
Received 14 August 2024, accepted 2 September 2024, date of publication 11 September 2024,
date of current version 30 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3457863

A Generalist Reinforcement Learning Agent for
Compressing Multiple Convolutional Networks
Using Singular Value Decomposition
GABRIEL GONZALEZ-SAHAGUN , SANTIAGO ENRIQUE CONANT-PABLOS , (Member, IEEE),
JOSÉ CARLOS ORTIZ-BAYLISS , (Member, IEEE), AND
JORGE M. CRUZ-DUARTE , (Senior Member, IEEE)
School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico

Corresponding author: Santiago Enrique Conant-Pablos (sconant@tec.mx)

ABSTRACT Deep learning models have gained popularity in the last decade for computer vision tasks.
Although these models are widely used, they process data in cloud services due to requiring large amounts
of memory unavailable on consumer devices. Multiple techniques have been proposed to reduce the memory
needed for these models. Nonetheless, finding the best method to compress each model can be a time-
consuming process as the parameters of these techniques significantly affect the results. We propose a
methodology for training a reinforcement learning model that exploits similarities between models to select
how to compress other models it has not seen before. By reusing the generalist agent and exploiting the
similarities, searching for how to compress a new model can be avoided. The agent receives a set of feature
maps and compresses amodel by choosing the percentage of singular values to use in a low-rank factorization
of the weights of each layer. We chose the feature maps by generating an embedding for all the images and
selecting the most representative image of each class. Our agent trained to compress two models, the first
trained using fashion MNIST, whereas the second, using Kuzushiji-MNIST, reduced a model trained on
MNIST to 15% of its original size with minimal accuracy loss. Reusing the generalist agent permitted us to
skip 4.6 days of searching for a solution for MNIST.

INDEX TERMS Computer vision, deep learning, model compression, model optimization, reinforcement
learning, singular value decomposition, low-rank factorization.

I. INTRODUCTION
Most Convolutional Neural Networks (CNNs) have many
redundant weights when performing transfer learning. When
training a model for a new task, the model is typically
selected from the state-of-the-art instead of being created
from scratch. The reason for reusing a pre-trained CNN
model is that its lower layers, which are convolutional,
learn filters to extract useful features from the images.
These filters can be reused as they detect shapes and colors
that may be useful for other tasks. Furthermore, different
datasets might have a subset of the same classes or similar
images. The knowledge is transferred and tweaked for the
new dataset by retraining the feature extraction layers (i.e.,

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

convolutional layers) and removing the dense layers since the
weights in the first dense layers depend on the height and
width of the images used throughout the training process.
Although transfer learning can reduce training time using
prior knowledge, the model can have more parameters than
required. Alvarez and Salzmann [1] confirm that networks
are ‘‘known to have many redundant parameters.’’ Due to the
size of deep learning models, real-world applications of deep
learning models tend to process data using cloud services
instead of running it onsite. Processing data on the cloud is
not efficient due to the latency of the internet connection.
Furthermore, there are locations where there is no internet
connection.

Techniques to reduce the size of deep learning models
can be summarized in two streams: compressing a trained
model or performing a Neural Architecture Search (NAS) to

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 136131

https://orcid.org/0009-0009-7931-4654
https://orcid.org/0000-0001-6270-3164
https://orcid.org/0000-0003-3408-2166
https://orcid.org/0000-0003-4494-7864

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

generate suitable network architecture for a given problem.
In the first stream, the number of parameters of a layer (also
referred to as weights) is reduced using one or more kinds of
methods, such as pruning, quantization, Low-Rank Factor-
ization (LRF), and Knowledge Distillation (KD). A pruning
method removes the parameters that satisfy specific criteria.
In Absolute Weighted Sum (AWS), the filters with the lowest
magnitudes are pruned [2]. Chang et al. clustered the filters in
a layerwise fashion to summarize redundant filters using the
centroids of the clusters [3]. Another pruning method called
Average Percentage of Zeros (APoZ) removes the neurons
with the least activations for the dataset [4]. When used to
compress LeNet trained on MNIST, APoZ achieved a 3.85x
compression rate and an accuracy of 99.26%. As for VGG16
trained on ImageNet, the results were a 2.11x compression
rate and a top-1 accuracy of 70.88%. LRF methods are data
compression methods that approximate a matrix subject to
constraints, like the rank of the approximating matrix. Two
LRF techniques for compressing deep learning models are
Principal Component Analysis (PCA) [5] and Singular Value
Decomposition (SVD) [6], [7].
Some researchers have opted to use gradient descent algo-

rithms for optimizing layers via unconstrained optimization.
Liu et al. [42] decomposed the convolution into three steps
to find a fast sparsified version of the convolution. The first
step was a matrix multiplication between the input feature
maps and the channel basis of the kernel. Then, the result
was convolved by a kernel basis. Finally, the output was
calculated by performing another matrix multiplication with
a sparse kernel matrix S. The compression was achieved by
minimizing the logistic loss function of the output layer of the
network plus the element-wise l1 and l2 norms of the sparse
kernel matrix S. In addition to having a speedup between
2.24x and 6.88x for each layer, the sparsity of the sparse
kernel matrix was between 92.7% and 95.1%. Although not
clearly stated, it can be concluded that compression was
achieved due to the high sparsity of the sparse kernel matrix
because its size is the biggest among the three matrices.
Sparse Weight Activation Training (SWAT) [43] is a CNN
training algorithm that searches for sparse topologies while
training a CNN. The sparsity produced by the algorithm
results in a model compression of 5.0x for ResNet-50 trained
on ImageNet.

Knowledge Distillation (KD) is an approach for training
a small model using data labeled by a bigger model, also
known as teacher. Nonetheless, a set of layers can be trained
to emulate another set of more complex layers. For instance,
a shallower version of BERT, a language model, was trained
using the intermediate layer information from the original
large model [8]. In the case of computer vision models,
the output feature map of a convolutional layer can be
predicted by another kind of layer, such as an MLPConv
layer [9] or the depth-wise separable convolution used in
Xception [10]. In the second stream, an algorithm is used to
find the optimal number of layers and their corresponding
parameters to maximize the accuracy for a given dataset

while minimizing the number of parameters of the model.
According to Ren et al. [11], all NAS frameworks use a
controller for searching the space and generating candidate
architectures. Then, an evaluation strategy scores and ranks
the architectures to select the optimal architecture. Evaluating
candidates is the most time-consuming because it involves
training the candidate architecture on a training dataset and
testing the accuracy of the architecture on the test dataset.
NAS is a multi-objective optimization problem that requires
training and testing randomly generated neural networks. For
small datasets, it is feasible to use this approach. As for
larger datasets like ImageNet, it would be impractical to train
several models as a single epoch can take more than an hour.
Since Neural Architecture Search is more manageable for
smaller datasets, Zoph et al. scaled the architecture found for
a small dataset to handle a more complex dataset [12]. They
used reinforcement learning to discover an architecture that
maximized the accuracy for CIFAR-10. Then, they reused
modules of the architecture to build a model with more layers,
which they later trained on ImageNet. The modules were
similar to the inception module found in GoogLeNet [13].
Another strategy for reducing the long training time is the
parameter sharing of the proposed architectures. In Efficient
Neural Architecture Search, candidate architectures are sub-
graphs of a larger graph that considers all the search
space [14]. Since candidates are a selection of nodes to
produce a Directed Acyclic Graph, the candidates that select
the same nodes will be sharing the parameters of those
nodes. Thus, those candidates update the weights of a node
sequentially.

Finding which compressors to use and the parameters
to get the best results can be challenging. Multiple solu-
tions that involve Reinforcement Learning (RL) have been
proposed to solve this problem [15], [16], [17], [18].
Nonetheless, RL could be more efficient when training
an agent to compress only one model. Since the process
involves generating samples to train the agent, training the
agent, and sometimes fine-tuning, the computational cost is
more than other solutions, such as genetic algorithms and
particle swarm optimization, that do not require training
the agent or fine-tuning depending on how the model is
compressed. The only advantage of using RL over Stochastic
Optimization (SO) algorithms is that RL can find patterns
between states; this can help reuse a trained agent on
other models, thus avoiding the time it takes to search
for and train the agent. We refer to agents capable of
solving multiple problems as generalist agents as the term
has been used before in the literature. However, we use
the term to refer to an agent capable of solving multiple
instances of model compression. In contrast, Reed et al. [19]
use the term for an agent capable of working in various
environments.

