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ABSTRACT In recent times, credit card fraud has emerged as a substantial financial challenge for both
cardholders and the issuing authorities. To address this demanding issue, researchers have employedmachine
learning techniques to identify fraudulent activities within labeled transaction records. However, these
techniques have primarily been evaluated on limited or specific datasets, which may not adequately represent
the broader real-world scenario. These limitations motivated us to comprehensively assess the existing
machine learning classifiers and propose an Optimized Deep Event-based Network (OptDevNet) framework
capable of addressing these challenges. To evaluate the performance of the proposed model, we implemented
and assessed five different machine learning classifiers using the well-known Credit Card Fraud Detection
(CCFD) Dataset. Upon careful analysis, we found that our model surpasses these classifiers in terms of
fraudulent transaction detection accuracy. Given these findings, we are confident that our proposed model
has the potential for effective real-world deployment in detecting and preventing malicious transactions.

INDEX TERMS Credit card fraud detection, OptDevNet framework, automatic fraud detection, malicious
transactions, credit card security.

I. INTRODUCTION
In the rapidly evolving financial sector, machine learning
techniques have emerged as a game-changer, particularly
in credit risk assessment and fraud detection. The rise of
fintech and the availability of vast amounts of data have
paved the way for leveraging advanced algorithms to tackle
complex financial challenges that were once seen as too
difficult to overcome [1]. At the forefront of this revolution
is credit risk assessment, where machine learning models
can analyze intricate data patterns and extract valuable
insights, enabling more accurate risk profiling and credit
scoring. Techniques like extremely randomized trees (XRT),
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support vector machines (SVM), and deep neural networks
(DNN) have demonstrated superior performance compared
to traditional statistical methods, ushering in a new era of
precision and efficiency in lending decisions [2]. Moreover,
machine learning has proven to be an invaluable ally
in the battle against fraudulent credit card transactions.
Convolutional neural networks, for instance, can effectively
learn and identify fraudulent patterns of transactions in
large datasets. Therefore, these models often outperform
traditional systems, which may struggle to keep pace with the
ever-evolving strategies of cybercriminals [3]. Their ability
to continuously learn and adapt to changing situations gives
them an advantage over traditional techniques, ensuring
that financial institutions remain vigilant and proactive in
protecting their customers’ assets [4].
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However, using machine learning algorithms in finance
sector creates many problems. Some of these concerns
revolve around the interpretability of systems and applica-
tions, which is followed by some additional challenges such
as biases and regulatory standards, etc. Therefore, addressing
these issues is imperative to guarantee the conscientious and
ethical implementation of these algorithms in technological
advancements [5], [6]. Nonetheless, the potential benefits
of these algorithms—such as improved risk management,
enhanced fraud detection, and optimized lending decision
processes—make them an indispensable tool for the future
financial sector. As fintech continues to disrupt traditional
finance, the synergy between cutting-edge machine learn-
ing techniques and traditional finance increases, helping
to secure the financial sector. The deployment of new
algorithms enables more secure, efficient, and reliable
financial systems worldwide. This symbiotic relationship
will not only strengthen the financial sector but also foster
economic growth and stability, benefiting individuals and
businesses [7], [8].

However, machine learning (ML), deep reinforcement
learning (DRL), deep learning (DL), and transfer learning
(TL) algorithms face challenges related to the occurrence of
‘false negatives’ (FN) and ‘false positives’ (FP) [9], [10].
False negatives occur when the algorithm fails to detect
fraudulent transactions, which can negatively impact an
organization’s revenue. On the other hand, false positives
happen when a legitimate customer or user transaction is
mistakenly flagged as fraudulent or illegitimate, resulting in
customer dissatisfaction, loss of trust, and financial losses.
Notably, as indicated in [11], FRISS has pinpointed that
false positives (FPs) represent one of the most formidable
challenges in detecting fraud in online transactions. This
challenge is particularly relevant in the financial sector,
where the adoption of machine learning techniques for credit
risk assessment and fraud detection is gaining traction.
While machine learning models have demonstrated superior
performance compared to traditional statistical methods in
credit risk profiling and credit scoring, the issue of false
positives remains a critical consideration. Inaccurately flag-
ging legitimate transactions as fraudulent can erode customer
trust and loyalty, ultimately undermining the legitimacy of
financial institutions that aim to safeguard their clients’
assets.

In the domain of fraud detection, the prowess of machine
learning techniques like CNN has shown valuable results
in the identification of frauds. However, their usefulness
diminishes if they generate too many false alerts, leading
to unnecessary investigations and potentially alienating cus-
tomers. Tackling the issue of false positives is paramount for
the conscientious and ethical application of these innovations
in the financial sector. Credit card fraud happens when
someone uses a credit card without permission of the owner
to make an unauthorized transaction. It is a common form
of financial deception where individuals misuse someone
else’s card without their knowledge/consent [12]. Financial

organizations continually seek novel strategies to combat
fraud by considering the potential risks of fraudulent
transactions. However, fraudsters are also working to exploit
newly adopted technologies using innovative techniques.
This ongoing challenge necessitates the development of
highly efficient and effective algorithms [13]. In this scenario,
the utilization of machine learning algorithms play a vital role
to identifying fraudulent transactions. However, as discussed
earlier, the occurrence of false negatives and false positives
poses a significant challenges to these algorithms.

To address these challenges, we evaluate various machine
learning algorithms using the well-known ‘‘CCFD’’ dataset
to assess their performance. Furthermore, we propose an
Optimized Deep Event-based Network (OptDevNet) to
mitigate the issues of false negatives and false positives.
The main highlights of this work are summarized as
follows:

1) We start by conducting a comprehensive performance
evaluation of various machine learning algorithms on
the well-known Credit Card Fraud Detection (CCFD)
dataset. This rigorous evaluation helps and provides
valuable insights about the efficiency of these algo-
rithms in detecting fraudulent credit card transactions.

