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ABSTRACT Periodic maintenance is a fundamental method of aero engine maintenance. However,
frequent regular maintenance leads to resource wastage and inefficient maintenance. With the increasing
technological maturity, integration, and complexity of aero engines, the costs of research and development
are rising, creating an urgent demand for advanced Prediction and Health Management technology (PHM).
PHM technology enables the transition from periodic maintenance to predictive-based maintenance by
modeling aero-engine performance degradation, thereby allowing for life prediction and sensor parameter
prediction. Data-driven modeling methods have gained popularity owing to their strong traceability, wide
consideration range, and high freedom of adjustment; however, they currently suffer from low prediction
accuracy and reliability. To address this issue, this study utilizes NASA’s open data set C-MAPSS for
data preprocessing before inputting it into the LSTM training network to obtain function loss values
in the forward direction. These values are then updated through the quantum particle swarm algorithm
to achieve loss reduction optimization of key parameters to obtain the best QPSO-LSTM aero-engine
performance degradation model. Additionally, the PCA method was used for dimensionality reduction
modeling by calculating variance percentages of data eigenvalues which determined 11 dimensions as
the lowest dimension for progressive reduction modeling. Ultimately, it was found that the QPSO-LSTM
combined neural network remaining life prediction achieved a minimum RMSE value of 22.04, which is
43.76% higher than that of the basic model, presenting an excellent linear fitting relationship after crossing
threshold values despite not conforming initially with true value trends at initial time nodes.

INDEX TERMS Data-driven, aeroengine, long short-term memory network, particle quantum swarm
algorithm.

I. INTRODUCTION
Aero-engines are always in an extreme working environment
of high temperature, high pressure and high rotational speed
in the process of performing flight missions, which leads
to blade wear or blade gap enlargement due to unexpected
factors and its own long-time high-speed rotation, resulting
in a decrease in the efficiency of the pressurizer inside the
engine, and then recruits the engine performance degradation.
Aero-engine performance degradation modeling based on
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aero-engine data is the basis for solving problems related
to the prediction of scenario-based maintenance [1], where
the model’s merit directly determines the upper limit of the
problem-solving capability, while the data is the lower limit
of the problem-solving requirements. In addition, the model
and data are key elements in realizing the PHM technology
of aero-engines. Among the many existing performance
degradation modeling approaches for aero-engines, data-
driven performance degradation modeling has the advantages
of strong traceability, a wide range of considerations, a high
degree of freedom for adjustment, and excellent development
prospects. Data-driven aero-engine performance degradation
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models mainly include statistical and artificial intelligence
models. Compared with statistical models, artificial intel-
ligence models have gradually become the mainstream
modeling method for aero-engine performance degradation
models in recent years, owing to their outstanding ability to
deal with nonlinear data and the advantage of forming a more
reliable model by dealing with huge amounts of data [2].

Artificial intelligence algorithms perform performance
degradation modeling without the need for a specific degra-
dation model as in the case of statistical algorithms. Instead,
they simulate the performance degradation process through
label training and feature extraction. As the processing depth
of the problem in question increases and larger scale data
floods into the traditional AI algorithms, the traditional
AI algorithms represented by shallow machine learning
algorithms begin to show their decline [3]. At this time, deep
learning algorithms based on shallow AI algorithms have
come to the fore. The model established by such algorithms
realizes the automatic extraction of features into information
that can be recognized by computers through unusually
complex transformations, which not only greatly reduces the
manual workload, but also shows better results in systems
with more data, and has become the focus of research in
recent years. In the aero-engine performance degradation
model, the scale of data to be processed far exceeds the
strong range of traditional artificial intelligence algorithms;
therefore, deep learning models come first in the imperial
examinations progressively in such problems.

The use of LSTM models to address the modeling of
aero-engine performance degradation models, although cur-
rently demonstrating promising accuracy and generalization
capabilities, still has the following pain point issues that need
to be addressed:

• A single LSTMmodel has a limited extraction capability
for optimization parameters, which makes it difficult
to achieve the expected results of the model. Although
sections of the research methods utilize some perfor-
mance extraction tools to construct optimized LSTM
models, the small volume of aforesaid research and
certain requirements on data dimensions and quality lead
to limited final results of the models.