Generalist agents do not bring only advantages. One major
disadvantage is that the number of states an agent has to
learn is much larger. Let us suppose we train a generalist
agent to compress three layers for a small dataset, such as

136132 VOLUME 12, 2024

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

MNIST, using ten actions; it will look at 1.8 million states
(3 layers× 60, 000 images × 10 actions). If trained on three
different datasets of the same size, that will represent looking
at 5.4 million states. Training an agent becomes unfeasible in
a reasonable amount of time for compressing more layers,
datasets with more examples, and more datasets. Giving
priority to the most representative states could reduce the
training time to a reasonable amount. Not only is the training
time a problem but the stability of training is also affected
by the number of states. As there are too many states, the
model can forget what it learned from a state. If a smaller
subset of states is used to train the generalist agent, it is
easier for the agent to learn as there is less information to
generalize. A potential way to deal with this problem is using
autoencoders, which have been used before in RL, to reduce
the size of the observation space [20].

Our objective is to avoid searching for how to compress a
model. We propose using a generalist reinforcement learning
agent to learn strategies for multiple models to replicate them
in new models. A generalist agent can be trained only once to
produce acceptable solutions so that various people can use
it. Furthermore, we use an autoencoder to reduce the possible
states required to train a generalist reinforcement learning
agent. More specifically, the autoencoder encodes the images
into a smaller feature vector than the original image size.
After getting the encoding, the most representative image per
class is extracted from the dataset and used to train the agent.
Instead of 60,000 images, only ten (one per class) are needed
per dataset, thus dramatically reducing the state space.

The contributions of this article are as follows:

• Using autoencoders dramatically reduces the num-
ber of states required to train a model-compression
reinforcement-learning agent.

• Our adaptable methodology trains an agent to compress
multiple models, empowering it to compress other
models without transferring learning, demonstrating its
versatility in the field.

• It illustrates the impact of fine-tuning when singular
value decomposition is used to compress a convolutional
neural network

The remainder of this document is organized as follows.
Section II presents the related work for model compression.
Section III describes our methodology for solving model
compression using SVD. Section IV presents the main results
derived from our experiments. Section V discusses our
findings and how they fare against the related work. Finally,
Section VI summarizes our findings and explores some paths
for future work.

II. RELATED WORK
Given the multitude of methods for compressing the models,
some researchers have opted to automate selecting when,
how, and by how much to compress a layer. Among the
available methods, we can highlight two popular strategies
for automating model compression.

The first strategy relies on an optimization algorithm,
such as a genetic algorithm, to search the compressor’s
parameter space. Fortunately, a few compressors do not
require a fine-tuning process, and this process can be skipped.
Two examples of how genetic algorithms can maximize the
model’s accuracy are the works of Agarwal et al. [21] and
Zhang et al. [22]; the last one for a multi-objective optimiza-
tion scenario. Besides, Particle Swam Optimization (PSO)
has also been used for automating model compression [3].
The second popular strategy is to train an agent using

RL. This agent looks at the state of the environment (the
current state of the CNN) and decides how to compress it.
The literature is rich in information the RL agent can use
to make decisions. For example, some agents use a vector
that contains information regarding the configuration used
to build the layer (number of units, input channels, output
channels, floating-point operations, among others). Other
agents use the input feature map of each layer to decide how
to compress it. Finally, a few agents use different information,
such as layer weights or embedding representing the neural
network.

Most of the model compression agents use layer con-
figurations and compression statistics. AutoML for Model
Compression (AMC) uses a Deep Deterministic Policy
Gradient agent to compress CNNs [16]. The agent’s inputs
are the layer parameters and the accumulated compression
statistics to select the sparsity ratio for the weights in
each layer. AMC used information like the layer index,
kernel shape of the current layer, number of floating-point
operations (FLOPs) reduced in previous layers, number of
remaining FLOPs in the following layers, and the action taken
in the last layer. The approach above was combined with a
quantization agent that chooses the optimal bit representation
for each layer [23]. The Reinforcement Learning Pruning
Method (ReLP) shares most of the features of AMC with
two changes [24]. First, ReLP does not use the stride of the
convolutional layer. Second, two new features are added: the
importance of filters and the layer. The first feature deals
with the importance of filters, which is found by ranking
the filters in the network. The second feature relates to the
layer importance, calculated using the importance of each
filter in the current layer to be compressed. The purpose
of these two features is to let the agent know if a layer
has more important filters than other layers to decide the
degree of pruning for that layer. The filter importance is
based on APoZ [4]. Meanwhile, the layer importance is
calculated using the filter importance of all filters located in
the layer. Zhang et al. [24] mention that ReLP outperforms
other methods in top-1 accuracy ‘‘due to passing the filter
importance to the DDPG agent.’’ In their work, Yang et al.
filtered sensitive layers to decide which layers to prune using
the same approach as AMC [25]. Their method deleted
39.9% of the parameters when tested on ResNet-50 on
ImageNet. ShrinkML used RL to compress an End-to-End
Automatic Speech Recognition model using Singular Value
Decomposition [26]. In N2N [15], two policies were trained

VOLUME 12, 2024 136133

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

using REINFORCE. The first was a Bidirectional LSTM
policy that removed or kept layers, whereas the second shrunk
layers. A bidirectional policy was used because the hidden
states of each layer were passed to the adjacent layers (layer
before and layer after) to decide, at the same time, which
action to take in each of the layers. The features were the
parameters used to create the layer (type, kernel size, stride,
padding, number of filters) in addition to using the hidden
states for the adjacent layers and the number of layers, before
and after the current layer, to reach the start and end of the
current block (where the skip connections are). The second
policy was not bidirectional, as the hidden states were only
passed to the next layer. In addition, the chosen action for the
current layer was used to decide how to shrink the following
layer.

Only two reinforcement learning agents use feature maps
to decide how to act. The AdaDeep framework used a
Deep Q-Network (DQN) and a DDPG to select how to
compress each layer and the recommended parameter values
of the chosen compressor [17]. The DQN was used to
select which compressor to apply, whereas the DDPG
agent chose the values of the parameters for the selected
compressor. Both networks used the input feature maps of
the layer to be compressed. Following AdaDeep, Gonzalez-
Sahagun et al. proposed using a Region of Interest layer in
the DQN to handle feature maps of different heights and
widths [27].
Instead of looking at each layer separately, Multi-stage

Graph Embedding and Reinforcement Learning (GNN-RL)
generated an embedding to represent a neural network’s
computational graph [28]. After generating the embedding,
the agent pruned the neural network, producing a renewed
embedding for the new model. This process was performed
iteratively until the compressed model met the user’s
demands. In contrast, DECORE pruned the channels of
each layer simultaneously using a REINFORCE agent per
channel [29]. Each agent looked at each channel separately
and learned whether to prune or keep the channel.

Most of the reinforcement learning agents in the related
work were trained to compress a single model. The N2N
agent trained to compress ResNet18 was retrained for ten
policy update epochs to compress ResnNet34 [15]. The
agent was tested after completing the transfer learning. Their
results showed that transfer learning helped to accelerate the
search for better policies when the knowledge was transferred
to the deeper model. In contrast, Yang et al. proved that
generalization is possible by training a channel pruning agent
for CIFAR-100 and later testing it, without transfer learning,
on the same VGG19 architecture trained on ImageNet [18].
González et al. trained two DQNs to compress multiple
Convolutional Neural Networks simultaneously [27]. One
DQN learned to compress convolutional layers, whereas the
other learned to compress dense layers. Their exploratory
results show that two LeNet models, trained on fashion
MNIST and MNIST, respectively, have the same optimal
strategy for compressing them.

