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ABSTRACT Sub-terahertz (sub-THz) waves, operating in the 0.1-1 THz band, offer significant potential
for next-generation 6G systems. These systems stand to benefit from photonic technologies that enable
terabits-per-second communication with low latency and high throughput. This paper introduced, for the
first time, a semiconductor optical amplifier (SOA) as a fast and reliable photonic-based technique for
sub-THz wavelength conversion in fiber-based networks. The wavelength conversion leveraged nonlinear
phenomena in the SOA, including cross-gain modulation, self-phase modulation, and four-wave mixing
effects. Numerical simulations demonstrated an all-optical wavelength conversion capable of handling 100-
GHz sub-THz signals with 16-ary quadrature amplitude modulation formats, achieving a data rate switching
of 5 Gbps. Key system parameters were optimized, resulting in a 28.7 dB suppression ratio for the generated
optical single sideband (OSSB) signal. Additionally, a proof-of-concept laboratory experiment validated
the THz signal-switching concept. The proposed system incorporated a hybrid fiber/wireless channel and
utilized various measures for performance evaluation.

INDEX TERMS 6G, optical single sideband (OSSB), photonic switching, sideband suppression ratio (SSR),
semiconductor optical amplifier (SOA), terahertz communication (THz).

I. INTRODUCTION compete with wired broadband by 2030 [5]. The prediction

The increasing need for high-speed wireless networks and
large-bandwidth applications like cloud computing, the
Internet of Things (IoTs), and ultra-high definition (UHD)
video streaming have motivated the employment of sub-
terahertz (THz) frequency bands for future next-generation
6G communication systems [1]. For instance, video traffic
has increased by 66% between 2018 and 2023 [2]. Also,
mobile data traffic increased eightfold within the same
period [3]. Currently, the traffic for mobile and wireless
devices occupies 71% of the total traffic [4]. Moreover,
the data rates usage of wireless systems will be enough to
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of the wireless network capacity will exceed 100 Gbps during
the next 7 years [6]. Following this trend, the data rate of
wireless systems will reach terabits per second (Tbps) in the
coming decade. However, current spectral resources allocated
in the microwave (MW) or millimeter-wave (MMW) bands
are no longer enough for the data capacity of Tbps that
is expected to be provided in the next ten years. So ultra-
broadband wireless systems within the THz band are being
actively investigated worldwide toward the future 6G era.
This THz band lies in the range between 100 GHz (3 mm)
and 10 THz (30 um) [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16].

Using the THz band for wireless communication poses
challenges. One significant hurdle is the high propagation
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FIGURE 1. A conceptual figure for a 6G network includes a
photonics-based switching for THz signals.

loss caused by atmospheric attenuation, which leads to a
limited communication range. Overcoming this challenge
is paramount to unlocking THz wireless communication's
full potential. One practical solution is to transmit the THz
signal over optical links in the backhaul. Using optical
wavelengths will require wavelength conversion for efficient
signal routing in the optical network. Fig. 1 displays the
concept of THz switching in a 6G network. Various types
of devices are connected to the 6G base station using THz
bands. In the backhaul, the base station transmits the traffic
over optical fiber to the metro network, where an optical
switch is mandatory to perform wavelength conversion
and switching to avoid wavelength mixing in the optical
network.

In general, two technologies can implement the wavelength
conversion of optical signals [17], [18]: photonics-based
and electronics-based techniques. From a device perspective,
it can be categorized as follows: semiconductor optical ampli-
fier (SOA) and lasers (LD), electro-absorption modulator
(EAM), electro-optic crystal, and optical fiber. Generally,
SOA and EAM offer the advantages of small size (~1 mm)
and low operational power, while the electro-optic crystal
has a larger size (~50 mm) and the optical fiber can
reach distances of hundreds of kilometers [19]. Wavelength
conversion using SOA is the most popular method as it
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can support very high-speed conversion with nanosecond-
level rise or fall time and provides optical gain performance.
Additionally, SOA can be integrated with other optical
components and offers polarization independence and a large
extinction ratio [19], [20].