2) Subsequently, we propose an Optimized Deep
Event-based Network (OptDevNet) framework
designed to address the limitations of existing
algorithms in online credit card fraud detection. Fur-
thermore, the proposed model enhances the accuracy
and efficiency of fraudulent transaction identification
by harnessing the capabilities of optimized event-based
deep neural network architectures.

3) We also assess howwell the proposedmodel can reduce
false positives and false negatives. This evaluation
helps determine how effectively the model identifies
fraud, which is important for increasing customer
satisfaction and revenue.

4) Through rigorous evaluation, OptDevNet demonstrates
significant improvements in fraud detection accu-
racy, ultimately benefiting financial organizations by
mitigating financial losses and enhancing customer
satisfaction.

5) Finally, we comprehensively assess the effectiveness
of our proposed model against existing machine
learning models using various comparative metrics,
demonstrating its superior performance and robustness
in CCFD.

A. PAPER STRUCTURE
The remainder of the paper is structured as follows: Section II
discusses the existing state-of-the-art schemes that have been
employed in recent years to counter fraudulent transactions.
Section III is dedicated to the discussion of our proposed
model, while Section IV contains the comparative results and
statistics of the proposed model, along with rival algorithms.
Finally, Section V provides a comprehensive summary for the
work and concludes the paper.
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II. RELATED WORK
In the recent times, the application of data mining and
machine learning techniques has shown significant advance-
ments in detecting and preventing fraudulent credit card
transactions. Credit card fraud involves deceptive practices
aimed at achieving unauthorized financial gains by stealing
money from individuals or institutions. Traditional methods
for credit card fraud detection typically entail manual
procedures conducted by audit teams, a process that can
be notably time-consuming when dealing with evidence
pertaining to embezzlement. In [14], the authors discussed
comprehensively the state-of-the-art research that follow
these kind of techniques. This review categorizes different
studies based on various fraud typologies and data mining
methodologies to identify potential instances of fraudulent
activities. To improve this process, alternative technologies
such as machine learning (ML) and deep learning strategies
have been introduced. Notably, the recent study conducted
in [15], explored the advancements in fraud detection. The
authors used the Kitchenhammethod to scrutinize the onging
research on fraud detection by evaluating a decade literature.
In [16], the authors propose another research initiative that
sought to conduct an exhaustive literature review of current
SoA approaches used in CCFD.

The authors in [17] combined a genetic algorithm with
a neural network to predict the likelihood of fraudulent
transactions. Building on this, the study in [18] introduced a
data analytics-based approach for credit card fraud detection
(CCFD). Similarly, the research in [19] highlighted the
importance of data analytics and artificial intelligence,
focusing on their potential effectiveness in future internal
audits. Further advancing the field, the study in [20] examined
various data mining techniques and their use in fraud
detection. These researchers created profiles of suspicious
activities and used software that could learn rules to spot signs
of fraud in a large database of transactions.

In [21], the authors utilized a apriori algorithm to analyze
the patterns of new transactions in relation to existing ones
for each customer. They meticulously crafted both fraud
and legitimate transaction patterns for individual customers
to ensure the safe operation of the credit card industry.
Throughout this process, they employed various steps such
as pattern creation and transaction categorization, to separate
transactions into two pools: legal and illegal transactions.
In [22], the authors conducted experiments on a dataset
both before and after pre-processing with six classifiers.
Their findings revealed a remarkable improvement in results
when they implemented the undersampling technique with
the dataset. For evaluation of the classifiers’ performance,
they used precision and recall metrics and showed valu-
able results. In [23], the authors assess the outcomes of
various algorithms, including Logistic Regression, Apriori
Algorithm, Naïve Bayes, Deep Learning, Decision Trees,
SVM, K-Nearest Neighbor, and Neural Network models.
Specifically, they focus on Chebyshev Functional Link
Artificial Neural Networks (CFLANN) and MLP. This

evaluation is conducted using the same dataset to lay-down
the foundation for futuristic research. In [24], the authors used
SVM in coordination with the Radial Basis Function (RBF)
to detect fraudulant transactions with improved efficiency.
In [25], the authors introduced an advanced approach to
detect CCF in online transactions. They integrated multiple
classification methods using a stacking ensemble model to
improve efficiency. Additionally, they utilized the Sequential
Minimal Optimization and Fuzzy-Rough Nearest Neighbor
as base classifiers, along with LR to achieve better detection
results.

Considering the technological advancements, researchers
have underscored the inherent challenges in credit card
industry. They have underlined that one of these challenges
is the difficulty in differentiating between deprenciate and
legitimate credit card transactions, as both exhibit similar
patterns. To address this challenge, major credit card
companies, including Paypal, MasterCard, Debit-Card, Visa,
and American Express, have effectively employed artificial
intelligence (AI) to detect fraudulent or deceptive patterns
transactions, and mitigate the risks associated with CC
fradulent transactions [26]. However, it is worth noting
that the understanding and utilization of AI in the realm
of credit card fraud detection still face limitations, mainly
due to the diverse range of techniques and algorithms.
Furthermore, machine learning and deep learning approaches
have demonstrated their ability to learn from historical fraud
patterns and insights provided by domain experts, such as
forensic accountants, to proactively prevent similar fraudu-
lent activities in the future [27]. This characteristic empowers
disruptive technology to efficiently and effectively process
extensive datasets, ultimately leading to the development of
sophisticated algorithms.

III. PROPOSED MODEL
In this section, we examine the execution process of the
proposed OptDevNet model and its operation within the
context of the undermentioned problem. Before jumping into
the operational process, we have added Figure 1 in the paper
to provide a visual overview of holistic structure of the
proposed model.

FIGURE 1. Overall Structure diagram of the proposed model.
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Problem Formulation: Most of the existing credit card
fraud detection techniques use a two-stage process. Initially,
they need new data representations and then apply fraud
indices to these representations to compute fraud scores.
Given that, these techniques require a large number of labeled
data, which most of the time is computationally intensive.
To address these limitations, we aim in this work to simplify
the process by directly using a minimal set of labeled data to
calculate fraud scores.