The described approaches have their advantages and
disadvantages. Reinforcement learning algorithms use a data
structure called experience replay to store samples generated
when compressing each layer. A sample consists of the data
related to one step: the current state of the environment s, the
action a taken in step s, the next state s′, and the reward r . The
experience replay contains samples from multiple episodes
(compressing a model numerous times using different
actions) to generate mini-batches of independent samples to
train the agents. Training an RL agent has a high memory
consumption because the experience replay holds hundreds
of thousands or even millions of samples. The memory
consumption is proportional to the number of samples stored
in the replay and the complexity of the representation for
the state of the environment. Once training is over, the
experience replay is no longer needed. In contrast, Stochastic
Optimization (SO) algorithms do not require an experience
replay. SO algorithms only store a small population of
possible solutions where each solution contains a value per
decision variable. For example, a decision variable can be to
compress or not to compress a channel. A decision variable
can also be by how much to compress a layer. Another
advantage of SO over reinforcement learning is that no
training is involved. SO methods perform simple operations,
like crossover and mutation, that can be performed in parallel
without a GPU. The only advantage of RL is that knowledge
can be transferred to other instances of the same problem or
even different domains. A generalist reinforcement learning
agent was trained simultaneously in various tasks like playing
Atari, chatting, captioning images, and stacking blocks with
a robotic arm [19].

III. METHODOLOGY
In this section, we present how we set up the environment
of model compression. Moreover, we explain how we use
Singular Value Decomposition (SVD) to find a Low-Rank
Factorization (LRF) of a layer’s parameters. In addition,
we describe the methodology for training a generalist rein-
forcement learning agent that uses singular value decompo-
sition to compress unseen models. Furthermore, we describe
the autoencoder architecture.

A. REINFORCEMENT LEARNING ENVIRONMENT
Model compression can be adapted as a Markov Decision
Process where a series of decisions are made to compress
a model. A RL agent can be used to look at the state s
of a feature map, decide on an action a that changes the
feature map into a new feature map s′, and a reward r is
awarded depending on the accuracy after compression and
the compression rate.

We eliminate the option of using layer weights to decide
how to compress a model for two reasons. The first reason
is that it is impractical for large models since dense layers
become hundreds of times larger than a feature map. For
example, VGG16 uses a weight matrix with shape (25088,
4096) for the first dense layer. A neural network is not able

136134 VOLUME 12, 2024

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

to receive an input of that size. Although the weight matrix
could be partitioned to feed it to the agent, that would work
better for pruning as the decision to prune each neuron can
be calculated independently. In contrast, feature maps are
more straightforward to process since Convolutional Neural
Networks (CNN) can handle them without partitioning them.
The second reason is that weights are not affected by the
actions in previous layers. Independently of what actions
were taken to compress previous layers, the weights of the
current compression target will be the same. In comparison,
the output feature map of a layer will change depending on
the action taken to compress that layer. A wrong strategy
will affect the output feature maps the most, whereas a good
strategy will produce a feature map close to the original.

We discarded using a layer’s configuration parameters
because the same model trained on different datasets will
have the same layer configurations. Imagine two VGG16
models trained on two different datasets. Since they have
the same architecture, they will have the same number of
units and kernel shapes. Although both models have different
weights, there is only one model from the agent’s perspective
due to using features that do not represent the knowledge of
the models. Despite the layers of each model being different,
the action taken to compress these models will be the same
as the features are the same. The only solution to this problem
is adding features like filter importance and layer importance
to the state representation. Nonetheless, this feature is slow to
calculate as it passes the entire dataset through the network to
measure the average percentage of zero activations for each
neuron in the neural network. For large datasets and models,
it is inconvenient.

We base the reward r of the environment on the objective
function of MnasNet [30]. However, we replaced the
latency with the number of parameters θθθ before and after
compression. Since we want to give a higher reward when
achieving higher compression, we use the complement of the
percentage of parameters after compression. Afterward, the
complement is multiplied by the accuracy after compression
Aa to keep a balance between compression and accuracy, such
as

r = Aa ·
(
1−

θθθa

θθθb

)
. (1)

This reward is only calculated once the episode ends. Only the
second compressed, dense layer has a nonzero reward due to
being the last action taken before evaluating the model. As for
the convolution, the reward was originally zero. Nonetheless,
we assign the same reward as the final reward so that the agent
learns faster.

In addition, SVD decomposes a matrix W of shape m× n
into three smaller matrices U , S, and V that, if multiplied,
produces the original matrixW as follows

Wm×n = Um×mSm×nV
⊺
n×n = Um×mNm×n. (2)

Since matrix S is a diagonal matrix with values from highest
to lowest, keeping only the highest c values will approximate

matrixW using fewer numbers, such as

Wm×n = Um×cNc×n. (3)

The same approach can be used to calculate an approxima-
tion of the outputO of a layer using fewer parameters: a batch
B is multiplied by the decomposition of the weight matrixW ,
as follows

Ob×n = Bb×mUm×cNc×n. (4)

Nonetheless, the number of singular values c must be
sufficiently small to reduce the number of parameters when
replacingW with matrices U and N , i.e.,

m× n > m× c+ c× n. (5)

After grouping by c and rewriting (5), the maximum number
of singular values to reduce the number of parameters in a
layer is given by: ⌊

m× n
m+ n

⌋
> c. (6)

This work uses a discrete action space, referred to as A,
with eleven possible actions. Each discrete action is mapped
to an integer value that represents a percentage. When taking
an action, the percentage is multiplied by the Maximum
number of Singular Values (MSV), ci, which allows the
number of parameters to remain almost equal. This MSV is
determined individually per layer via (6). Since multiplying
the product of ci and ai can result in non-zero decimals,
we opted to use the ceiling of the result as we require an
integer ki when specifying the shape of the tensors for layer
i, such as

ki =
⌈aici
100

⌉
. (7)

The actions for our experiments are 5, 10, 20, 30, 40, 50,
60, 70, 80, 90, and 100%. The action 100% is interpreted as
not compressing the current layer. The actions are the same
for convolutional and dense layers because the convolutional
layers are replaced by a Multi-Layer Perceptron Convolu-
tion (MLPConv) when compressing them. The MLPConv
uses dense layers to learn the filters of a convolutional
layer [9]. Since each of the units of the output dense layer
learns a filter, the kernel of the convolutional layer can
be reshaped so that each column has the weights of a
filter (Fig. 1). If the kernel has the same shape as the weight
matrix of a dense layer, SVD can be easily applied. Thus,
we can use the same actions for convolutional and dense
layers. In this work, the MLPConv only has one hidden layer
and the output layer. We assign the values of U and N to the
hidden dense and output layers, respectively.

The first step for predicting the output feature maps of the
MLPConv layer is to extract the patches of the feature map
that would be used when performing the convolution. Since a
dense layer will be predicting a convolution’s output feature
map, the patches must be flattened before being multiplied
by the reshaped kernel (Fig. 2). The predictions are then
reshaped to get the output feature map (Fig. 3).

VOLUME 12, 2024 136135

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

FIGURE 1. The weights of the kernel are reshaped into the shape of a
dense layer to replace the convolutional layer with an MLPConv layer. The
weights are reshaped into three columns for a kernel with three filters,
each associated with a filter output.

FIGURE 2. The MLPConv layer extracts patches of the feature maps and
flattens them before predicting the output. When applying a 3 × 3 filter
with one stride to a feature map with shape (4, 4, 2), four patches of
size (3, 3, 2) are flattened.

FIGURE 3. Each neuron of the MLPConv predicts a channel’s value for
each of the extracted patches. The predictions are reshaped to get the
output feature map.