Over the past two decades, there has been considerable
research interest in all-optical wavelength conversion and
switching (AOWC) using SOA techniques, driven by its
distinct advantages in enhancing network flexibility and sup-
porting long transmission distances [17]. Several advantages
have been gained by exploiting photonics-based wavelength
conversion using SOA over electronic devices. These include
(1) high instantaneous bandwidth, (ii) modulation format
transparency, and (iii) low latency. Moreover, an advantage
can be achieved by using photonics-based techniques, ensur-
ing a higher modulation order gained due to the conversion
of optical to THz with high-speed amplitude and photo
mixing. Furthermore, photonic devices can easily assign
multi-carrier transmission by adding an optical fiber laser
to the main optical signals. As mentioned before, the THz
communication system can provide high data rates wirelessly
using photonics-based techniques [19].

Over the past two decades, there has been notable research
attention towards all-optical signal processing for wavelength
conversion [17], [21], [22], [23], [24], [25], [26], [27].
The wavelength conversion, switching, and routing of THz
signal in the communication networks is a realistic example
where the SOA is considered a helpful wavelength converter
by exploiting its non-linear effects, such as four-wave
mixing (FWM), self-phase modulation (SPM), and cross-
gain modulation (XGM) [28]. In this context, we can define
wavelength converters as optical devices that transfer data
signals from one wavelength to the desired wavelength in
the network according to the application used. Therefore,
SOA can be considered the primary device for this function,
enabling all-optical switching and wavelength conversion.
For example, it can convert the optical signal wavelength
in the optical domain from the current wavelength to the
new required wavelength with no requirement to convert it to
the electrical domain and then back into the optical domain
[29], [30]. Moreover, eliminating the electronic components
in the conversion process enhances the system by reducing
the consumed power and cost and removing the bandwidth
limitation in the electronic devices [28].

In the literature, researchers often use the SOA as a
wavelength converter for a single carrier. For example, the
authors in [31] presented SOA-based wavelength switching
for a 50-GHz millimeter wave (MMW) signal carries
two 5G modulation schemes: filtered bank multi-carrier-
offset quadrature amplitude modulation (FBMC-OQAM)
and universal filtered multi-carrier (UFMC). The system’s
parameters were optimized to obtain an optical single
sideband signal (OSSB) with a sideband suppression ratio
(SSR) of 18.85 dB. Reference [17] discussed an examination
of an all-optical burst mode wavelength converter employing
the SOA-Mach-Zehnder Interferometer (SOA-MZI).
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Besides, in [29], a 30-GHz MMW switching system using
SOA was proposed, where a data rate of 3-Gbaud and
quadrature phase shift keying (QPSK) signal was switched.
In that work, the radio over fiber (RoF) system is not
considered and the obtained SSR was 14 dB.

In [32], the authors presented the optical switching of
K-band 5G signal experimentally using cascaded SOAs con-
sidering RoF with two different SMF lengths (12 and 31 km)
where the achieved power penalty was ~0.5 dB. In [20],
a 20 GHz microwave carrier carrying a 16-QAM signal was
switched using SOA while implementing RoF system with
9 km SMF, where the achieved SSR of the converted signal
was 22.65 dB for down-conversion and 17.85 dB for up-
conversion. Also, the authors in [33] optimized the system’s
parameters in a wavelength conversion system in terms of
SOA’s optical power and injection current. The demonstration
did not include RoF system; it showed the conversion of an
E-band signal operating at 80 GHz and carrying 7 Gbps.
In [34], the authors reported a 128-QAM modulation format
for wavelength conversion using SOA with a 227 Gbps data
rate by simulation utilizing Optisystem numerical simulation
software. The authors analyzed the performance in terms of
optical signal-to-noise ratio, bandwidth, and injection current
parameters.

In [35], the authors used numerical software to investigate
the wavelength spacing between pump wavelength and
probe wavelength in a wavelength conversion system with
a 9 Gbps QPSK signal centered at 30 GHz carrier frequency
without RoF demonstration. The results showed that the
optimum spacing value is equal to 1.6 nm. In [36], an OSSB
switching with an up-conversion scheme in SOA is exper-
imentally demonstrated to transmit a data rate of 10 Gb/s
at 60 GHz carrier frequency of 16 QAM orthogonal
frequency division multiplexing (OFDM) signal with RoF
system using 20 km SMF. The authors in [37] utilized
simulation software to examine the performance of a 5G
modulation format called the generalized frequency division
multiplexing (GFDM) without RoF consideration. They
specifically focused on generating an OSSB signal using
SOA with a carrier frequency of 40 GHz. The optical double-
sideband (ODSB) and OSSB signals were investigated in
that work.