• There is insufficient consideration of the data prepro-
cessing in the C-MAPSS dataset. Data in the C-MAPSS
dataset inevitably introduces erroneous points, redun-
dancy points, and measurement noise. Inadequate fil-
tering leads to excessive invalid data in the model,
which results in a severely impaired model. Excessive
filtering, in turn, leads to a loss of good data, again
affecting model performance. Effective filtering of data
is understudied in current studies, and models in most
studies fail to achieve the desired results; thus further
research is required.

This study attempts to optimize the LSTM model with
the QPSO algorithm to achieve better parameter adjustment;
and to select the open commercial modular aero-propulsion

system simulation dataset of NASA as the data source.
At the same time, the dataset is downscaled to obtain lower
RMSE(Root Mean Square Error) values for remaining life
prediction, and the optimal model parameter combinations
are sought through the specific data on the one hand, while
high-fitting aero engine performance degradation modeling
is obtained. The above work aims to provide technical
support for data-driven aero-engine performance degradation
modeling.

II. RELATED WORKS
An integrated Deep Belief Nets (DBN) based on the time
accumulation problem has been proposed to achieve a highly
robust aero-engine performance degradation model, thus
realizing the assessment of aero-engine reliability [4]. The
DBN network has been used while incorporating the dynamic
learning rate in the process of solving the mechanical
equipment performance degradation model, which, to a
certain extent, avoids the problem of poor convergence of
the model [5]. The DBN model of high-reliability mechan-
ical equipment successfully validated its performance.
To improve the applicability of the model, an autoencoder
(AE), an excellent feature compression and extraction tool,
was used on top of the DBN model has been performed
to optimize the parameters of the model, thus improving
the effectiveness of the model [6]. In addition to the use
of autoencoders, some scholars have used other machine
learning models for DBN parameter model optimization. For
example, the Particle Swarm Optimization (PSO) algorithm
has been used in the DBN model, resulting in a DBN model
with better robustness than shallow machine learning mod-
els [7]. Convolutional Neural Networks (CNN) and Trans-
former Neural Networks based on the attention mechanism
are frequently used algorithmic models for the establishment
of mechanical equipment performance degradation models.
The subsequent research realized the establishment of a high-
reliability aero-engine performance degradation model by
bringing multivariate time series samples and corresponding
performance degradation quantities into a unidimensional
input CNN network [8]. The convolution kernel was utilized
to extract the significant features of the sequence, and it was
verified that the model has a higher prediction accuracy than
the traditional CNN through the C-MAPSS dataset [9]. After
years of research, scholars have found that the CNN model
can not only automatically extract features; but also filter
itself, which has a full development prospect.

RNN, as an algorithm specialized in processing time series
data for correlation prediction, is highly relevant to the
performance degradation problem of aero-engines. With the
deepening of the research, scholars have found that in the
process of modeling using RNN, there are defects of gradient
disappearance or gradient explosion, which leads to the key
features of the more distant time nodes being forgotten in
the current time period, resulting in a training effect that
falls short of expectations. LSTM, or a Long Short-Term
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Memory Model, was created as a result of this, which is a
traditional RNN structure with the addition of a forgetting
gate to realize long-and short-term memory by means of
the gate control system. Weight values; that solve the pain
point problem in traditional RNN models. The Variational
Autoencoder (VAE) tool in LSTM was used to improve
the feature collection ability of the network, and the model
was verified through various public datasets such as PHM08
for analysis. The experimental results were more reliable
and practical [10]. A researcher found that the conventional
LSTMmodel has the problem of not being able to have strong
generalization ability under multiple operating conditions
and faults; therefore, they constructed a bidirectional LSTM
network to establish an aero-engine performance degradation
model and applied the LSTM to the model [11].