To determine the minimal labeled dataset for the Opt-
DevNet model, we use an iterative process of active
learning. Initially, we started with a small set of labeled
fraudulent transactions (K) and gradually increased it while
monitoring the model’s performance. The optimal size of
K is determined when the model’s accuracy stabilizes or
when the improvement in performance becomes marginal
with additional labeled data.

Moreover, our problem statement focuses on the opti-
mization of the fraud detection process within a given
dataset X = x1, x2, x3, x4, x5, . . . , xN+K , where each xi ∈
RD represents a transaction with D features. In addition,
we used U = x1, x2, x3, x4, x5, . . . , xN to represent the
set of unlabeled data, which contain N transactions, and
L = xN+1, xN+2, xN+3, xN+4, xN+5, . . . , xN+K , where
K ≪ N , includes a small subset of K labeled fraud
transactions that provide an initial overview of the fraudulent
transaction patterns. To ensure the accuracy of the model
while reducing the amount of labeled data, we implement
a semi-supervised learning approach. This method leverages
the large unlabeled dataset U to enhance the model’s under-
standing of the overall transaction patterns, while the small
labeled dataset L provides the necessary guidance for fraud
detection.

Following that, our objective is very clear to develop an
optimized deep learning enabled fraud detection function
φ : X → R to calculate fraud score, and efficiently
assigns fraud scores directly based on the minimal labeled
dataset, bypassing the need for initial extensive representation
learning. Furthermore, we designed this function to ensure
that φ(xi) > φ(xj) when xi represents a fraudulent credit
card transaction and xj represents a normal transaction. This
means the function assigns higher fraud scores to fraudulent
transactions compared to legitimate ones. Given that, it helps
to effectively identify immediate and accurate fraudulent
transactions in real time.

In the proposed model, we combined neural networks
with the initial probability distribution function of fraud
scores to introduce a novel loss function. This helps fraud
detector in the training process to ensure that fraudulent
transactions are assigned higher fraud scores compared
to normal transactions. By incorporating this probabilistic
feature, our model can better differentiate between various
transaction types and adapt to evolving fraud patterns. The
anticipated results of the model not only generates more
precise fraudulent scores but also exhibits greater efficiency
compared to conventional methods.

To explore the internal structure of the model,it has three
major modules such as summarized as follows. Initially,
we develop a fraud scoring network, denoted as function φ,
to generate a scalar fraud score for each input X in the model.
To guide the scoring process, a reference score generator

is used to produce a scalar reference score, which is defined
as the average of the fraud scores such as U = R =
{r1, r2, r3, r4, . . . , rl} for a group of l randomly chosen
normal samples, represented by µR. This reference score is
derived through the model prior probability F (fraud data) to
produce µR and facilitate interpretable fraud scoring.

Next, the fraud scoring function φ(x), and reference score
µR are integrated with its corresponding standard deviation
σR for the deviation function L calculation. The objective
of this optimization process is to ensure that the scores for
fraudulent transactions significantly exceed µR in the upper
distribution tail while maintaining the scores for normal items
as close as possible to µR. However, this process will raise a
challenge such as the collection of an adequate number of
normal transactions for training our model, given the limited
number of labeled transactions in K and the unknown class
labels of objects in U. This process is summarized in Figure 2.

FIGURE 2. OptDevNet model operational steps.

Here in Figure 2, we can see that φ(x;2) functions work
to calculate the fraudulent transaction score utilizing the
parameters 2. The mean µR of the fraud scores for specific
normal objects is established by a prior probability function
F . Moreover, the σR in the given scenario represents the
standard deviation associated with µR. The loss function
Lf associated with φ(x;2), µR, σR is formulated to ensure
that the fraudulent transaction scores for transaction diverge
markedly from µR towards the upper tail while striving to
align the fraud scores of normal entities closely withµR. This
optimization based on the deviation loss function encourages
the normal transactions to converge around Lf according
to their fraudulent scores. Moreover, this approach can be
falter under highly fraudulent conditions by considering the
unlabeled training dataset U. Unlike traditional deep learning
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model, our OptDevNet approach utilizes this training process
to ensure fraudulent transactions in the testing phase.

A. FEATURE EXTRACTION AND DATA PRE-PROCESSING
Before feeding the data into the Deep Event Optimized
Network (DevOptNet), it is essential to extract pertinent
features and prepare the data adequately. Let us define the
initial dataset as X = {x1, x2, . . . , xn}, where each xi ∈ Rp

signifies the i-th data point, and p is the dimensionality
of the input space. We employ a feature transformation
function ϕ : Rp

→ Rq that maps raw data into a feature
space of higher dimensionality, where q denotes the number
of features derived. The resulting feature set Fset can be
expressed as:

Fset = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)}

This transformed set Fset is subsequently used for training the
fraud detection model.

F = {ϕ(xi)}ni=1 = {φ1(xi), φ2(xi), . . . , φq(xi)}
n
i=1 (1)

In Equation (1), φj : Rp
→ R signifies

the j-th feature extraction function, where ϕ(xi) =

[φ1(xi), φ2(xi), φ3(xi), φ4(xi), . . . , φq(xi)]T ∈ Rq is the
feature vector for the i-th data point. After feature extraction,
the feature set Fset is normalized to ensure compatibility
with the DevOptNet model. Let F ′set denote the normalized
feature set, where F ′set = �(ϕ(xi))ni=1, with � : Rq

→ Rq

representing the normalization function.
We employ the min-max normalization technique,

described by the function �norm : Rq
→ Rq, defined as:

ωnorm(ϕ(xi)) =
ϕ(xi)−min(ϕ(X ))

max(ϕ(X ))−min(ϕ(X ))
(2)

In Equation (2), min(ϕ(X )) and max(ϕ(X )) denote the
minimum and maximum values of the extracted features
across all data points respectively. The normalized feature set
F ′ is given by:

F ′set = ωnorm(ϕ(xi))ni=1 (3)

These normalized features F ′set are then fed into the
DevOptNet model, denoted as f2, which is parameterized
by 2 representing the weights and biases of the model for
the training. The training of the model involves minimizing a
specified loss function L(2;Dtrain) over the training dataset
Xtrain.