The current state s is the input feature map of the target
layer of compression l. The input for convolutions is a 4D
tensor if we consider the batch dimension. Meanwhile, the
input of dense layers is a 2D tensor. Two DQNs estimate
the action-value function for the proposed environment. The
action-value function Q gives the value of an action a being
taken in the state s while following the politic π on the
following states until the end of compression. Because the
estimation depends on the state, action, and parameters of
the DQN (θθθ,ααα,βββ), the state value function is given by
Q(s, a;θθθ,ααα,βββ). The value cannot be calculated when there

is a transition between layer types because the update rule
of the DQN requires the estimation of the Q-value for the
next state s′. Thus, we used Q(s, a;θθθc,αααc,βββc) for estimating
the Q-value of the current state and Q(s′, a′;θθθd ,αααd ,βββd) for
estimating the value of the following state when there was
a transition between a convolutional layer and a dense layer.
The c and d stand for convolutional and dense, respectively.
The next state s′ is the input of the next layer to compress
instead of the output of the current layer since there might
be noncompressible layers between two compressible, such
as pooling layers. If we use the input of the next layer as s′

instead of the next compressible layer, s′ will never be used
to train the agent as there is no action to take there. Thus,
Q(s′, a;θθθ,ααα,βββ) will return inaccurate estimations.
The agent has two Deep Q-Networks. Although the feature

maps can be reshaped into the shape of a dense layer’s input
so that the same DQN can process both types of inputs,
we use a different DQN for convolutional and dense layers.
The reason for having two DQNs is that there is a spatial
relationship between pixels that could not be exploited if
the images were flattened. In dense layers, it only matters
whether the features are present or not and to what degree.
By having a DQN for convolutional layers, we are able to
use an agent with convolutional layers to exploit the spatial
relationship.

Since feature maps have different shapes at each layer,
we padded the feature maps with zeros so that all feature
maps have the same shape before being passed to the agent.
The shape was obtained using the maximum height, width,
and depth between all feature maps. Depending on the
layer type that will be compressed, the agent chooses which
network to use to select an action. A DQN compresses
convolutional layers (Table 2) and another compresses
dense layers (Table 1). We opted to predict the Q-value
of each feature map independently to use two-dimensional
convolutions. Since each feature map can lead to different
actions, we use the mode of the actions, which is the
action that most frequently has the highest Q-value. For
the DQNs, we use a dueling network architecture [31].
The networks can be divided into two parts. The first
part generates features, whereas the second part has two
branches to calculate the action-value function using the
features generated in the first part. The first of the branches
calculates the state-value estimationV (s;θθθ,ααα). Meanwhile,
the second branch calculates the advantage of each action
A(s, a;θθθ,βββ). The parameters θθθ , ααα, and βββ are the parameters
of the feature extractors, the first branch and the second
branch, respectively. The DQNs were trained using Double
Q-learning [32]. The Q-values were calculated using the
equation proposed in [31]:

Q(s, a;θθθ,ααα,βββ) = V (s;θθθ,ααα)

+

[
A(s, a;θθθ,βββ)−

1
|A|

∑
a′∈A

A(s, a′;θθθ,βββ)

]
.

(8)

136136 VOLUME 12, 2024

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

TABLE 1. Dueling DQN for compressing dense layers. The first branch
calculates the state-value estimation, and the second calculates the
advantage of each action.

TABLE 2. Dueling DQN for compressing convolutional layers.
Convolutional layers generate the features before being flattened and
passed to two branches. The first branch calculates the state-value
estimation, and the second the advantage of each action.

B. EXPERIENCE REPLAY
We use a Prioritized Experience Replay (PER) to reduce
the agent’s training by being more sample-efficient than
regular experience replay. PER assigns a sample probability
depending on the temporal difference error of the sample.
We use the equation proposed in [33] to assign the probability
of choosing sample i:

P(i) =
pα
i∑
k p

α
k
, (9)

where pi = 1/rank(i) assigns a probability depending on
the rank of the sample, and α is the importance of the
prioritization. We use α = 1 for all of our experiments. The
rank(i) represents the ranking of each sample after ordering
them from the highest temporal difference to the lowest.
The temporal difference of a sample is calculated, using a
γ = 0.99, as:

δ = r + γQtarget (s′, argmaxa′ Q(s
′, a′))− Q(s, a). (10)

After generating the first samples using Algorithm 1,
Equation 10 dictates which samples have a higher priority for
being selected for training. The samples are generated using
ϵ−greedy exploration with an ϵ starting at 1.0 and an ϵ decay
of 0.9987 for 2000 training epochs. The minimum ϵ is 0.1.
Every 50 epochs, the parameters of the DQNs are copied to
the target models. When updating the parameters according
to [33], we employ the weighted importance sampling wi to

assign importance depending on the temporal difference error
δi. The weights are calculated as follows

wi = (N · P(i))−β , (11)

where β has a starting value of 0.5 and steadily increases with
a step size of (1.0 − 0.5)/2000 for 2000 epochs. The idea
behind weighted importance sampling is that the optimizer
gives higher importance to reducing the temporal difference
error of less frequent states as the probability of sampling
those states again is low given the number of samples in the
experience replay. In contrast, more frequently sampled states
have less importance as they will be sampled more often. The
complete algorithm is shown in Algorithm 2.

When inserting a new sample in the experience replay
buffer, the replay divides the samples by dataset origin. The
samples were stored separately to train the generalist agents
with an equal number of samples from each dataset. Because
there are two kinds of features (conv and dense), two replay
buffers store them separately. The convolution replay buffer
has a size of 20000. In contrast, the dense replay buffer has a
size of 10000.

Algorithm 1 Generate sample by compressing a model.
Require: Model M , Layers to compress L,

Agent(θθθc,αααc,βββc, θθθd ,αααd ,βββd), Selected images D,
Convolution replay Rc, Dense replay Rd , Epsilon-greedy
value ϵ

T ← ∅
for l in L do

s← Feature_Maps(l, D)
if type(l) is conv then

at ← argmaxaQ(s, a;θθθc,αααc,βββc, ϵ)
end if
if type(l) is dense then

at ← argmaxaQ(s, a;θθθd ,αααd ,βββd , ϵ)
end if
s′, rt ,done← Compress(M , l, at , D)
T ← T ∪ (s, at , rt , s′)
if done then

Stop compression
end if

end for
Store (s, at , rt , s′) for last convolution.
Store T in replay buffers Rc and Rd

C. AUTOENCODER FOR STATE SELECTION
A subset of images D is selected from each dataset to
train the agents. The datasets are Fashion MNIST [34],
Kuzushiji-MNIST [35], and MNIST [36]. We select the most
representative images of each class to reduce the number
of feature maps used to train the agents. An autoencoder
is trained for each training dataset to generate an image
embedding for selecting the images. As all datasets are of low
resolution, we use a simple autoencoder with dense layers
(Table 3). The autoencoder generates an embedding of size

VOLUME 12, 2024 136137

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

Algorithm 2 Reinforcement Learning strategy for selecting
the compressors for N layers
Require: Set of datasets D, Batch size nb, Num. of weight
updates nu, Num. of tests T , Layers to compressL, Epochs
ne, LeNet Model M , Priorization importance α, Weighted
importance sampling β.

for d in D do
md ← Train(M) with d

end for
rhighest← 0
Rc← Convolution replay
Rd ← Dense replay
R← (Rc,Rd)
θθθc,αααc,βββc← new DDQN
θθθd ,αααd ,βββd ← new DDQN
A← (θθθc,αααc,βββc, θθθd ,αααd ,βββd)
ϵ ← 1.0
for i = 1, . . . , ne do

for d in D do
Generate_Sample(md ,L,A,R, dtrain, ϵ)

end for
for i = 1, . . . , nu do

bc, bd ← sample(Rc, nb, α), sample(Rd , nb, α)
θθθc,αααc,βββc← train(θθθc,αααc,βββc, bc, β)
θθθd ,αααd ,βββd ← train(θθθd ,αααd ,βββd , bd , β)

end for
ϵ ← max{0.1, 0.9987× ϵ}
if i mod 50 equals 0 then

Copy weights from agent to target agent
r ← 0
for d in D do

r ← r + test(dval)
end for
r ← r/len(D)
if r >= rhighest then

rhighest← r
Save weights of the DQNs

end if
end if

end for

64. The embedding is used to calculate the centroid per
class using K-means. After obtaining the centroids, the image
closest to each centroid is stored in D to generate the feature
maps used to train the agents. The autoencoder is then reused
to select the most representative validation and test sets of
images.