III. INITIALLY MODELING
A. IDEA FOR MODELING
The modeling ideas in this chapter are as follows. First, data
analysis and preprocessing are carried out to determine the
final serial number of sensors that need to be processed,
and the noise together with obvious error data in the signal
are filtered. Second, after dimensionality reduction and
normalization, the dataset was imported into the LSTM
network for training. Finally, the loss values computed
through the LSTM training process are reversed input and
updated using the QPSO algorithm. The design framework of
the QPSO-LSTM-based performance degradation prediction
model is illustrated in Fig.1.

B. PRE-TRAINING OF DATA
1) DATA ANALYSIS
Among the four sub-datasets of C-MAPSS, the FD001
dataset has a single operating condition and a clear fault
state. Considering the high data stability, this training set is
used as an example for modeling in this chapter.The FD001
sequential data is divided into two sets of data; a test set and
a training set. The dimensions of each dataset is 26, which
consists of the engine number, number of operating cycles,
three operation settings, and 21 sets of sensor data [12].

Among them, seven sets of sensor data remain constant
during the simulation run: S1, S5, S6, S10, S16, S18, and S19
sets of data, which are always equal to the initial state values
and do not change with an increase in the number of engine
operating cycles. For example, the S1 data correspond to the
total fan inlet temperature, which means that the airflow is
completely stagnant, that is, the temperature of the fan inlet
when the speed is 0, and it will not change with the change in
the engine state.

2) SELECTION OF CHARACTERISTIC PARAMETERS
Not all airway parameters in the sensor data of the C-MAPSS
dataset are associated with engine performance degradation;
therefore, a parameter correlation analysis is required to
determine the ordinal numbers of data that are meaningfully

associated with aero-engine performance degradation. In this
section, the Pearson product-moment correlation coefficient
is selected for parameter correlation analysis, while the
results of the calculation are applied as a guide for parameter
selection.

Pearson’s correlation coefficient is commonly used to
indicate the degree of correlation between variables and takes
values within the interval [−1,1], which is defined by the
following formula:

ρX ,Y =
cov(X ,Y )

σXσY
=
E [(X − µX ) (Y − µY )]

σXσY
(1)

where ρ denotes the overall correlation coefficient, σ is
the standard deviation, E is the mean, and cov(X,Y) is
the covariance between X and Y. With the covariance and
standard deviation, the Pearson’s correlation coefficient r can
be calculated using the following formula:

r =
1

n− 1

n∑
i=1

(
Xī − X̄

σX

)(
Yī − Ȳ

σY

)
(2)

The correlation between X and Y is determined by ρX ,Y .
The larger ρX ,Y is, the more correlated X and Y are.
Conversely, the smaller ρX ,Y is, the less correlated X and Y
are. In addition the coefficient does not change by changing
the size of the variable [13].

The sensor data were imported, and a heat map of the
Pearson’s correlation coefficient was plotted, as shown in
Fig.2.

The constant sequences S1, S5, S10, S16, S18, and
S19 are shown to be non-numeric, implying no correlation
with the other data; therefore, they are considered noise
and processed for data rejection to prevent the additional
burden of aggravating the computation during the subsequent
training process. The data of S6, on the other hand, show
a weak correlation with other parameters, although it is a
constant sequence, so this sequence data is remained. Among
the other 14 sets of data other than the constant sequence, the
data of S7, S12, S20 and S21 show an obvious correlation
with the number of operating cycles, whereas the other
sequences of sensor signals are partly positively correlated
and partly negatively correlated, and display insignificant
regularity with the number of cycles. In summary, data S2,
S3, S4, S6, S7, S8, S9, S11, S12, S13, S14, S15, S17, S20,
and S21 were selected for the subsequent modeling work in
this chapter.

3) NORMALIZATION
Based on the complex operating conditions of aero engines,
noisy data and anomalous data points are inevitably generated
during the information transfer process; hence, to improve the
modeling efficiency, the data set needs to be filtered. Shift
smoothing filtering is a smoothing algorithm that specifies
a sliding window and calculates the mean value thereof. It is
commonly used to reduce the noise in the signal or remove the
high-frequency components in the prediction problem, thus
smoothing the signal.
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FIGURE 1. QPSO-LSTM predictive modeling design framework.