Table 1 summarizes the literature review of wavelength
switching considering key parameters, including the carrier
frequency, modulation format, SSR, and data rate. It is
clear from the previous discussion that the THz signal
switching has not yet been investigated. Therefore, in this
work, we fill in that gap and propose a RoF wavelength
conversion model for THz signals using SOA. We utilize
the SOA’s nonlinear phenomena to produce and convert an
efficient OSSB signal to the required wavelength. Toward
that objective, the key parameters that control the efficiency
of wavelength switching are thoroughly investigated. This
includes the SOA’s injection current, the power of the pump
and probe lasers, and SSR. In addition, a lab's proof-of-
concept experiment is also conducted.
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TABLE 1. Comparison between implemented wavelength conversion
systems.

Modulation Data Rate Carrier

Ref. Format (Gbps)  freq. (GHz) ~ SSR(dB)
201 16-0AM 01 20 26
28]  FBMC-16-OQAM 3 30 18.4
29]  QPSK 6 30 14
321 QPSK/16-QAM 6 25 *
33]  OFDM 7 80 291
35]  QPSK 9 30 x
[36]  OFDM-16QAM 10 60 -
371 GFDM s 40 24.33
[38]  OFDM-16QAM 10 30 22
This | ¢ QAM/QPSK 5/4 100 287

work

* SSR was not measured.
** The specific value is not provided in the paper.

The remainder of the paper is organized as follows: The
system setup and numerical simulation results are discussed
in section II. A proof-of-concept of THz wave wavelength
conversion using SOA experiment is presented in section III.
Finally, the paper concludes in section I'V.

Il. SIMULATION RESULTS AND DISCUSSION

In this section we investigate the performance of the SOA
in switching THz signals using numerical simulation. The
simulation will assist in identifying the key parameters that
play a dominant role in the proof-of-concept experimental
setup. The mathematical system modeling can be found
somewhere else [28], [29], [31].

The nonlinear effects of SOA result from changes in carrier
density induced by input signals. These non-linear effects
are used in wavelength conversion in high-speed photonic
networks. The main forms of nonlinearity in SOA are FWM,
XGM, and SPM.

The FWM phenomenon arises from the nonlinear inter-
action between two input signals injected into the SOA,
resulting in the generation of two additional new signals
with different frequency components as shown in the output
of the SOA in Fig. 2. Three mechanisms contribute to the
generation of FWM signals: (i) spectral hole burning (SHB),
(ii) carrier heating (CH), and (iii) carrier density modulation
(CDM) [39]. FWM can be utilized in various applications
such as AOWC [40] and dispersion compensator. Moreover,
FWM enables phase conjugation and supports multi-channel
operation [41]. On the other side, FWM suffers from some
issues like low conversion efficiency, amplified spontaneous
emission (ASE) noise from SOA, and polarization sensitivity
[42]. When two optical signals are injected to an SOA, the
carrier density variations in the active region of SOA affect
both signals due to broad spectrum of material gain. The
technique which allows the optical signal conversion is XGM.
In XGM devices, a strong control signal (probe) modulates
the carrier density of the SOA, thereby also modulating a
second signal (pump). Therefore, the control modulation on
the second signal can be imposed by XGM effect. This
method, which inverts the control pulse shape can be applied
in wavelength conversion application, affirming that SOA
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can be used as a wavelength converter [43], [44], [45]. It is
important to note in this context that the information from
the input signal (probe) is transferred to the converted optical
signal (switched). SPM is a key nonlinear phenomenon
causing optical pulse spectral broadening. This effect was
initially investigated in SOAs as early as 1989. Researchers
identified that gain saturation within SOAs is the underlying
physical mechanism driving SPM, resulting in refractive
index changes dependent on signal intensity and carrier
density fluctuations [46].