TABLE 3. Architecture of the autoencoder used to generate the image
embeddings. The activation function of the first dense layer was the
rectifier linear unit, whereas the second dense layer used a sigmoid. The
autoencoder generates an embedding of length 64.

D. REINFORCEMENT LEARNING EXPERIMENTS
Our objective is to reduce the time needed to compress a
model. This time can be reduced in two ways. The first is
to avoid time-consuming processes, such as training an agent
or using a stochastic search algorithm to find an acceptable
compression scheme. The second is to prevent fine-tuning as
much as possible.

Each dataset is divided into training, validation, and test
sets. We use the training set to generate samples and fill the
experience replay. The validation set is used for saving the
model with the highestmean reward on all validation datasets.
Thus, it is used for model selection. Finally, the test set is used
to evaluate how good the agents are.

We performed a set of experiments to check the viability
of time-saving. First, the agents were trained using one or
more datasets. Training with only one dataset was meant to
be used as a reference point to measure how good generalist
agents are compared to reusing agents trained to compress a
singlemodel. If an agent trained on a single dataset performed
equally or better than a generalist agent, then there is no
reason to train a generalist agent. Second, metrics were stored
before and after each fine-tuning step to gauge the impact of
fine-tuning in improving accuracy.

The metrics we used were the accuracy loss (1 Acc) and
the remaining parameters/weights percentage. The accuracy
loss was calculated as the difference between the accuracy
before and after compression. The percentage of remaining
parameters was calculated as the number of parameters
after compression divided by the number of parameters
before compression. Finally, the result was multiplied by one
hundred to make it a percentage.

We tested our methodology on LeNet-5, which has
two convolutional layers and two dense hidden layers.
The number of units per layer was 6, 16, 120, and 84,
respectively. The agents compressed three LeNet layers: the
last convolutional layer and the two hidden dense layers. The
MSV for these three layers were 14, 92, and 49, respectively.
We trained the agents using the selected images from the
training set. The selected images from the validation set were
used for model selection. The chosen images from the test
set were used to decide how to compress the models and
evaluate the agents’ performance. In addition, we evaluated
the performance using the whole test set to verify if the results
would be the same as using the most representative images.

The experiments were run on a server with 128GB of RAM
and a V100 GPU with 32 GB. The time it took to train the
agents for compressing the models for FMNIST, KMNIST,
andMNISTwas 4.5 days, 4.5 days, and 4.6 days, respectively.
The training time for the agents that were trained to compress
two datasets was 9.5 days (FMNIST and KMNIST), 9.5 days
(FMNIST and MNIST), and 9 days (KMNIST and MNIST).

E. VGG16 AND IMAGENET EXPERIMENTS
The complexity of training a generalist agent for a larger
and more complex dataset, such as ImageNet, dramatically

136138 VOLUME 12, 2024

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

increases compared to grayscale datasets due to the images’
size and quantity. There are three inconveniences for more
complex datasets:
• Memory consumption dramatically increases. It
increases due to loading batches of the dataset into RAM
and storing the samples in the experience replay.

• Fine-tuning can take hours or even days. Thus, avoiding
fine-tuning is highly recommended.

• More layers are to be compressed, resulting in a bigger
search space.

Given the inconveniences we just pointed out, we focused
our experiment on ImageNet to verify the existence of
compression solutions that do not require fine-tuning to
prevent high accuracy loss.

We used a Genetic Algorithm (GA) to perform a stochastic
search. We decided to handle model compression as a
multiobjective optimization problem with two conflicting
objectives. The first objective function is the accuracy,
whereas the second is the number of parameters. The former
is maximized, while the latter is minimized.

We initialized the GA with a population Pt of 50 randomly
created solutions. We use the subscript t to indicate that the
population will change during each generation. A solution is
represented as a list of integer values. The list has a length
of l, where l is the number of layers to be compressed. Each
value in the list corresponds to the percentage of MSV to use
in each layer. The minimum is 1, whereas the maximum is
101. The value 101 is interpreted as skipping compression of
that layer.

In each generation, we generate λ = 26 descendants
using crossover or mutation and store them in Qt (Algo-
rithm 3). After generating λ children, the children are
evaluated using Algorithm 4. Finally, Pt+1 is filled with 26
solutions selected from Pt and Qt . The process is repeated
100 generations.
• Selection: We use the same approach as the NSGA-II
to find a spread of solutions in the Pareto Front that can
meet user demands [44].

• Crossover: We perform a two-point crossover using
two random individuals of the population P to disrupt
solutions as much as possible for better exploration.
Only the first offspring is stored in Q.

• Mutation: We mutate the chromosome by adding a
value v to each position. The value v is generated from
a uniform distribution in the interval of [−10, 10]. After
adding the values to the chromosome, each position in
the chromosome is clipped to keep it in the interval
[1, 101].

We store in F the non-dominated solutions in the Pareto
Front (PF) due to the trade-off between accuracy and
compression. Non-dominated solutions are those that are not
worse than other solutions in all objective functions. The PF
contains the best solutions that can be of interest to meet user
demands. During each generation, solutions in F and Qt are
compared to determine if one or more solutions in F should
be replaced by a solution in Qt .

Algorithm 3 Genetic Algorithm
Pt ← random population of 50 solutions
F ← Pareto optimal solutions from Pt
for t ← 0 to N do

Qt ← ∅
for i← 0 to λ do

r ← random(0,1)
if r < 0.5 then

Qt ← Qt ∪ crossover(Pt)
else

Qt ← Qt ∪mutation(Pt)
end if

end for
Evaluate fitness Qt
Update Pareto front FusingQt
Pt ← NSGA2(Pt ,Qt , µ)

end for

Algorithm 4 Fitness Function
Require: solution s, list of layers to compress l, model θ ,

dataset D
θc← Copy θ

for layer i in l do
w, b← θ i ▷ Extract weights and bias from layer i
if i is Conv2D then

w← Reshape(w)
U ,N ← SVD(w, si) ▷ si singular values
θ ic← MLPConv(U ,N , b)

else
U ,N ← SVD(w, si) ▷ si singular values
tu, tn← Dense(U),Dense(N , b)
θ ic← Sequential(tu, tN)

end if
end for
a← Accuracy(θc,D)
p← count parameters in θc
Return a, p

IV. RESULTS
In this section, we present the results of our two experiments.
First, we present the results for the generalist agent using
reinforcement learning. Then, we show the results of
the stochastic search using Genetic Algorithms to find
the parameters to compress VGG16 using Singular Value
Decomposition (SVD).

A. REINFORCEMENT LEARNING
The results are divided into two parts. The first part shows
the fine-tuning results to check if it is indispensable or can
be skipped when using Singular Value Decomposition to
compress models. The second part presents the performance
of generalist agents when compressing unseen models.
Furthermore, the effect of using a subset of images to select
actions versus the whole test set is also presented.

VOLUME 12, 2024 136139

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

The agents are identified by the first letters of the datasets
on which they were trained. The letters were concatenated
alphabetically (F, K, and M). An agent trained using the
feature maps of FMNIST is referred to as agent F. Agent FK
is the agent trained using the feature maps of FMNIST and
KMNIST. Agent KM is the agent trained using the feature
maps of KMNIST and MNIST.

Fine-tuning is a process that can enhance the accuracy.
Nonetheless, it can be too time-consuming for some datasets.
When fine-tuning is avoided, the results are deterministic,
as we used Singular ValueDecomposition (SVD) to compress
the models. Since results are non-deterministic when fine-
tuning is involved, the mean accuracy loss (Mean1 Acc) is
only reported for the experiments that apply fine-tuning as
the same sequence of actions might lead to slightly different
results.

The compressed LeNet model trained on MNIST reached
a peak reward of 0.7608 when avoiding fine-tuning; this was
the highest reward, considering all the datasets. The reward
was reached by compressing the model to 12.1965% of its
original number of parameters and losing 11.02% of accuracy
(Table 4). The best solution accuracy-wise lost 6.09% of
accuracy and kept 16.9481% of the parameters. The accuracy
dropped drastically for FMNIST and KMNIST when com-
pressing without fine-tuning. The smallest accuracy loss for
FMNIST was 34.77%, whereas it was 45.06% for KMNIST.