B. DATA SPLITTING
After preprocessing, the dataset X is partitioned for train-
ing and testing to collectively evaluation of the model’s
performance:

X = Xtrain ∪ Xval ∪ Xtest,

Xtrain ∩ Xval = ∅,

Xtrain ∩ Xtest = ∅,

Xval ∩ Xtest = ∅ (4)

The training subset Xtrain is utilized to adjust the model
parameters 2, defined as:

Xtrain = {(ωnorm(ϕ(xi)), yi)}
Ntrain
i=1 (5)

Here, ωnorm(ϕ(xi)) denotes the normalized feature vector
for the i-th data point, yi ∈ {0, 1} indicates the label (0
for normal, 1 for fraud), and Ntrain represents the count
of training examples. The validation set Xval is used for
tuning hyperparameters and for periodic evaluation during
the training phase, defined as:

Xval = {(ωnorm(ϕ(xi)), yi)}
Ntrain+Nval
i=Ntrain+1

(6)

In Equation 6, Nval indicates the number of validation
samples. Lastly, the test subsetDtest evaluates the final model
performance on unseen data, detailed as:

Xtest = {(ωnorm(ϕ(xi)), yi)}Ni=Ntrain+Nval+1 (7)

In Equation 7, N = Ntrain + Nval + Ntest denoting the total
number of instances in X .

C. MODEL TRAINING
Our proposed OptDevNet uses a score deviation loss function
with a gaussian prior probability function to facilitate the end-
to-end optimization of fraud scores using a dedicated neural
network for fraudulent score analysis.

Let P ∈ RM represent a latent representation space.
A fraud detection framework φ(·;2) : X → R can be
conceptualized as a fusion of a feature extraction module
ψ(·;2f ) : X → P and a scoring mechanism ξ (·;2r ) :
P → R, where 2 = 2f ,2r . Specifically, ψ(·;2f )
acts as a neural network for feature learning with G ∈

N hidden layers, characterized by the weights 2f =

W1,W2,W3,W4, . . . ,WG, defined by:

p = ψ(x;2f ) (8)

In Equation 8, x ∈ X and p ∈ P. The network
architectures follow the recurrent networks for time-series
data. The scoring function ξ (·,2r ) : P → R, utilizing a
simple linear neural unit at their output to calculate the fraud
score based on the derived feature representations such as:

ξ (p;2r ) =
M∑
i=1

vipi + vM+1 (9)

In Equation 9, p ∈ P and 2r = v (with vM+1 as the bias
component). Therefore, φ(·;2) is expressed as:

φ(x;2) = ξ (ψ(x;2f );2r ), (10)

Thus providing a direct mapping from input data to fraud
scores, enabling training in a cohesive end-to-end manner.

After calculating the fraudulent transaction scores via
φ(x;2), the network utilizes a reference score, µR ∈ R,
computed as the average of fraud scores from a selection of
normal objects R. This reference score µR is important for
guiding the optimization process. Two principal techniques
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for determining µR are utilized such as data-driven and prior-
driven. Data-driven approaches learn µR from the data set X ,
whereas prior-driven strategies derive µR from a predefined
prior probability distribution F . For this implementation, the
prior-driven approach is preferred because it offers clear
interpretability for fraud scores and generatesµR consistently
by proving more efficiency. Moreover, we adopt a Gaussian
prior probability function for defining the reference score:
r1, r2, r3, r4, . . . , rl ∼ N (µ, σ 2), leading to:

µR =
1
l

l∑
i=1

ri, (11)

In Equation 11, each ri follows the normal distribution
N (µ, σ 2), representing a fraudulent transaction score for a
randomly selected normal object. We set µ = 0 and σ =
1 in our experiments to maintain consistent detection across
different datasets.

Subsequently, a deviation loss function is established to
refine the performance of the fraud scoring in the network.
This loss function uses the deviation metric, which is
expressed as a Z-Score, and generalized as:

dev(x) =
φ(x;2)− µR

σR
, (12)

In Equation 12, σR represents the standard deviation of the
anomaly scores set {r1, r2, r3, r4, . . . , rl}. Next, this deviation
is modified to contrastive loss function, which is defined as.

L(φ(x;2), µR, σR) = (1− y)|dev(x)| + ymax(0, a− dev(x)),

(13)

In Equation 13, y = 1 indicates the fraud instance, and
y = 0 denotes a normal data point. The parameter a acts as a
threshold that aligns with a Confidence Score level, and aim
to align the fraud scores of normal data as close as possible
with µR while maintaining a minimum deviation of a for
the fraudulent instances. Notably, a negative deviation in the
score for an fraud results in a significantly large loss that
promotes large positive deviations. However, the challenge
with this is the absence of labeled normal data. To overcome
this, we assume that the unlabeled data in U are normal.
Moreover, the training process of the model are generalized
in pseudo code 1.
In pseudo-code 1, we summarized the whole training

process. Initially, the model starts with the2, the parameters
of the fraud scoring function, which are generally the
weights in a neural network and are initialized randomly.
Thereafter, the training process begins and continues for
several epochs, where each epoch consists of multiple
batches. Next, a specific number of data samples, b, are
chosen from the training data X , and a set of l fraud scores
are drawn from a normal distribution,N (µ, σ 2). These scores
represent a prior understanding of what constitutes fraud. The
mean µR and standard deviation σR of these fraud scores
are computed. These statistics help assess how far any given
data point deviates from what is considered normal. Next,