FIGURE 2. Heat map of pearson’s correlation coefficient.

The basic principle is as follows: supposing that there is
a sequence Y = (y(1),y(2),. . . y(n)), then the noise reduction
formula is:

x(t) =
y(t) + y(t − 1) + . . . + y(t − s+ 1)

s
(3)

In the formula, is the smoothed value, and is the window
length. The final sequence of true values after noise reduction
was obtained X = (x(1),x(2),. . . x(n)). Excessive smoothing

can cause the data to lose its realism; therefore, the window
length is set to four in this chapter.

4) FILTERING
The data normalization method used in this chapter is Z-
score normalization, or standard deviation normalization,
which calculates the difference between the sample and the
population. The method takes the original data mean and
standard deviation as parameters; and converts the original
data into a new function that conforms to the standard
normal distribution and is dimensionless, thus maintaining
the comparability of the data [14].

The formula for Z-Score standardization is:

xnormalization =
x − µ

σ
(4)

where x denotes the initial data, µ the initial data mean, and
σ the initial data standard deviation.

C. QPSO-LSTM NETWORK CONSTRUCTION
In this chapter, the seven constant sequence data in the
C-MAPSS dataset were first eliminated, and after the
parameter correlation calculation, the sequence S6, which
showed low correlation with other parameters, was retained.
The data S2, S3, S4, S6, S7, S8, S9, S11, S12, S13, S14, S15,
S17, S20, and S21 were finally selected as the model, and the
data source was imported into the training network.

The construction of the LSTM training network includes
data import and preprocessing, setting of hidden and fully
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connected layers, setting of iteration number and training
batch size, optimizer selection, setting of the maximum
number of training sessions and minimum batch size, setting
of the learning rate and validation period, training of the
network, and output of the results.The specific parameter
settings of the LSTM are listed in Table 1, and Table 2 lists
the QPSO algorithm parameter settings.

TABLE 1. Key parameter settings of LSTM.

TABLE 2. Key parameter settings of QPSO.

D. RESULTS
1) SCORING STANDARD
In this chapter, the Root Mean Square Error (RMSE) is
chosen to evaluate the life prediction results, which is a
measure of the predictive accuracy of a predictive model
on continuous data; that quantifies the root-mean-square
difference between the predicted values and the actual
values [15]. RMSE, as a measure of the mean deviation
between the predicted values and true results, is a commonly
used performance evaluation metric in regression tasks one
of them.

Its calculation formula is:

RMSE =

√√√√ 1
N

N∑
i=1

h2i (5)

In the above equation,

hi = RULi
′
− RULi (6)

N represents the total number of engines and i represents
the number of engines. RUL’ represents the predicted value
of RUL, whereas RUL represents the true value. The smaller
the RMSE value, the better the prediction.

2) RUL PREDICTION RESULTS
After three steps of data preprocessing, LSTM model
building and QPSO algorithm optimization, the aero-engine
life prediction results and optimization prediction results
based on the subset of the C-MAPSS dataset FD001 were

obtained. The prediction results are shown in Fig.3, and the
real values of the remaining engine life, LSTM network
prediction results, QPSO-LSTM optimization prediction
results are represented by blue straight lines, orange dashes,
and green long dashes, respectively.

As shown in Fig.3, the QPSO algorithm is generally
effective in optimizing the first 20 groups of engines and
is more effective in optimizing the remaining engine life
prediction results after 20 groups. Overall, the root mean
square error (RMSE) of the remaining life prediction results
of the LSTM network was 38.57, and the RMSE of the
QPSO-LSTM optimized network was 32.75. Compared with
the unoptimized RUL prediction results, the RUL prediction
results of the network optimized by the QPSO algorithmwere
improved by approximately 15%.