TABLE 4. Top 10 highest rewards found during exploration for each
dataset. Only results without fine-tuning are shown. The highlighted rows
show the results with the highest accuracy. The accuracy, number of
parameters, and reward were deterministic due to compressing with
Singular Value Decomposition.

Fine-tuning increased the accuracy considerably after
compressing with SVD. The accuracy loss for FMNIST
and KMNIST was reduced to less than 10% (Table 5). For
FMNIST, all of the top 10 highest combinations by reward
had an accuracy loss of less than 10%. The model for
KMNIST was more challenging to compress as four of the
top 10 had an accuracy loss greater than 10%. Finally, all the
solutions for MNIST in the top 10 had less than 7% accuracy
loss.

MNIST had the lowest mean accuracy loss when fine-
tuning. The accuracy decreased by only 1.54% while using
only 11.7428% of the parameters. In contrast, the lowest
accuracy loss was 5.37% and 8.72% for FMNIST and
KMNIST, respectively.

TABLE 5. Top 10 highest rewards found during exploration for each
dataset. Accuracy was evaluated after fine-tuning. The highlighted rows
show the results with the highest accuracy among the solutions with the
highest reward.

The Pareto front shows the effect of fine-tuning on
accuracy loss. The Pareto front is a set that contains all
solutions that are not better in every dimension than any
other solution. In our case, the dimensions are the accuracy
loss and the percentage of parameters remaining after
compression. Multiple solutions do not require fine-tuning
while decreasing accuracy by less than 10%. However, those
solutions use more than 80% of the original weights before
compression (Fig. 4). In contrast, solutions that involve fine-
tuning can compress the models to less than 20% of their
original size while losing less than 10% of accuracy.

The top 10 solutions per dataset reach an accuracy loss
of less than 10% within less than 80 fine-tuning epochs. For
example, the LeNet model with 5344 parameters trained on
FMNIST requires almost 40 epochs for a 10% accuracy loss
(Fig. 5). In contrast, the same model with 5344 parameters
requires less than 20 epochs to reach a higher accuracy on

136140 VOLUME 12, 2024

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

FIGURE 4. Pareto front per dataset for non-dominated solutions of model
compression. The front is shown for solutions without fine-tuning and
solutions with fine-tuning. The elements of both fronts are not the same
since fine-tuning allows more aggressive compression schemes.

MNIST. Finally, KMNIST requires almost double the number
of parameters to reduce the accuracy loss to less than 10%.

The combination of actions with the highest reward was
the same for FMNIST and MNIST. The sequence 20, 5,
and 10 had the highest reward for both datasets. When fine-
tuning, all top 10 solutions for FMNIST andMNIST used 5%
of the MSV for the first dense layer. For KMNIST, only one
sequence used 5% of the MSV. As for the second dense layer,
most sequences for FMNIST and MNIST used 10% of the
MSV. There was only one exception for FMNIST that did not
use 10% of the MSV. Meanwhile, there were two exceptions
for MNIST. As for KMNIST, a wide variety of actions that
ranged from 20 to 40% were used to compress the second
dense layer.

The compression of the convolutional layer has a high
impact on accuracy. Table 5 shows a correlation between
the percentage of MSV and the accuracy. For FMNIST
and KMNIST, slightly compressing the convolutional layer
achieved the highest accuracy among solutions in the top 10.
In the case of MNIST, not compressing the convolutional
layer was the best choice for maximizing the accuracy.

Most of the time, the agents chose the same actions,
whether or not the whole test set was used for selecting
actions. There were only three exceptions, all for KMNIST
(Table 6). The differences were always only one action in the
sequence. In two cases, the difference was in the second dense
layer, whereas the last case was in the convolutional layer.
The differences in the dense layers were one action away in
the discrete action space. For agent F, the actions used were
5% and 10%. The same happened for agent KM, with actions
being 20% and 10%. Agent K was the only agent that chose
different actions for the convolutional layer. The actions were
not subsequent in the action space as there was one action
between them (action 50%).

Only two agents chose a solution within the top 10 for
KMNIST. The first agent was Agent K, whereas the second
was Agent KM. Agent K selected the second top suggestion,
while Agent KM selected the sixth. These two agents
produced solutions in the top 10 only using the subset of
images instead of the entire dataset.

Agent FMwas the only one who learned the best policy for
the datasets it was trained on. We use the term best instead
of optimal as it is unknown if it is the optimal policy because
not all solutions were explored. Furthermore, the action space
was discretized with actions that may not encompass the
optimal number of singular values. The best policy for both
models (FMNIST and MNIST) was using actions 20, 5, and
10 (Fig. 6). The other agents were not far off from using the
best policy since they had part of the sequence right. For
example, Agent KM suggested the sequence (100,5,20) for
the subset of KMNIST. It was only one action away from the
best policy (100, 10,20). Agents F and FK chose (100,5,10)
and (60,5,10) for FMNIST, which missed the recommended
number of singular values to use in the convolutional layer.
Despite not choosing the best policy, the distances in mean
reward were only 0.0116 and 0.0061, respectively.

Even the agents trained on a single dataset achieved decent
results when tested on models they were not trained to
compress. Agent K compressed the models for FMNIST and
MNIST to less than 15% while keeping the accuracy loss to
less than 5%. Both agents F and M performed poorly when
tested onKMNIST as they compressed the second dense layer
too much. Top solutions for KMNIST used between 20 and
40% of the MSV. In contrast, agents F and M used less than
or equal to 10% of the MSV.

The agents generated compression solutions mainly in
the Pareto front of each dataset. Although there are some
exceptions, there is little distance between these solutions and
the Pareto front. The suggested solutions for FMNIST were
all in the Pareto front except for the solutions of agent K and
KM (Fig. 7). It is barely visible that the solutions of agent FM
and the best-known policy are overlapping. Only two agents
generated solutions in the Pareto front for KMNIST (Fig. 8).
One was agent K, whereas the other was agent KM. Finally,
only agent FK did not propose a solution in the Pareto front
for MNIST (Fig. 9).

B. GENETIC ALGORITHM FOR COMPRESSING VGG16
In this subsection, we present our findings in attempting to
verify if it is possible to skip fine-tuning when compressing a
large model. We used a Genetic Algorithm (GA) to compress
the VGG16 model using a chromosome of 13 integer values.
Each value corresponds to a percentage of the number of
singular values to use for compressing a particular layer.

We obtained 67 solutions in the Pareto front. Nonetheless,
most were located in the lower spectrum of the accuracy
domain (Fig. 10). The point farthest to the right represents
the uncompressed model. There are only 3 solutions that are
close to the same level of accuracy.

VOLUME 12, 2024 136141

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

FIGURE 5. Mean accuracy loss for the validation set when fine-tuning the top 10 solutions per dataset. Labels are in
descending order by reward.

FIGURE 6. Mean reward of the agents for different datasets. The mean
considers the subset of the test set and the full set. The error bar shows
the standard deviation of the mean reward due to the agent choosing
different actions for the full test set and a subset of it.

The solutions with the highest accuracy in the Pareto front
barely compressed the convolutional layers. In contrast, the
most compressed layer was the first hidden dense layer. The
second row in Table 7 only shows a solution that involves
only compressing the first hidden dense layer. Meanwhile,
the third solution aggressively compressed both dense layers,
whereas barely compressing two convolutional layers. The
aforementioned solution produced an accuracy loss of 0.58%
and kept less than half of the original amount of parameters.
The fourth solution is apparently the best solution due to
using 26.87% of the parameters and losing only 1.14% of
accuracy. As for the fifth and sixth, both compressed the first
dense layer using 2% of the MSV and avoided compressing
the second dense layer. Although both used close to 25% of

FIGURE 7. Pareto front of compression solutions found during
exploration for FMNIST. In addition, the solutions proposed by agents are
also included.

the parameters, the fifth obtained a higher accuracy than the
sixth due to not compressing significantly the convolutional
layers. In comparison, the sixth solution used only 8% to
compress one of the convolutional layers, which resulted in a
drop of 9.36% accuracy with respect to the previous solution.