Figure 2 shows the simulation setup, which is implemented
using VPITransmissionMaker Ver. 11.1. It has three core
parts: the transmitter, the wavelength converter (WC), and
the receiver. Firstly, the transmitter generates a 5- Gbps
16-QAM electrical sub-THz signal operating at 100 GHz
radio frequency. A continuous laser (CW) is modulated by
this signal using MZM, called probe laser, operating at a
wavelength of 1552.52 nm with a power of 3.5 dBm and
a linewidth <1 kHz. The MZM has an extinction ratio
(ER) of 35 dB. The MZM output signal called the probe
signal, is then amplified using an optical amplifier and then
launched to the second stage, which is the WC. The WC
includes the SOA and a CW laser source, called pump
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signal, operating at 1550.12 nm wavelength and has 7.5 dBm
output power. The probe signal is coupled using a (50:50)
optical coupler with the pump signal. These two optical
beams (i.e., the pump and probe) are then injected into the
SOA. At this stage, the SOA’s nonlinear effects are exploited
to perform the wavelength conversion, where the sub-THz
signal is converted to a new wavelength (i.e., switched
signal). A polarization controller (PC) and a variable power
controller (VOA) are used to control the probe signal’s
polarization and power, respectively. The output of the SOA
will include four signals due to FWM phenomena as indicated
in the inset in Fig. 2. The tunable optical filter (TOF) is
adjusted to select the switched signal, which carries the THz
signal at a frequency of 1547.72nm. The switched signal has
a different wavelength than the probe signal. Then, in the last
stage, a photodiode (PD) is used to obtain the sub-THz signal.
This signal is then analyzed to measure the performance of
the switching operation. Table 2 summarizes the simulation
setup parameters and their values.

In order to avoid chromatic dispersion in the system, the
SOA can be controlled to suppress one of the sidebands
that were generated by the MZM. The SSR metric is used
to measure the suppression ratio, which can be defined as
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TABLE 2. Simulation parameters’ values.

Modulation Format Value
Modulation Order 16-QAM
RF Carrier Frequency 100 GHz
RF Power -3 dBm
Signal Data Rate 5 Gbps
Probe Signal wavelength 1552.52 nm
Probe Signal Power variable
Pump Signal wavelength 1550.12 nm
Pump Signal Power variable
Extinction Ratio for MZM 35dB
Responsivity of PD 0.15 A/W

SOA’s Parameters
Injection Current (IC) variable
Height 80 um
Length 500 pm
Width 3 um
Optical confinement factor variable
Index to Gain Coupler 5
Waveguide loss coefficient 4000 1/m

TABLE 3. Optimized system parameters.

Main Parameter Value
Injection Current 200 mA
Pump Signal Power 7.5 dBm
Probe Signal Power 3.5dBm
Optical confinement factor 0.2
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FIGURE 4. The spectrum of the input and output signals of the SOA for
wavelength conversion of 100 GHz THz carrier.

the difference in power between the two sidebands (left and
right) around the carrier. A high SSR value means better
suppression of the sideband. To obtain a high-performance
OSSB THz signal with a high SSR value, we need to
optimize the main system’s parameters, which are listed
in Table 3.
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In addition, the optimization process will target achieving
a switched signal with high power. The process includes
optimizing them one by one. In the following, we explain the
impact of each parameter on the switched signal.

Figure 3 shows the optical power of the two sidebands
versus the four parameters under study. We select the
parameter’s value that achieves a high SSR. Fig. 3 (a)
illustrates the effect of SOA’s injection current on SSR.
We can see that the maximum SSR is achieved at 200 mA,
which corresponds to 28.7 dB SSR. In Fig. 3 (b), the pump
signal effect is investigated. The optimum value for its power
is 7.5 dBm, which corresponds to 28.7 dB SSR. Similarly,
we investigated the effect of the probe power on the SSR
metric. The pump power is fixed at 7.5 dBm. Fig. 3 (c)
shows the SSR of the switched signal as a function of the
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probe power. The maximum achieved SSR is 28.7 dB at
3.5 dBm optical probe power. Finally, the optical confinement
factor (I') of the SOA is examined with respect to SSR in
Fig. 3(d). As can be seen, the optimum value of I', which
gives maximum SSR, is 0.2.

Table 3 summarizes the corresponding optimum values of
the SOA’s main parameters.

Next, we exploited the optimized parameters’ values in
Table 3 to investigate the optical spectrum of the SOA output
signal using an optical spectrum analyzer (OSA). This OSA
has 0.05 nm bandwidth resolution. The spectrum of the input
signal to the SOA (red curve) and the output signal (blue
curve) is illustrated in Fig. 4. The input signal spectrum
includes the pump signal and the probe signal with the THz
signal represented by two sidebands around the probe signal
wavelength.

The SOA’s output signal in Fig. 4 shows four out-
put signals with their THz sidebands that resulted from
the nonlinear effects in the SOA. The THz signal is
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switched from the probe signal at 1550.52nm wavelength
to the switch signal at 1547.72nm wavelength. The sepa-
ration between all four generated signals is uniform and
equals 300 GHz.