3) SCORING STANDARD
A data-driven approach for modeling performance degrada-
tion requires the identification of RUL output labels. Owing
to the pre-operational stage of the engine, the components
are runningwell, performance degradation can be disregarded
at this stage, and the aero-engine is in a healthy operational
state. The failure moment of the full life cycle of the
aero-engine can be regarded as RUL = 0. When it is greater
than or equal to the threshold value, the RUL is a constant
value; when it is less than the threshold value, the RUL
decreases linearly with the cycle. In this section, a segmented
function is used to represent the performance-degradation
curve.When the remaining service life is greater than or equal
to the threshold value, the RUL is a constant value, and when
the remaining service life is less than the threshold value,
the RUL decreases linearly with the cycle until the engine
fails. In the literature the remaining service life threshold is
generally set between 120 and 130, and in this chapter 125 is
taken as the RUL labeling threshold [2]. Furthermore, the
performance degradation model is established by taking the
engine NO.2 in the FD001 subset of the C-MAPSS dataset as
an example, and its performance degradation model is shown
in Fig.4.

As can be seen in Fig.4, the performance degradation
model initially established by the combined QPSO-LSTM
model fits the engine degradation model established using the
segmented linear method, although it presents a better fit in
the middle section and shows an obvious slope slowing down
in the interval of the remaining life threshold from 120 to 130.
However, the change in the poles at both ends presents the
engine degradation trend in general. Further dimensionality
reduction of the dataset is required to establish a more reliable
degradation model for aero-engine performance.

IV. DIMENSIONALITY REDUCTION FOR SEARCHING
SUPERIORITY
A. GAUGE FOR DIMENSIONALITY REDUCTION
The performance of a neural network can fluctuate erratically
with changes in a dataset. In this chapter, for example,
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FIGURE 3. RUL prediction results.

FIGURE 4. Preliminary model visualization.

once the dimensionality of the data input to the neural
network is changed, the RMSE of RUL prediction results
obtained after the training of LSTM and QPSO-LSTM
networks will also vary. Therefore, the content of this
chapter will be based on 15-dimensionality, and the FD001
subset of data will be downgraded step by step, aiming to
obtain the optimal QPSO-LSTM performance degradation
model.

The basic idea of the PCA algorithm is to map
high-dimensional data in the low-dimensional space and
maximize the retention of high-dimensional information
in the low latitude projection space through the retention

of the main features of high-dimensional data, which is
usually applied to the data preprocessing process of deep
learning. In the PCA process, the selection of the number
of principal components is extremely important, which is
mainly determined by the value of the proportion of variance
before and after projection.

Among them, the formula for the variance of the projected
data is:

VarXmomid =

k∑
j=1

Jj =

k∑
j=1

λj (7)
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Because the data are not changed by transforming the
variance in different coordinate systems, the following is
obtained:

VarX = VarXmint =

n∑
j=1

Jj =

n∑
j=1

λj (8)

Based on the above equation the selection of the number
of principal components k can be carried out as expected:

VarXproject
VarX

≥ q (9)

where k is generally considered 0.99. The formula for
calculating the minimum value of principal component
quantity k is as follows:

VarXproject
VarX

=

∑k
j=1 λj∑n
j=1 λj

≥ 0.99 (10)

Table 3 shows the histogram of the sequential data. The
first column of the total significance is the eigenvalue of
the male factor, the second column of the initial eigenvalue
variance percentage indicates the degree of contribution of
each male factor, and the last column is the sum of the
eigenvalues of the second column. Usually, 90% is used as
the threshold and the number of components used when the
cumulative total reached 90% was used to determine the
number of common factors to be extracted.

TABLE 3. Table of overall variance of data.

As shown in Table 3, downscaling to dimensions that are
too low to fully express the remaining lifespan. In general,
a data eigenvalue variance percentage of 90%was considered
to be well expressed. In this chapter, to pursue a higher
expression effect, 95% is used as the bottom line for the
selection of dimensions, and finally 11 dimensions are
selected as the lowest dimension. At the same time, in the
research process of this chapter, the RMSE of the prediction
results of each parameter combination in each dimension is
obtained so that the comprehensive performance of the model
of each dimension can be explored.