V. DISCUSSION
This research aims to reduce the time it takes to compress
a model by reusing a reinforcement learning agent instead
of searching from scratch for the optimal parameters to
compress that model. In addition, we analyzed the impact
of fine-tuning after compression to verify if it can be
avoided.

Fine-tuning can be avoided depending on the desired
amount of compression when using an action space of eleven

136142 VOLUME 12, 2024

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

TABLE 6. Result of each agent for each dataset when using a subset of images or the whole test set. The reward column shows the reward of a single
test. Meanwhile, the mean reward considers all the samples generated during exploration independently of the agent trained. Highlighted rows show the
agents that suggested different sequences of actions for the same dataset when using the whole test set and a subset of the test set. Delta Acc refers to
the difference in accuracy for one particular test. The same applies to the reward.

TABLE 7. Solutions in the Pareto front for VGG16 trained on ImageNet. Only solutions with an accuracy loss of less than 20% are presented. Only
13 layers were compressed. The column B2C1 represents the layer block2_conv1. The same nomenclature applies to the other convolutional layers. The
value for each layer corresponds to the percentage of the maximum number of singular values (MSV) used to compress that layer. The percentage
101 corresponds to not compressing the layer. The first row corresponds to not compressing the model.

actions. The Pareto front before fine-tuning showed that
multiple solutions for each dataset have minimal accuracy
loss. For FMNIST and KMNIST, LeNet can be reduced

by less than 20% at most. In comparison, MNIST can be
reduced by more than 80% without fine-tuning. Knowing
that fine-tuning can be avoided in some cases, it can be a

VOLUME 12, 2024 136143

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

FIGURE 8. Pareto front of compression solutions found during
exploration for KMNIST. In addition, the solutions proposed by agents are
also included.

FIGURE 9. Pareto front of compression solutions found during
exploration for MNIST. In addition, the solutions proposed by agents are
also included.

FIGURE 10. Pareto front found by the genetic algorithm for VGG16. First
point on the right represents the uncompressed model.

considerable advantage to avoid fine-tuning larger datasets
that require hundreds of hours.

VGG16 can be compressed without fine-tuning. We found
four solutions in the Pareto front that compress the VGG16
model between 85.90% and 25.35%. Furthermore, the
accuracy loss for those solutions is within an acceptable range
as the highest accuracy loss is only 5.78%. The above proves
that it is possible to compress larger models using SVD
without fine-tuning if there is an adequate resolution space.

Increasing the resolution of the action space can lead to
better results. Currently, the agents choose between eleven
values that might not be close to the optimal values required
by the models. The maximum number of singular values
(MSV) for the convolutional and two hidden dense layers
we compressed was 14, 92, and 49, respectively. The action
of avoiding compressing a layer adds one to each of the
numbers, which results in 68,355 possible solutions ((14 +
1) × (92 + 1) × (49 + 1)). Our action space only considers
1,331 solutions (113 since we have eleven actions for three
layers). Increasing the action space has the disadvantage that
more exploration is needed. Following the same logic, there
are 8.5929147 × 1033 solutions for 13 layers of VGG16
(105 × 116 x 210 × 231 x 231 × 419 x 461 × 461 × 461 ×
461 × 461 × 3522 x 2049).
There are multiple ways to increase the resolution of the

action space. The first option is to use more percentages
for the actions, which can be achieved by reducing the step
size of the discrete action space. Our experiment on VGG16
represents this option. An alternative uses a continuous action
space with a lower bound close to zero and an upper limit
of one. This option can enhance the results because values
between two neighboring actions might still increase the
compression rate without a significant accuracy loss. The
second option is to use the number of singular values rather
than the percentages. However, this would require more
exploration as the number of solutions would go from 1,331
to 68,355. In addition to the larger search space, another
disadvantage is that there would be actions that cannot be
taken in layers with few neurons. If a layer can use over one
thousand singular values at most and another a few hundred,
many actions that could be taken in the first layer would
not be usable for the second layer. Thus, a mask would be
needed so that those actions are ignored. Given these incon-
veniences, using percentages is a better alternative for larger
models.

A subset of images is enough to train the agents instead
of using the whole dataset. Since the subsets were put
together using the most representative image of each class,
the suggested actions did not change in most cases when
using a subset rather than the complete test set. The
agents obtained a higher reward when using subsets rather
than the entire dataset. There was only one exception
where using the entire dataset achieved a higher reward.
Another autoencoder architecture is needed to choose the
subset for more complex datasets. MnasNet, an optimized
architecture found in [30] using reinforcement learning,
can encode the datasets’ images. MnasNet was used to
generate an embedding per image [37]. The embeddings

136144 VOLUME 12, 2024

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

were then aggregated, using K-means, to create a dataset
embedding that was used to train a model for selecting
which network architecture was the most appropriate for each
dataset.

There is no need to train an agent to compress each
model since reusing a model can achieve results similar to
those of the agents trained in that model. Our generalist
agent trained on FMNIST and KMNIST beat other strategies
for compressing models trained on MNIST (Table 8). The
only exception was the FK agent based on AdaDeep [27],
which had a higher compression rate and less accuracy
loss. Nonetheless, the FK agent based on AdaDeep had
fixed parameters for the compressors and could suggest the
optimal policy for its action space. In contrast, our FK
agent based on SVD did not apply the optimal strategy,
meaning there is room to grow if the agent can learn the
optimal policy for FMNIST since FMNIST has the same
optimal policy as MNIST. Although the best-known policy
has 1.94% more accuracy loss than the FK agent based on
AdaDeep, it has 63% of the parameters of their compressed
architecture. This shows that the time it takes to compress
a model can be drastically reduced by reusing a generalist
agent instead of training an agent from scratch without
transfer learning. Furthermore, other researchers have opted
for a similar approach. Yang et al. [18] successfully reused an
agent trained using CIFAR-10 to avoid training an agent from
zero.

TABLE 8. Results for MNIST found in the related work.

Our methodology has multiple advantages. The first
advantage is that our approach can compress various kinds
of deep learning architectures as long as the architectures
use dense layers. We focused on compressing models for
computer vision tasks to exploit the similarity between
datasets. However, similarities can also be exploited in other
domains. The second advantage is that different layers can be
compressed as long as the layers can be rewritten usingmatrix
multiplications of two-dimensional tensors. For example,
we used dense layers to generate the convolution output
by reshaping the kernel and the patches extracted from the

feature maps, which was proposed in [9]. Extracting the
patches and flattening them for the matrix multiplication is
easily achieved using TensorFlow’s extract_patches function.
Similarly, researchers in Natural Language Processing (NLP)
have transitioned from Long-Short Term Memory (LSTM)
layers to transformers since transformers allow more paral-
lelization [38]. The third advantage is that our methodology
drastically reduces the number of states used for training the
agent, which has multiple benefits. One benefit is that the size
of the experience replay buffer is smaller, easing the memory
requirements of the computer used to train the generalist
agent. Another benefit is that fewer iterations are needed to
train the agent as there is less information to learn. In contrast,
other approaches use thousands of images to decide how to
compress, and the agent must learn how the feature maps are
modified by each action [27]. Finally, training time is also
reduced due to making predictions for only a subset of images
rather than the entire dataset.

There are multiple disadvantages to the proposed method-
ology. One disadvantage is that it increases the number
of layers in a model, which can be undesirable for huge
models when fine-tuning due to the vanishing gradient
problem. Another disadvantage is that compressing non-
dense layers requires reshaping the batch of features, which
can significantly increase the execution time, depending
on the implementation. If it can be implemented using
TensorFlow’s reshape function, it is a fast implementation
because it is reusing the data buffer instead of rearranging
the data in memory. In contrast, the transpose function is
less efficient because it rearranges the data into a new tensor.
Another disadvantage is that we train two DQNs instead of a
single model. The ultimate drawback of this solution is that it
fails to cater to user demands. Since demands are not part
of the training loop, the user might not favor the solution
provided by the agent.

