.
It can measure the degree of variability between heart-beats
and can reflect a variety of important physiological indicators
of cardiovascular health, autonomic nervous system function,
and stress and recovery levels [43], [44].
Different from the direct detection of the time interval of

neighboring heartbeats in the heartbeat signal in the time
domain. In this paper, we improve the ADM-ANF algorithm
to obtain more accurate frequency domain signals, and by
calculating the peak frequency of the heartbeat signal, we get
the consecutive heartbeat interval period, which is ex-pressed
by Beat-to-Beat Interval (BBI) as shown in equation (22),

BBI (i) =

(
60

/
60
f0

)
× 1000, i = 1, 2, . . . ,N (22)

By substituting the successive heartbeat intervals BBI into
equations (25), (26), and (27), the characteristic parameters
of HRV can be derived, which are clinically significant,
as shown in Table 1.

Detection of HRV has been widely used in clinical prac-
tice to predict coronary heart disease, myocardial infarction,
hypertension, cardiac insufficiency, and other diseases with
phycological dysfunction. Non-contact detection of HRV
by radar is of great value in the prediction of related dis-
eases [45].

In this paper, the human heart rate signal is extracted by the
proposed ADM-ANF separation algorithm, then the human
instantaneous heart rate is extracted by the adaptive heart rate
trap filter, and finally the HRV is analyzed by calculating the
eigenvalues of HRV.
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FIGURE 8. Signal processing flow chart.

TABLE 1. HRV parameters and their significance.

IV. EXPERIMENTAL RESULTS AND ALGORITHM DESIGN
A. DEVICE SELECTION
In this paper, Texas Instruments’ IWR1843 millimeter wave
radar with DCA1000 data acquisition card is used to capture
the micro-motion signals from the human anterior chest wall,
and the device is shown in Fig. 9. IWR1843 radar works in the
frequency band of 77∼81GHz, 77GHz FMCW radar band-
width has 4GHz has a high distance resolution, can realize
the linear FM signal transmission, reception and IF signal
sampling, DCA1000 Data Acquisition Card is the IF signal
through the Ethernet interface to the up-per computer, the
radar parameters as shown in Table 2. Fig. 9(a) shows a
physical drawing of the radar, Fig. 9(b) shows the antenna
distribution, and Fig. 9(c) shows the DAC1000 acquisition
data board. The DAC1000 data acquisition board samples
the received signals and sends the data to a computer. The
computer, using a serial port tool within a QT visualization
interface, receives and processes the data. The chest, res-
piratory, and heart rate waveform graphs are displayed in
real-time, and the recorded data is analyzed and processed
in matlab. Fig. 9(d) shows the experimental environment. All
experiments appearing in this paper have received informed
consent from the subjects.

According to the Nyquist Sampling Theorem, to retain
full heart rate data, the chirp repetition rate must exceed
twice the highest heart rate. According to medical statistics,

FIGURE 9. (a) Physical diagram of IWR1843 (b) Radar antenna
distribution (c) DAC1000 data acquisition board (d) Experimental
environment diagram.

the heart rate of an average individual is typically between
60-90 beats per minute. In light of this, we opted to establish a
50-millisecond interval for the radar’s chirp repetition period,
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TABLE 2. Parameter settings of the radar.

coupled with a sampling frequency of 20 Hz, to meet the
operational needs.

B. OPTIMIZATION ALGORITHM COMPARISON
EXPERIMENT
Ant Colony Optimization (ACO) [46] and Genetic Algo-
rithms (GA) [47] are commonly used optimization algo-
rithms, widely applied in function optimization and neural
network training. To validate the superiority of the ADM
shrinkage algorithm in terms of convergence speed and opti-
mal performance, a comparative experiment with the above
three algorithms was conducted. Fig. 10 shows the fitness
evolution curves of the three optimization algorithms.

FIGURE 10. The fitness evolution curves of the three algorithms.

From the experimental results in Fig. 10, it can be observed
that ACO falls into a local optimum early in the iteration,
performing the worst. Particle Swarm Optimization (PSO)
approaches the optimal solution after continuous iterations
but is slower. In contrast, the ADM shrinkage algorithm
used in this paper excels in accuracy, convergence speed,
and performance, with experimental results confirming its
superiority in the life sign separation algorithm.

C. MEASUREMENT EXPERIMENTS AND ERROR ANALYSIS
In order to reduce the influence of radar system low frequency
interference on detection results, we first test the algebraic
distance minimization method, different from the previous

complex plane experiments, in order to be able to visualize
and compare the filtering effect, we chose to analyze the
collected original thoracic undulation signals in the frequency
domain which includes the thoracic undulation map as shown
in Fig. 11(a), and its corresponding signal in the frequency
domain is shown in Fig. 11(b), where fSC represents the
low frequency offset interference suffered by the radar sys-
tem, fRR and fHR represent the respiratory and heart rate
frequencies of the subject, respectively, while 2fRR and 3fRR
in the middle represent the second and third harmonics of
the respiratory signal, respectively. From Fig. 11 it can be
clearly concluded that the low frequency offset of the radar
system interferes with the human body signals, By means
of ADM method, we process the collected continuous sig-
nals in the complex plane region, eliminate the relatively
large static low-frequency com-ponents in the signals, and
enhance the signal-to-noise ratio of human body signs, and
we have observed the results in the frequency domain after
the processing through the ADM method. Fig. 11(c) shows
the chest undulation map after ADM processing, Fig. 11(d)
shows the frequency domain signal of the chest cavity after
ADM processing. It can be seen that the proportion of static
clutter in the echo signal is greatly reduced and the signal-to-
noise ratio of the echo signal is substantially improved.