B. MODEL PERFORMANCE OF INDIVIDUAL DIMENSION
1) 14-DIMENSION MODELS
The numerical RMSE performance of the 14-dimensional
data model and its RMSE rankings related to the top ten data
sets are listed in Tables 4 and Table 5 respectively.
In this chapter, 30 is used as the RMSE critical value,

and it is considered that the sets of parameter sequences
with RMSE values lower than 30 possess good prediction
accuracy.There are a total of 15 sets in the 14-dimensional
data model. Among them, there are three groups of param-
eters with RMSE values lower than 30, reaching 25.81,
27.82, and 27.89, respectively, accounting for 20% of all data
combinations.The 14-dimensional model has a small amount
of data, a large data variance, and average stability.

TABLE 4. Numerical performance of RMSE for 14-Dimensional data.

TABLE 5. 14-Dimensional data RMSE top 10 parameter sequence related
content.

2) 13-DIMENSION MODELS
The numerical RMSE performance of the 13-dimensional
data model and its RMSE rankings related to the top ten data
sets are listed in Tables 6 and Table 7 respectively.
There were 105 groups in the 13-dimensional data

model. Among them, a total of 12 sets of parameters had
RMSE values lower than 30, reaching 24.70, 25.02, 25.43,
25.82, 26.76, 27.30, 28.10, 28.11, 28.52, 28.95, 29.15,
and 29.27, which accounted for 11.43% of the total data
combinations.The 13-dimensional data, compared to the 14-
dimensional data, have a low variance, that is, greater overall
model stability, but there are floating datawith extremely high
RMSE values.

TABLE 6. Numerical performance of RMSE for 13-Dimensional data.

3) 12-DIMENSION MODELS
The numerical RMSE performance of the 12-dimensional
data model and its RMSE rankings related to the

150026 VOLUME 12, 2024



M. Zhou et al.: Data-Driven Modeling of Aero-Engine Performance Degradation Models

TABLE 7. 13-Dimensional data RMSE top 10 parameter sequence related
content.

top ten data sets are listed in Tables 8 and Table 9
respectively.

There were 455 groups in the 12-dimensional data model.
A total of 72 sets of parameters had RMSE values lower
than 30, accounting for 15.82% of all data combinations.The
12-dimensional data have a large variance, that is, the data
are more volatile. However, there are numerous predictions
with low RMSE values for the 12-dimensional data, although
the maximum RMSE values are higher than those of the
13-dimensional and 14-dimensional data, and the overall
performance is slightly prominent than that of the 14-
dimensional and 13-dimensional data.

TABLE 8. Numerical performance of RMSE for 12-Dimensional data.

TABLE 9. 12-Dimensional data RMSE top 10 parameter sequence related
content.

4) 11-DIMENSION MODELS
The numerical RMSE performance of the 11-dimensional
data model and its RMSE rankings related to the top 10 data
sets are listed in Tables 10 and Table 11 respectively.
The 11-dimensional data model had 1365 sets. A total

of 92 sets of parameters had RMSE values lower than
30, accounting for 6.74% of all data combinations.The 11-
parameter not only appeared to have the lowest RMSE
prediction result of 22.04, but was also lower than the
12-dimensional data in terms of the maximum value and
variance, which illustrates the characteristic of the model’s
strong stability in this dimension. However, the percentage of

parameter combinations with RMSE values lower than 30 for
this dimensional model is lower than that of the previous two
dimensions, with more than 50% of the combinations with
RMSE values distributed within the [30,40] interval, and the
overall performance is stable without a lack of prominent
individuals.

TABLE 10. Numerical performance of RMSE for 11-Dimensional data.

TABLE 11. 11-Dimensional data RMSE top 10 parameter sequence
related content.