Algorithm 1 Training the EventOptNet Model for Fraud
Detection
Require: Training set X ⊆ RD, where X = V ∪W and

2 = V ∩W
Ensure: Fraud scoring function φ : X 7→ R
0: Initialize parameters 2 randomly
0: for i = 1 to nepochs do
0: for j = 1 to nbatches do
0: Sample b training, half from bothW and V
0: Draw l Fraud scores from N (µ, σ 2)
0: Calculate the mean µR and standard deviation
σR of these l scores

0: Compute the loss: L = 1
b

∑
x∈B L(φ(x;2), µR, σR)

0: Update 2 using gradient descent to minimize L
0: end for
0: end for
0: return φ = 0

a loss function is computed for each data point in the batch
to measure the difference between the predicted fraud score
by the model and the expected score based on the sample
of l fraud scores. The goal of the loss function is to adjust
the fraud scoring function such that the predicted scores
for normal objects are close to µR and those for fraudulent
transactions are significantly different, ideally higher. Based
on the computed loss, the parameters of the fraud scoring
model are updated using a gradient descent optimization
technique. The process then repeats until the training is
complete. Finally, the trained model can be used to evaluate
new data points and determine if they are normal or fraudulent
based on the learned patterns.

D. CLASSIFICATION AND EVALUATION
In this section, we discuss the OptDevNet framework for
testing data set Xtest to validate its effectiveness in identifying
malicious versus normal transactions. This verification
involves calculating the fraud scores φ(di;2) for each data
point di within Xtest:

p̂i = ξ (ψ(di;2f );2r ) (14)

To obtain the binary classification labels,, a threshold τ is
applied to the fraud scores:

ŷi =

{
1, if p̂i ≥ τ
0, otherwise

Here, ŷi ∈ {0, 1} represents the predicted classification for
the i-th data object (0 for normal, 1 for fraud). To quantify the
effectiveness of the OptDevNet in classifying data objects,
various metrics are computed based on the confusion matrix:[

TN FP
FN TP

]
The metrics considered in confusion matrix are essential

for calculating performance of OptDevNet tp provide an
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overview of the model’s capability to distinguish between
normal and fradulent transactions effectively.

IV. RESULT EVALUATION OF DIFFERENT ALGORITHMS
In this section, we discuss different algorithms that has been
check on the same dataset to acknowledge why we choose
the optimized deep learning model over them. Despite that
we will talk about the comparative the algorithms that have
been already checked on the same dataset, and compared their
results.

A. REGRESSION MODEL IMPLEMENTATION
In this section, we discuss the operational steps of the logistic
regression model and present the achieved results based on
the considered datasets. Let D = {d1, d2, . . . , dn} denote the
input dataset, where di ∈ Rp represents the i-th input feature
vector with p dimensions. We label the data with two output
classes, 0 and 1, denoted by yi ∈ {0, 1}. To probabilistically
predict the output classes, we employ the logistic function
λ : R→ (0, 1), defined as:

λ(z) =
1

1+ e−z
(15)

In Equation 15, z is a linear combination of the input features,
given by:

z = β0 + β1 · d
(1)
i + β2 · d

(2)
i + . . .+ βp · d

(p)
i (16)

In Equation 16, β0 is the bias term, and βj represents
the coefficient of the j-th feature in the input vector di.
The hypothesis function hβ : Rp

→ (0, 1) of the logistic
regression model is defined as:

hβ (di) = λ(βT · di) (17)

In Equation 17, hβ (di) denotes the anticipated likelihood of
input data di being associated with the affirmative category.
To quantify the disparity between the projected probabilities
and the factual labels, we utilize the binary cross-entropy loss
function.

Loss(Y ,Hypothesis) = −
1
n

n∑
i=1

[
log (Hypothesis(di)) · yi

+ log (1− Hypothesis(di))

· (1− yi)
]

(18)

In Equation 18, n represents the quantity of training
samples, while yi denotes the authentic label pertaining to the
i-th sample, and hβ (di) signifies the anticipated probability
associated with the i-th sample. Our approach to minimizing
the loss function involves fine-tuning the model parameters
β through gradient descent. The formula for updating the j-th
parameter βj is articulated as:

βj← βj − α ·
1
n

n∑
i=1

(hβ (di)− yi) · di[j] (19)

FIGURE 3. Basic structure diagram of the logistic regression model.

In Equation 19, α is the learning rate, and di[j] is the j-th
feature of the i-th sample. We initialize the model parameters
β with small random values and repeatedly update them using
the gradient descent rule until convergence. Figure 3 provides
a visual representation of the logistic regression model for
enhanced clarity and understanding.

In Figure 3, the input features di, di, . . . , di[p] are combined
linearly with the weights β1, β2, . . . , βp and the bias term
β0. The resulting linear combination z is then passed through
the logistic function λ(z) to obtain the predicted probability
hβ (di). The predicted probability is compared with the true
label yi to compute the loss, which is minimized using
gradient descent to update the model parameters β.

1) LOGISTIC REGRESSION RESULT STATISTIC EVALUATION
In this segment, we talk and showcase the assessment
outcomes of a logistic regression model, which is used
as a fundamental reference point for comparison. The
model’s performance is assessed through confusion matrices,
classification metrics, and discrimination ability curves for
both training and test datasets. The confusion matrices
visualize the model’s correct and incorrect predictions by
highlighting TP, TN, FP, and FN. The classification metrics
provide a comprehensive overview, including precision,
recall, F1-score, and overall accuracy for each class. Fur-
thermore, the discrimination ability curves illustrate the
trade-off between TP and FP values that allow a thorough
evaluation of the model’s discriminative power. The area
under these curves serves as a valuable metric for comparison
with other models, including our optimized deep-learning
approach. Through this analysis, we aim to highlight the
potential advantages of our deep learning model, which
leverages advanced techniques to capture complex patterns
and relationships, potentially outperforming the logistic
regression model and other traditional methods. Moreover,
the results obtained during evaluation are shown in the form
of confusion metrics and ROC plots, Fig 4.