The SSR of the output switched signal is high, 28.7 dB,
reflecting the excellent sideband suppression to generate
an OSSB. In addition, we notice from Fig. 4 that the
carried information data by the probe signal is reproduced
successfully at two newly generated signals (switched signal
and idler signal). Furthermore, the modulation is transferred
to the switched signal due to the XGM effect of the SOA.

The performance of the switched signal has been evaluated
at the receiver. Fig. 5 shows the BER results versus the total
input power to the PD for the probe and switched signals,
where both carry the modulated THz signal. At the hard-
decision forward error correction (HD-FEC) limit, i.e., BER
=38x107 [47], the switched signal suffers of ~1 dB
power penalty compared to the probe signal. This shows
that the THz switched signal is affected minimally by the

VOLUME 12, 2024
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switching operation, resulting in a negligible impact on
its quality.

The performance of 16-QAM THz switched signal is
studied in two scenarios: back-to-back (BtB) transmission
and 15 km SMF transmission. This is achieved by measuring
BER versus the optical received power at the PD, as shown
in Fig. 6. As indicated in the figure, there is a minimal
power penalty of ~0.5 dB at the FEC limit for 15 km SMF
transmission compared with BtB transmission. Also, we can
see that the BER decreases with the increase of optical power.

The previous discussion shows that the switched signal,
i.e., the 5 Gbps 16 QAM signal, is affected by nonlinearities
in the switching process. Therefore, the data rate is limited
by the conversion process. It is noteworthy that similar
bandwidth constraints have been documented in the literature
for mmW band applications, as outlined in Table 1. However,
it is important to emphasize that achieving higher bandwidth
is feasible without the need for wavelength conversion.

lIl. MATH PROOF-OF-CONCEPT EXPERIMENTAL SETUP
AND RESULTS

A proof-of-concept experimental setup for the proposed
photonic-based sub-THz wavelength conversion system
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using SOA is shown in Fig. 7. It includes four sections:
transmitter, wavelength converter, RF wireless channel, and
receiver. In the transmitter, an optical frequency comb (OFC)
is used to generate optical carriers. The main component
is the CW laser diode (Koheras ADJUSTIK), which is a
low-noise single-frequency laser operating at 1552.52 nm
wavelength with 16 dBm an output power and line width
< 1 kHz. It is connected to two cascaded phase modulators
(PMs) (Eospace), which are driven by a 12.5 GHz RF signal
that is generated from an analog signal generator (Keysight
E8267D) with an RF power of 11.3 dBm. The PMs generate
a comb of optical carriers separated by 12.5 GHz.

Then, the generated OFC carriers are amplified using an
optical amplifier (OA1) and launched into a wavelength
selective switch (WSS) (FINISAR waveshaper 4000s). The
WSS selects three main carriers with a separation of 100 GHz.
One carrier is baseband with no modulation, and the two other
carriers, which are separated by 200 GHz, are modulated
with an IQ modulator (FUJITSU 78110). The modulator
modulates these two optical subcarriers with a 4 Gbps QPSK
signal.

Then, the modulated and unmodulated carriers are
combined using an optical coupler (OC1) and amplified
using an OA2 (Amonics AEDFA-PA-40-B-FA). Polariza-
tion controllers (PCs) are used to control optical signal
polarization.

The output of the transmitter is an optical signal modulated
by a 100 GHz signal as indicated in the insets of Fig. 7. The
spectrum of the input signal to the WSS and the modulated
optical output signal of the transmitter is shown in Fig. 8(a).

The double sideband output signal of the transmitter
represents the probe signal at 1552.52 nm. The probe signal
is transmitted over a 15 km SMF and then combined
using a 50:50 optical coupler (OC2) with a pump signal,
generated using a laser diode source (Agilent N7714A)
at the 1550.12 nm wavelength. Thereafter, the combined
signal is launched into the SOA (Kamelian SOA-NL-L1-
C-FA 10-08-022019) to start the WC process, as down-
conversion. The SOA’s output is shown in Fig. 8(b) using
the optical spectrum analyzer OSA (Agilent 86142B), which
has a 0.06 nm resolution bandwidth. It is seen that the
wavelength conversion for the sub-THz signal at 100 GHz
is successfully implemented, where the new switched signal
is converted into a wavelength of 1547.72 nm with the
same data information as the probe signal. After the
wavelength conversion is achieved, the switched signal is
filtered using an optical narrow band tunable bandpass
filter (TBPF) (EXFP-XTM-50). A variable optical controller
(VOA) is used to control the power of the input signal
to the PD.