C. OPTIMIZATION MODELING
1) OPTIMIZING RUL PREDICTION RESULTS
A total of eight sets of parameter combinations with RUL
predicted RMSE values lower than 24, and their parameter
combinations and RMSEs are listed in Table 12.

TABLE 12. RMSE below 24 parameter combinations.

Fig.5 plots the results of the remaining life prediction
against the top 2 ranked combinations of each parameter:

The RMSE of the 15-dimensional LSTM network remain-
ing life prediction result is 38.57, and the RMSE of the
QPSO-LSTM optimized network prediction result is 32.75.
Compared with the unoptimized RUL prediction result, the
RUL prediction result of the network optimized by the QPSO
algorithm is improved by about 15%. Calculating the RMSE
values of the LSTM prediction results of the top 8 parameter
combinations and the corresponding RMSE values of the
prediction results after QPSO, the parameter combinations
from No. 1 to No. 8 are improved by 43.76%, 41.85%,
40.55%, 40.81%, 40.49%, 40.52%, 40.14%, and 40.04%
respectively on the base model, which is much better than the
initial modeling. far exceeds that of the preliminarymodeling.
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FIGURE 5. Plot of RUL prediction results against true values for parameter combinations no. 1-2.

FIGURE 6. Plot of optimized aero-engine performance degradation model.

2) OPTIMIZING PERFORMANCE DEGRADATION MODELING
RESULTS
The optimized performance degradation model was also
established by considering engine No.2 in the FD001 subset
of the C-MAPSS dataset as an example and comparing
the optimized model with the preliminary model horizon-
tally.The optimized aero-engine performance degradation
model established for the parameter group ranked first in
terms of RMSE value is shown in Fig.6. As can be seen
from the figure below, although the optimized model does
not match the trend of the real value at the initial time
node, it presents an excellent linear fitting relationship after

crossing the threshold, and fits the real value very well in
the middle of the RUL, although it deviates slightly with
the decrease in the RUL. However, the overall performance
is excellent, which greatly improves the performance of the
initial model.

D. EXPANDED RESEARCH
1) OPTIMAL DIMENSIONAL ANALYSIS
To eliminate the magnitude, so that the various types of
RMSE values change parameter side-by-side, this chapter on
the parameters of the normalization process and, the results
of the processing are shown in Figure.7. According to the
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figure below, the 14-dimensional parameters of the variance,
minimum value, mean value and ratio of superior value are
ranked in the first four dimensions, while the maximum
value is ranked at the bottom. The 13-dimensional parameter
performance was very stable, and the parameters of the
numerical rankings were in the second or third of the average
position. 12-dimensional parameter is also ranked in the ratio
of the superior value of the key factors in the ranking of
the top; however, the mean value, variance, and maximum
value are large, and the stability of this dimensional model is
lacking. The 11-dimensional parameter variance was small,
the mean value was small and the maximum value was large,
and the stability of this dimensional model was not sufficient.
The 11-dimensional parameter has a small variance and a
large mean, and has the smallest RMSE value of the four
dimensions. The RMSE value of themodel fluctuates within a
wide range, but does not have a significant minimum value or
a good value share, and the overall performance is mediocre.

FIGURE 7. Normalized data trend overview chart.

Considering the performance of the four dimensional
values, the 14- and 12-dimensional parameters perform more
prominently, considering the small size of the 14-dimensional
data and the inability to eliminate the random sampling
error. In this section, the 12-dimensional parameter model
is considered as the best dimension for QPSO-LSTM to
establish an aero-engine performance degradation model.

2) SENSOR PARAMETER PERFORMANCE ANALYSIS
The excellent prediction results with the top ten RMSE values
for each dimension were used to count the frequency of
occurrence of each sensor parameter. Table 13 presents the
statistical results.