B. SUPPORT VECTOR MACHINE
In this section, we explore the inner workings of the Support
Vector Machine (SVM) algorithm and its application in
classifying credit card transactions. The SVM model tries
to find the best line that separates different groups of data
points with some gap between them. This line is defined by

VOLUME 12, 2024 132427



M. Adil et al.: OptDevNet: A Optimized Deep Event-Based Network Framework for CCFD

FIGURE 4. ROC curve and confusion matrix for regression model.

the undermentioned equation.

wT · x + b = 0 (20)

In Equation 20,w signifies the weight vector, orthogonal to
the hyperplane. The symbol x denotes the feature vector of the
data point, and b represents the bias parameter. However, the
margin of classification error is defined as |w|, and expressed
as:

Margin = ∥w∥1 (21)

The SVM model enforces constraints to ensure that data
points are correctly classified while maximizing the margin.
Let (xi, yi) denote a training sample, where xi denotes the
feature vector and yi ∈ −1, 1 represents the class label. The
constraints can be represented as:

yi(w⊤xi + b) ≥ 1 (22)

The SVM model’s optimization problem can be expressed
as:

minimizew,b
1
2
∥w∥2

subject to yi(w⊤xi + b) ≥ 1, for i = 1, . . . ,N .

After determining the optimal values ofw and b, the decision
boundary can be computed as:

w⊤x+ b = 0

For the given ‘‘CCFD’’ (Credit Card Fraud Detection)
dataset, denoted as X = {xi}Ni=1, the steps adopted for
training and evaluating the SVM model are summarized in
the following algorithm:

The algorithm’s primary purpose is to work with the
‘‘CCFD’’ dataset X containing various transactions, both
legitimate and fraudulent. It accomplishes this by training
an SVM classifier, which is capable of predicting the class
label (legitimate or fraudulent) of each transaction xi. The
algorithm splits the dataset into two such as training and
testing. Next, it trains the SVM model on the training data
by solving the optimization problem, and obtains the optimal
weight vector w∗ and bias b∗. For each transaction xi in the
testing subset, the algorithm computes the predicted class

Algorithm 2 SVM for Credit Card Fraud Detection

Require: Transaction dataset X = {xi}Ni=1, labels {yi}
N
i=1,

where yi ∈ {−1, 1}
Ensure: Predicted class labels ŷi for transactions

Split X into two subsets (train & test)
Train the SVM model for solving the optimization
problem

Obtain the optimal weight vector w∗ and bias b∗

for i = 1 TO Ntest do
ŷi← sign(w∗⊤xi + b∗) Predict class label

end for
Evaluate the model’s performance using appropriate
metrics return Predicted class labels {ŷi} for the testing
subset = 0

FIGURE 5. Basic structural diagram of support vector machine.

label ŷi using the sign of the decision function w∗⊤xi +
b∗. The predicted labels {ŷi} are then used to evaluate the
model’s performance for comparativemetrics. This algorithm
is designed to handle multiple transactions sequentially and
deliver precise and interpretable classification results, aiding
in the identification of whether each transaction can be
considered legitimate or potentially fraudulent. Furthermore,
the general diagram of SVM is shown in figure 5, for visual
evaluation.

1) SVM: RESULT STATISTICS EVALUATION
In this section, we present a comprehensive evaluation of
the Support Vector Machine (SVM) model by highlighting
its performance in comparison to traditional ML algorithms,
moderately optimized ML models, and our optimized deep
learning approach. Furthermore, this analysis will help to
ensure why our fine-tuned DNN model is better than
SVM in the considered scenario. The evaluation results
are presented through insightful visualizations, including
confusion matrices and Receiver Operating Characteristic
(ROC) curves. The confusion matrices provide a clear
understanding of the model’s misclassifications by enabling
the readers to identify areas for improvement and potential
biases. Additionally, the ROC curves offer a robust measure
of the model’s discriminative ability, which shows a fair
comparison against other modeling approaches. Through
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this rigorous evaluation, we demonstrate the strengths and
limitations of the SVM model to pave the way for our
optimized deep-learning solution. The findings not only
highlight the SVM’s performance but also serve as a
benchmark for assessing the potential improvements offered
by our deep learning approach, which leverages advanced
architectures and techniques to achieve superior accuracy
and generalization capabilities. Furthermore, we present the
evaluation results in the form of confusion matrices, along
with ROC curves, as depicted in Figure 6.

FIGURE 6. Result statistics for SVM model’s evaluation.

C. TRADITIONAL KNN MODEL
In this section, we explain how the traditional KNN model
works in the CCFD scenario. Let X = (xi, yi)Ni=1 denote
the dataset, where xi ∈ RM illustrate the i-th point in the
data (transaction) with M features, and yi ∈ 0, 1 is the
corresponding class label (0 for legitimate, 1 for fraudulent).
The KNN algorithm, which is a non-parametric approach,
always allocates class labels to the data points they are new
data. These new data points are represented by xnew, and
the algorithm determines their class label by considering
the majority class among their k nearest neighbors in the
feature space. The value of k is typically chosen through
cross-validation or domain knowledge. To assess the resem-
blance or dissimilarity between different data points, KNN
utilizes the Euclidean distance, denoted as d(xi, xj). Here,
xi and xj denote individual data points, and the distance is
calculated between them. The KNN algorithm follows these
steps for classifying a new data point xnew:
• Distance Computation: Compute the Euclidean dis-
tances between xnew and all other data points in the
dataset:

d(xi, xnew) =
M∑
j=1

(xij − xnewj)2, i = 1, 2, . . . ,N

(23)

• Nearest Neighbor Selection:Determine the k data points
with the smallest distances to xnew. These are the k
nearest neighbors of xnew.