At each measurement, the fast Fourier (FFT) transform is
performed on the ADC data to obtain the Rang curve, and
through the approximate positional relationship between the
radar and the human body, the distance range of the target
can be determined, and the maximum value is searched for
within the range to obtain the distance bin corresponding to
the target (Range bin), and the phase of the target is extracted
once in each frame period, and the cyclic launch of N frames
will obtain the target phase with the number of frames of
the value of the target, and get the target phase vs. time, and
it can be regarded as vibration signals as well, as shown in
Fig. 12(a). The complex baseband signals are extracted in the
bins corresponding to the chest position, and are filtered for
the first time by the algebraic distance minimization method
to remove the influence of the DC offset in the environment,
and the filtered orthogonal signals are low-pass filtered as
well as high-pass filtered, and the low-pass filtered orthog-
onal signals filtered by the complex signal de-modulation
CSD combination. Then the respiratory rate is determined
by the adaptive ANF respiratory estimation system Hr (z).
The heartbeat signal is band-pass filtered and then the signal
is passed through the respiratory harmonic eliminator RHEF
to remove the high harmonics of respiration, and finally the
heartbeat rate is determined by the ANF heart rate estimation
system Hh (z).

To better reflect the performance of the proposed method,
the subjects intentionally increased the amplitude and fre-
quency of breathing to increase the effect of respiratory
harmonics on heart rate. Fig. 12 shows the experimental
results of a set of measurements.

Fig. 12(a) shows the thoracic amplitude map of the original
signal, and Fig. 12(b) shows the corresponding spectrogram
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FIGURE 11. (a) Physical diagram of IWR1843 (b) Radar antenna distribution (c) DAC1000 data
acquisition board (d) Experimental environment diagram.

FIGURE 12. (a) Raw data magnitude plot (b) Raw data frequency domain plot (c) Filtered data magnitude
plot (d) Filtered data frequency domain plot.
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of the original signal, it can be seen that the second and
third harmonics of the respiration are very obvious, and even
the third harmonic amplitude is slightly larger than the heart
rate information, which may be recognized as the heart rate
information, which has a large impact on the extraction of the
heart rate information, and its impact can be reduced by the
method proposed in this study. Fig. 12(d) shows the spectro-
gram after filtering with the proposed method. It can be seen
that the high harmonics of respiration are effectively filtered
out from the filtered frequency map, and the frequency peaks
of respiration and heart rate are significantly improved after
filtering, which makes it easier to extract the information of
respiration and heart rate.

The next work focuses on evaluating the accuracy of the
heart rate information estimates. We compared the test data
with the data from the intensive care unit equipment. Each
measurement of 1024 data corresponded to a measurement
time of 51.2 seconds. We measured radar data from 6 sub-
jects (p1-p6) of different body types and ages. The subjects
maintained normal respiration during the testing process,
with measurements conducted for 300 seconds at distances
of 0.5 meters and 1 meter. During testing, 1024 continuous
phase data points were extracted and processed using the
algorithm proposed in this paper. The experimental environ-
ment was arranged as shown in Fig. 9(d). Fig. 13 shows the
results of measuring HR and RR with different methods.

The method gives more accurate results compared to the
other three methods. The results presented in Fig. 13 validate
that the proposed method achieves superior overall perfor-
mance compared to othermethods, which proves the accuracy
of the method based onminimizing the ANF respiratory heart
rate system over algebraic distance in heartbeat estimation.
The average relative error of the method is reduced to 2.7%
when compared with the other three methods.

To better evaluate the algorithm’s advantages, this paper
employs Mean Relative Error (MRE) and Root Mean Square
Error (RMSE) to quantify the accuracy of different methods,
respectively represented as,

RMSE =

√√√√ 1
N

N∑
i=1

(
HRref [i] − HRmeas [i]

)2 (23)

MRE =
1
N

N∑
i=1

∣∣HRref [i] − HRmeas [i]
∣∣

HRref [i]
(24)

where N is the number of test data, HRref is the heart rate
reference value, and HRmeas is the heart rate estimate for the
proposed method. Table 3 shows the heart rate data collected
from six volunteers and the errors.

Considering the differences in environmental conditions
between daily and medical monitoring, distance factors may
impact experimental data. This paper conducted experiments
at distances of 0.5 meters and 1 meter to validate the influ-
ence of distance on radar-based vital signs detection. Table 4
presents the evaluation of heart rate detection results under
these different distance conditions.

TABLE 3. Experimental errors of different methods.