The output of the wavelength converter is launched into
a high-speed 100 GHz PD (Finisar BPDV412xR) with
responsivity> 0.35 A/W to obtain the 100 GHz electrical sub-
THz switched signal. Then, the sub-THz signal is amplified
using QuinStar amplifier (QLW-24403336-J0), which is a
low noise amplifier. The output of the amplifier is transmitted
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using two horn antennas (SAGE SAR-2507-28-S2) over a
wireless RF channel of 1 m length.

To study the wavelength conversion performance of the
switched signal, we measure the error vector magnitude
(EVM) and BER of the THz switch signal and the probe
signal versus the optical received power in BtB configuration
using a digital signal oscilloscope (Infiniium DSO-X-
93204A). Figure 9 illustrates the EVM and BER of the THz
signal and the probe signal. The threshold value of the FEC
limit for QPSK signals is 37%. As shown in Fig. 9(a), the
FEC limit can be achieved at —5.6 dBm optical received
power in the case of the switched signal and —9 dBm in the
case of the probe signal. This means a 3.4 dB power penalty.
Fig. 9(b) displays the BER measurements, where the power
penalty is 3.4 dB as well at the FEC limit. It should be noted
that the variation in receiver sensitivity observed between
the simulation and experimental results was attributed to
the introduction of noise from electrical equipment such
as AWG and DSO, along with optical devices including
EDFAs and PD.
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In addition to the BtB measurements, we considered
transmitting the THz signal over a hybrid transmission link
that includes 15 km SMF and 1 m wireless channel. Figure 10
illustrates the EVM and BER measurements versus the
optical received power for the QPSK switched THz signal.
As we can see, the QPSK signal transmission was successful
and the FEC limit is obtained at —1.2 dBm optical received
power.

The previous discussion considered the down-conversion
of the switched signal. The next discussion considers the up
conversion, where the pump signal has a higher wavelength
than the probe signal. We set the wavelength of the probe
signal at 1552.52 nm and the pump signal at 1554.92 nm.
In this case, the switched signal is generated at 1557.32 nm
wavelength. Figure 11(a) illustrates the output spectrum of
the SOA in the case of up-conversion.

The EVM measurements of the switched THz signal
in the case of up-conversion have been studied in two
scenarios: BtB and a hybrid link that includes a 0.5 m
wireless channel and transmission over 15 km SMF. The
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results are illustrated in Fig. 11 (b) for BtB transmission
and Fig. 11(c) for the transmission over the hybrid link.
The results show a degradation in the performance of the
up-conversion as compared to the down-conversion. Note
that the maximum wireless channel is 0.5 m in the case of
up-conversion, while in down-conversion, we easily reached
to 1 m wireless channel. This degradation is because the
contributing mechanisms to the FWM process such as carrier
density modulation and spectral hole burning have phases that
destructively interfere. In the up-conversion process, destruc-
tive interference occurs when two waves are completely out
of phase, meaning a peak of one wave aligns with a trough
of the other wave. Specifically, when two waves are out of
phase by 180 degrees, they interfere destructively, resulting
in cancellation of their amplitudes. In the down-conversion
process, constructively interfering occurs when two waves
having the same phase interact in such a way that they are
aligned, leading to a new wave that has larger magnitude than
either of the original waves. As a result, this enhances the
conversion efficiency in down-conversion, thereby leading to
an increase in the SSR. Theoretical analysis and experimental
validation in [20], [28], [48], and [49] have demonstrated this
phenomenon.

IV. CONCLUSION

This research demonstrated the feasibility of THz signal
switching through both simulations and experiments. The
experimental setup successfully transmitted 4 Gbps QPSK
signals at a frequency of 100 GHz over a hybrid 15 km SMF
and 1 meter RF channel. The FEC limit was achieved at
—5.6 dBm optical received power, which represented a 3.4 dB
power penalty compared to the probe signal. Additionally,
the results indicated a performance degradation in the up-
conversion process compared to down-conversion, which
resulted in a reduced RF link length. The experimental setup
served as a proof-of-concept, showing the feasibility of THz
signal switching and transmission. Due to space limitations
and the available hardware in our laboratory, we utilized a 1-
meter wireless channel. Future work will address the analysis
of longer distances, which could offer valuable insights into
the performance and limitations of our approach in broader
settings.
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