• Class Voting: Determine the class labels of the k nearest
neighbors and tally the occurrences of neighbors from

each class using the following equation:

Countc =
k∑
i=1

δ(yi, c), c ∈ {0, 1} (24)

In Equation 24, the Kronecker delta function δ(yi, c)
evaluates to 1 when yi is part of class c, and 0 otherwise.

• Classification:Assign xnew to the class with the majority
of votes among its k nearest neighbors:

Predicted Class(xnew) = argmaxc Countc (25)

Upon completion of the classification process, xnew is
allocated to either the legitimate or illegitimate data class,
considering the prevalence of classes among its k neighbors.
It is crucial to acknowledge that the KNN algorithm is
very lazy in the learning process. Moreover, it retains the
entire dataset and performs computations and estimation to
achieve desired results. Moreover, the selection of k and
the distance metric can exert a significant influence on the
model’s efficacy. For visual representation and evaluation,
we added figure 7. We summarized the operational steps of
KNN in algorithms 3.

FIGURE 7. Basic structural diagram of KNN Model.

1) KNN: RESULT STATISTICS EVALUATION
In this section, we explore the results statistics of the KNN
model. Through a comparative analysis against conventional
machine learning algorithms, moderately tuned models, and
our sophisticated deep learning methodology, our objective
is to emphasize the significance and efficacy of the KNN
classifier. We used informative visualizations like confusion
matrices and ROC curves to provide a thorough exami-
nation of the KNN model’s performance. The confusion
matrices offer insights into the model’s misclassifications
by facilitating the identification of potential biases and
areas for enhancement. Meanwhile, the ROC curves provide
a robust metric for assessing the model’s discriminative
capability by enabling a fair comparison with alternative
modeling strategies. This meticulous evaluation not only
helps with the KNN model’s strengths and weaknesses
but also establishes a baseline for evaluating the potential
enhancements achievable through our optimized deep-
learning solution. Leveraging advanced architectures and
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Algorithm 3 CCFD: Pseudo code of KNN

Require: X = {(xi, yi)}Ni=1: Dataset of N transactions with
features xi and labels yi

Ensure: Predicted class label for xnew
1: Function KNN_Classify(X , xnew, k):
2: distances = []
3: for i = 1 to N do
4: d = Euclidean_Distance(xi, xnew)
5: distances.append((d, yi))
6: end for
7: distances.sort(by=distance) {Sort distances in ascending

order}
8: nearest_neighbors = distances[:k] {Take the k nearest

neighbors}
9: count_0 = 0
10: count_1 = 0
11: for d, y in nearest_neighbors do
12: if y == 0 then
13: count_0 + = 1
14: else
15: count_1 + = 1
16: end if
17: end for
18: if count_0 > count_1 then
19: return 0 {Legitimate transaction}
20: else
21: return 1 {Fraudulent transaction}
22: end if
23: Function Euclidean_Distance(xi, xj):
24: distance = 0
25: for m = 1 toM do

{M is the number of features}
26: distance + = (xim − xjm)2

27: end for
28: return

√
distance =0

FIGURE 8. Confusion matrix present the result statistics of KNN model.

methodologies, our deep learning approach attains superior
accuracy and generalization capabilities, outperforming the
KNN model and other conventional techniques. Through
this exhaustive analysis, we offer valuable insights into the
performance characteristics of theKNNclassifier, as depicted
in Figure 8.

D. RANDOM FOREST ALGORITHM
In this section, we discuss the Random Forest (RF) algorithm
and its application in a CCFD scenario by focusing on

how it utilizes an ensemble of decision trees to enhance
prediction accuracy and robustness. The core idea behind
RF is to harness the combined insights of several weak
learners (decision trees) to construct a robust and dependable
predictive model. The key steps involved are outlined as
follows:

Let X = {x1, x2, . . . , xn} be the input feature space,
and Y = {y1, y2, . . . , yn} are used to demonstrate the
target variable (fraud or non-fraud). The Random Forest
model comprises an ensemble of B decision trees, denoted
as T1(X ),T2(X ), . . . ,TB(X ). Every decision tree Tb(X ) is
constructed using a bootstrap sample obtained by randomly
selecting instances with replacement from the initial training
dataset. This method, referred to as bagging (Bootstrap
Aggregating), fosters heterogeneity among the trees, thereby
reducing the likelihood of overfitting. Additionally, during
the construction of each decision tree, a random subset of
features is considered at each node split, a process known
as feature bagging. This amplifies diversity within the trees
and diminishes their correlation with each other. The RF
model consolidates the outcomes of each individual tree to
determine the final prediction for a given input x, employing
either majority voting for classification assignments or
averaging for regression tasks. In the context of classification
tasks, the RF prediction can be articulated as:

ŷ(x) = majority_vote{Tb(x)}Bb=1 (26)

In Equation 26, the predicted class label ŷ(x) cor-
responds to the input x. The expression ŷ(x) =

majority_vote{Tb(x)}Bb=1 denotes themajority vote among the
predictions of all B decision trees. Utilizing the ensemble
nature of Random Forest, the algorithm adeptly captures
intricate patterns and interactions within the data, rendering
it a robust tool for CCFD. It is important to consider and
acknowledge that the performance of RF can be affected by
various factors such as the number of trees, andmaximum tree
depth followed by the number of features considered for each
node split. Therefore, effective hyperparameter tuning and
careful model selection techniques are essential to achieve
optimal performance in CCFD applications.

E. RESULT STATISTICS OF RANDOM FOREST ALGORITHM
In this section, we outline the comparative outcomes of
our RF model, an ensemble learning technique that merges
multiple decision trees for predictions. By analyzing its
performance in comparison to traditional machine learning
algorithms, moderately optimized models, and our advanced
deep learning approach, we aim to highlight the strengths and
limitations of this versatile model.