TABLE 4. Measurement data and errors for different distances and
testers.

From the results in Table 4, it can be seen that the detection
of human heart rate by the radar at distances of 0.5 meters and
1meter did not show significant differences, both demonstrat-
ing high accuracy. The results also indicate the high precision
of the vital sign detection algorithm proposed in this paper
within a certain distance range.

D. HEART RTE VARIABILITY EXPERIMENT
The article utilizes the proposed ADM-ANF separation
algorithm to extract the hu-man heart rate signal, and sub-
sequently employs an adaptive heart rate notch filter to
ex-tract the instantaneous heart rate. Finally, experiments
were conducted on HRV, and comparisons were made with
an ECG sensor. Ten sets of experimental data were selected
to calculate the HRV intervals. Fig. 14 displays experimental
scenarios comparing HRV, while Fig. 15 presents a line graph
comparing the experimental data.

From the above experimental results, it is evident that the
heart rate intervals obtained by the algorithm proposed in this
article are closer to the ECG signal. In contrast, the CEEM-
DAN, VMD, and Peak Detection algorithms exhibit errors in
heart rate signal extraction, leading to larger discrepancies in
heart rate interval calculations.

The article evaluates the effectiveness and superiority of
the proposed algorithm’s experimental data using three HRV
feature indices. Among these, Standard Deviation of NN
Intervals (SDNN) and Root Mean Square of the Succes-
sive Differences (RMSSD) are critical metrics for assessing
HRV [1]. They play a significant role in predicting cardiac
diseases. Their increase or decrease directly impacts HRV
analysis.
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FIGURE 13. Heart rate and respiration detection comparison experiment.

FIGURE 14. Scenario diagram of the HRV comparison experiment.

FIGURE 15. Comparison of experimental data on cardiac interval cycles.

The Mean of the R-R Intervals (MeanRR), refer to ‘‘(25),’’

VMeanRR =

NBBI∑
i=1

RRi
NBBI

(25)

The standard deviation of RR intervals (SDNN), refer to
‘‘(26),’’

VSDNN =

√√√√ 1
NBBI

NBBI∑
i=1

(
RRi − RR

)2
(26)

The root mean square of successive differences of NN inter-
vals (RMSSD), refer to ‘‘(27),’’

VRMSSD =

√√√√ 1
NBBI − 1

NBBI∑
i=1

(RRi+1 − RRi)2 (27)

NBBI represents the number of normal RR intervals.RR repre-
sents the average value of normal RR intervals over the entire
segment.

Considering the errors in the RR interval mean values
obtained by the algorithm proposed in this article, CEEM-
DAN, and Peak Detection algorithms compared to the actual
values detected by the ECG device, there is misleading infor-
mation in the calculation of SDNN using Equation (25).
Therefore, in the calculation, replacing RR with the corre-
sponding accurate values from the ECG device over the same
experimental duration asRR better illustrates the performance
of the three algorithms compared to the ECG device. Table 5
presents the comparison of HRV feature values.

Based on the results from the above table, the algorithm
proposed in this paper shows a difference of only 6.7 in
the mean RR interval compared to the ECG device. The
standard deviation of RR intervals and the difference between
NN intervals are higher than the CEEMDAN algorithm by
30.14 and 23.88, respectively, higher than the Peak Detection
algorithm by 3.93 and 22.19, respectively, higher than the
VMD algorithm by 20.61 and 8.05, higher than the EWT
algorithm by 13.48 and 15.30, and higher than the MCM
algorithm by 23.73 and 21.17, respectively. The experimental
results demonstrate the effectiveness and superiority of the
proposed algorithm in HRV detection.
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TABLE 5. Comparison of HRV eigenvalues.

V. CONCLUSION
In this study, in order to extract the frequency information
of respiration and heart-beat during micro-movements of the
human chest wall, this paper establishes a millimeter-wave
radar vital sign signal model and proposes anANF respiration
heart rate extraction method based on algebraic distance min-
imization. The traditional method will reduce the estimation
accuracy due to the low-frequency offset interference of the
radar system and the presence of respiratory harmonics. The
proposed method will extract the complex baseband signal
from the corresponding distance bin of the subject’s chest,
filter it for the first time by algebraic distance minimization
method, and then filter the respiratory harmonics by ANF
respiratory heart rate system, and finally estimate the heart
rate information. Two scenarios were tested and studied on
six human subjects at different distances. In each experiment,
to ensure data validity, 1024 data samples in steady state
were taken for processing each time, which corresponded to
a monitoring time of 51.2s to prevent chance errors.

The results of human experiments show that the proposed
method can effectively converge the signals containing the
human body signs information to the zero point of the com-
plex plane, which reduces the impact of the radar system due
to the low-frequency interference. The signal after minimiz-
ing the algebraic distance is processed in the ANF respiratory
heart rate system, which effectively extracts the respiratory
signal and reduces the influence of respiratory harmonics
on the heart rate information, improving the accuracy of the
heart rate information. By using the FMCW sensor and the
proposed processing algorithm, the average accuracy of the
estimation of the respiration rate and the heart rate is not less
than 96.5%.
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