According to Table 13, in the case of the total frequency of
occurrence of 40, the frequency of occurrence of sensor No.
S14 is as high as 38, that is, there are only two sets of preferred
value parameter combinations without sensor no.S14, which
can be observed to have a significant positive influence on the
model, and the signal of this sensor represents the information

TABLE 13. Frequency statistics for each sensor parameter.

of the converted speed of the core machine. In addition,
sensors S7, S8, S9, S11, S13, and S20 appeared 36 times with
the same frequency, demonstrating a positive influence. The
sensor parameters S3, S4, S15, and S21 appeared 35 times
and performed satisfactorily. It is worth noting that sensors S6
and S17 appeared only 27 times, which is less frequent than
the other sensor signals, indicating that these two have poorer
linearity level and more noise data, which is not significant
for modeling positive influencemodeling.Sensors S6 and S17
represent the total pressure of the engine’s outer culvert as
well as the enthalpy of induced air, respectively.

Taken together, sensor signals S7, S8, S9, S11, S13, S14,
and S20 have significant positive effects on the modeling of
the QPSO-LSTM network, whereas sensors S2 and S12 have
insignificant positive effects, and sensors S6 and S17 perform
significantly poorly.

V. SUMMARY AND OUTLOOK
A. SUMMARY
With the rapid development of big data and artificial
intelligence technology, the application of PHM technology
in the real-time maintenance process of aero-engines have
continued to make breakthroughs. The study of aero-engine
performance degradation models based on sensor data is
an important research direction of PHM technology, which
is mainly aimed at ensuring the reliability and safety of
aero-engine maintenance while achieving extremely high
economic benefits that are difficult to realize by traditional
periodic maintenance methods, and is an important part of the
intelligent engine maintenance strategy. This project adopts a
data-driven approach based on the C-MAPSS dataset as a data
source, and provides a new methodology for establishing an
aero-engine performance degradation model using the joint
QPSO-LSTM algorithm.

The main work accomplished in this paper is as follows:

• After completing the three steps of data prepro-
cessing, LSTM model building and QPSO algorithm
optimization, this project successfully obtained the
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aero-engine life prediction results and optimization
prediction results based on the subset of the C-MAPSS
dataset FD001. The RMSE value of the remaining
life prediction result of the LSTM network was 38.57,
and the RMSE value of the prediction result of
the QPSO-LSTM optimization network was 32.75.In
addition, the performance degradation model initially
built by the combined QPSO-LSTM model fits the
engine degradation model built by the segmented linear
method generally well, especially in terms of the change
of poles at the ends, and only roughly presents the engine
degradation trend.

• To build a more reliable degradation model of aero-
engine performance, further dimensionality reduction
was performed on the dataset. Through this part of
the study, it was found that the optimized parameters
using the QPSO algorithm for tuning the LSTM network
had a much better enhancement effect than the initial
modeling. In particular, the optimized aero-engine
performance degradation model built by the parameter
group with the first ranked RMSE value, although it
did not match the trend of the real value at the initial
time node, showed an excellent linear fitting relationship
after crossing the threshold, and the overall performance
was excellent, which greatly improved the initial model
performance.

• Based on the results of the dimensionality reduction
experiments, it was found that the 12-dimensional
parameter was the best dimension for QPSO-LSTM
modeling, and the sensor signals of S7, S8, S9, S11,
S13, S14, and S20 had a significant positive effect on
the QPSO-LSTM network modeling, while the sensors
of S6 and S17 had a mediocre performance.

B. OUTLOOK
In this study, a data-driven approach based on a joint
QPSO-LSTM network was successfully implemented to
complete the remaining life prediction and performance
degradation modeling for virtual data sets, which is of
some value. However, for aero-engines, which are precise,
complex and highly integrated mechanical devices, in-
depth investigations and explorations are still needed to
more accurately predict their remaining life and establish
degradation curves with higher fitting performance.

The project has the following deficiencies:

• Due to the large number of parameter combinations
involved in the dimensionality reduction process, only
the FD001 subset of the C-MAPSS dataset was selected
for the remaining life prediction and performance
degradation model modeling in this project, and the
next step of the work needs to comprehensively
analyze the performance of each subset to improve the
generalizability of the model.

• In the next step, modeling work using actual engine
sensor data is considered.
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