We conduct a thorough evaluation of the model, consider-
ing the comparative metrics set for comparison. Confusion
matrix results furnish an understanding of the model’s
misclassifications and help the readers to pinpoint the biases
area. Meanwhile, ROC curves serve as a reliable metric for
assessing the model’s discriminative power that allows a
fair comparison with alternative modeling techniques. This
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comprehensive assessment not only highlights the strengths
of the RF model but also serves as a benchmark for gauging
the enhancements achievable through our optimized deep-
learning approach. Additionally, Figure 9 illustrates the
outcomes acquired from the analysis.

FIGURE 9. Result statistics of random forest algorithms.

F. PROPOSED OptDevNet MODEL RESULT STATISTICS
In this section, we shift our focus towards the results
obtained from our optimized deep neural network (DNN)
model to highlight its unique characteristics and performance
in comparison to traditional machine learning algorithms
used in the domain. During analysis, the proposed DNN
model demonstrates exceptional capabilities in achieving
remarkable results, particularly in terms of both training
and validation accuracy metrics, even when using a small
number of training examples with a large number of
hidden layers (model fine-tuning). This indicates the model’s
effectiveness in adapting to the data with a reasonable
number of training epochs to ensure its robust convergence.
Furthermore, we check the DNN model’s performance by
presenting training accuracy graph followed by validation
accuracy, as shown in Figure 10.We also shown the confusion
matrix for result statistics evaluation in Figure 11. These
results not only reveal the model’s strengths and limitations
but also highlight its relevance and effectiveness in the
classification task. The superior performance achieved by
our fine-tuned DNN classifier reaffirms its significance in
handling complex data and underscores its potential as a
valuable tool for various classification tasks such as CCFD.

G. OVERALL RESULTS EVALUATION WITH EXISTING
STUDIES
In this section, we comprehensively examine of the current
state-of-the-art articles published on this topic. Our aim is to
conduct a thorough comparative analysis by shedding light
on why this paper is essential within the context of existing
research. We accomplish this by meticulously evaluating
each of the considered paper by emphasizing their respective
contributions, and subsequently elucidating how our model
outperforms them in various aspects.

Fang et al. [28], introduced a Light Gradient Boosting
Machine model for the detection of fraudulent transactions

FIGURE 10. The proposed DNN result statistics for training accuracy and
validation accuracy.

FIGURE 11. The proposed DNN result statistics ‘‘Confusion Matrix.’’

in CC transactions by achieving an impressive F1 score of
99%. Additionally, they conducted a comparative analysis,
pitting their obtained results against those achieved by the
Random Forest algorithms followed by Gradient Boosting
algorithms to demonstrate that their model is superior than
them in certain aspects. In contrast, our model obtained
results of 99.8% with considerably fewer training iterations
and epochs when compared to this model and its competing
schemes. This clearly illustrates the superior performance
of our model. In [29], the author introduced an ensemble
model that combines DRN network with an innovative DNN
using the voting mechanism to detect fraudulent actions. The
authors claimed that their experimental results on real-world
datasets are better than the existing models. However, the
paper does not comprehensively discuss the main factors that
make this work superior to existing state-of-the-art schemes.
In contrast, our model demonstrates remarkable results,
particularly in terms of F1 score, training and validation
accuracy, and efficiency, with a shorter training time that
shows its superiority over the existing models.

In [30], the authors evaluated several algorithms per-
formance such as Random Forest, SVM, and KNN, for
CC deceptive transactions by achieving better results with
accuracy rates of 94.84% and 89.46% for Random Forest
and KNN, respectively. Additionally, they declared that
Random Forest exhibited rapid predictions for new fraud
cases. However, our model achieved an accuracy of 99.89%,
surpassing the results of the mentioned model by a significant
margin. In [31], the authors address the credit card fraud
detection issue at the application level through feature
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selection methods. They used J48 decision tree, Random
Forest, AdaBoost and Naive Bayes algorithms to detect
financial frauds and compares their performance based
on precision metrics. We achieved better statistical results
compared to their findings. In [32], the authors introduced a
hybrid technique that combines supervised and unsupervised
algorithms to detect fraudulent transactions. The experi-
mental results demonstrated that their model outperforms
existing algorithms in terms of both efficiency and accuracy.
However, the complex integration method, lengthy training
times, and the absence of disclosed accuracy scores make
it challenging to apply this model in real-world scenarios.
Conversely, our model boasts shorter training times and
high training and validation scores, affirming its superiority.
In [33], the authors compiled common attributes, features,
and available data of CC transactions to facilitate new
research. They evaluated existing fraud detection methods
for their effectiveness in addressing challenges such as
real-time detection, imbalanced datasets, concept drift, and
classifier adaptability. However, their achieved results for all
algorithms are not convincing, whereas our model performs
significantly better than their evaluated algorithms in terms
of comparative metrics.

V. CONCLUSION
In this study, we introduced an Optimized Deep Event-based
Network (OptDevNet) framework for detecting and prevent-
ing fraudulent transactions. The motivation for this work
comes from the increasing security threat posed by credit
card fraud (CCF), which presents a significant challenge to
financial institutions. Fraudsters continuously employ new
techniques to compromise the security of these systems.
Moreover, we noted in the literature that the effectiveness
of these systems relies on machine learning (ML)-)-enabled
algorithms, which privately depend on specific use cases and
the features of the input data to perform this task. Traditional
deep learning (DL) algorithms, such as convolutional neural
networks (CNNs), have shown promising results compared
to ML algorithms, but they have yet to achieve remarkable
results. We evaluated the proposed model against rival algo-
rithms, including support vector machines (SVM), logistic
regression, random forest, and K-nearest neighbors (KNN)
on the CCFD dataset. Our analysis achieves an exceptional
accuracy by surpassing both the evaluated algorithms and
existing state-of-the-art schemes. Notably, we observed that
the performance on unseen data improved as class imbalance
increased. Given that, we are confident that the proposed
model will effectively meet the requirements of involved
stakeholders.
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