We plan to apply reinforcement learning algorithms, such
as Deep Deterministic Policy Gradient (DDPG) and Proximal
Policy Optimization (PPO), to handle compression as a
continuous action space since more refined precision is
needed to avoid fine-tuning. Furthermore, reinforcement
learningwith human feedbackmight prove helpful inmeeting
user demands. Christiano et al. showed in [39] that they can
‘‘successfully train complex novel behaviors with about an
hour of human time’’ by making a human choose the better
option between two samples. This strategy can drastically
reduce the training time of the agent if, as they mention, ‘‘it is
possible to reduce the interaction complexity by roughly three
orders of magnitude.’’ Finally, we also intend to analyze the
effect of recursively applying Singular Value Decomposition.
Singular Value Decomposition has the potential to be used
recursively for compressing models. Since compressing the
model using SVD replaces dense layers with two smaller
dense layers, each of the two smaller dense layers can also
be replaced with another two dense layers. Nonetheless, this
approach increases the depth of the model, which can be an
inconvenience for deeper models if they are fine-tuned. The

VOLUME 12, 2024 136145

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

inconvenience comes from the vanishing gradient that will
cause the parameters of the first layers of a deepmodel to have
a gradient close to zero, resulting in parameters that might not
be updated due to having a low impact on the loss function.

VI. CONCLUSION
In this work, we proposed a methodology for training a
generalist agent that uses Singular Value Decomposition
(SVD) to compress convolutional neural networks that the
agent was not trained to compress. The agent used a
discrete action space mapped to compression percentages to
propose compression solutions in the Pareto front of explored
solutions.

Singular Value Decomposition is a powerful tool for
model compression, offering the potential to approximate
the parameters of layers with minimal accuracy loss. While
aggressive compression of multiple layers can lead to
increased accuracy loss, this can be mitigated by increasing
the resolution of the action space or fine-tuning over a
relatively small number of epochs. In addition, SVD can
be recursively applied to further compress layers already
undergoing SVD compression.

In the future, we plan to measure the impact of recursively
applying SVD in model compression. As user demands are
essential, we also intend to research reinforcement learning
with human feedback for model compression.

We exhort others to enhance the ideas presented in this
paper to achieve better results. Additionally, we encourage
the development of a system that facilitates compression for
non-experts. A system that can compress models for non-
expert users can accelerate the adoption of deep learning
models in other fields by meeting hardware requirements in
an affordable time.

REFERENCES
[1] J. M. Alvarez and M. Salzmann, ‘‘Learning the number of neurons in

deep networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 2270–2278.

[2] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient ConvNets,’’ 2016, arXiv:1608.08710.

[3] J. Chang, Y. Lu, P. Xue, Y. Xu, and Z. Wei, ‘‘Automatic channel pruning
via clustering and swarm intelligence optimization for CNN,’’ Appl. Intell.,
vol. 52, no. 15, pp. 17751–17771, 2022, doi: 10.1007/s10489-022-03508-
1.

[4] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, ‘‘Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,’’
2016, arXiv:1607.03250.

[5] M. S. Hasan, R. Alam, andM. A. Adnan, ‘‘Compressed neural architecture
utilizing dimensionality reduction and quantization,’’ Appl. Intell., vol. 53,
no. 2, pp. 1271–1286, 2023, doi: 10.1007/s10489-022-03221-z.

[6] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro,
and F. Kawsar, ‘‘DeepX: A software accelerator for low-power deep
learning inference on mobile devices,’’ in Proc. 15th ACM/IEEE Int. Conf.
Inf. Process. Sensor Netw. (IPSN), Apr. 2016, pp. 1–12.

[7] M. Zhang, F. Liu, and D. Weng, ‘‘Speeding-up and compression
convolutional neural networks by low-rank decomposition without fine-
tuning,’’ J. Real-Time Image Process., vol. 20, no. 4, p. 64, 2023, doi:
10.1007/s11554-023-01274-y.

[8] S. Sun, Y. Cheng, Z. Gan, and J. Liu, ‘‘Patient knowledge distillation for
BERT model compression,’’ 2019, arXiv:1908.09355.

[9] M. Lin, Q. Chen, and S. Yan, ‘‘Network in network,’’ 2013,
arXiv:1312.4400.

[10] F. Chollet, ‘‘Xception: Deep learning with depthwise separable convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 1251–1258, doi: 10.1109/CVPR.2017.195.

[11] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
‘‘A comprehensive survey of neural architecture search: Challenges and
solutions,’’ ACM Comput. Surv., vol. 54, no. 4, p. 134, 2022, doi:
10.1145/3447582.

[12] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018, pp. 8697–8710, doi:
10.1109/CVPR.2018.00907.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9, doi: 10.1109/CVPR.2015.7298594.

[14] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, ‘‘Efficient neural
architecture search via parameters sharing,’’ in Proc. 35th Int. Conf.
Mach. Learn., 2018, pp. 4095–4104.

[15] A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, ‘‘N2N learning:
Network to network compression via policy gradient reinforcement
learning,’’ 2017, arXiv:1709.06030.

[16] Y. He, J. Lin, Z. Liu, H. Wang, L.-J. Li, and S. Han, ‘‘AMC: AutoML
for model compression and acceleration on mobile devices,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 815–832, doi: 10.1007/978-3-030-
01234-2.

[17] S. Liu, J. Du, K. Nan, Z. Zhou, H. Liu, Z. Wang, and Y. Lin,
‘‘AdaDeep: A usage-driven, automated deep model compression
framework for enabling ubiquitous intelligent mobiles,’’ IEEE Trans.
Mobile Comput., vol. 20, no. 12, pp. 3282–3297, Dec. 2021, doi:
10.1109/TMC.2020.2999956.

[18] Z. Yang, Y. Zhai, Y. Xiang, J. Wu, J. Shi, and Y. Wu, ‘‘Data-
aware adaptive pruning model compression algorithm based on a group
attention mechanism and reinforcement learning,’’ IEEE Access, vol. 10,
pp. 82396–82406, 2022, doi: 10.1109/ACCESS.2022.3188119.

[19] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov,
G. Barth-Maron, M. Gimenez, Y. Sulsky, J. Kay, J. T. Springenberg,
T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess, Y. Chen, R. Hadsell,
O. Vinyals, M. Bordbar, and N. de Freitas, ‘‘A generalist agent,’’ 2022,
arXiv:2205.06175.

[20] S. Lange and M. Riedmiller, ‘‘Deep auto-encoder neural networks in
reinforcement learning,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2010, pp. 1–8, doi: 10.1109/IJCNN.2010.5596468.

[21] M. Agarwal, S. K. Gupta, M. Biswas, and D. Garg, ‘‘Compression
and acceleration of convolution neural network: A genetic algorithm
based approach,’’ J. Ambient Intell. Humanized Comput., vol. 14, no. 10,
pp. 13387–13397, 2023, doi: 10.1007/s12652-022-03793-1.

[22] Y. Zhang, G. Wang, T. Yang, T. Pang, Z. He, and J. Lv, ‘‘Compression
of deep neural networks: Bridging the gap between conventional-based
pruning and evolutionary approach,’’ Neural Comput. Appl., vol. 34,
no. 19, pp. 16493–16514, 2022, doi: 10.1007/s00521-022-07161-0.

[23] H. Zhan, W. M. Lin, and Y. Cao, ‘‘Deep model compression via two-
stage deep reinforcement learning,’’ in Proc. Joint Eur. Conf. Mach. Learn.
Knowl. Discovery Databases. Cham, Switzerland: Springer, Sep. 2021,
pp. 238–254.

[24] W. Zhang, M. Ji, H. Yu, and C. Zhen, ‘‘ReLP: Reinforcement learning
pruning method based on prior knowledge,’’ Neural Process. Lett., vol. 55,
no. 4, pp. 4661–4678, 2023, doi: 10.1007/s11063-022-11058-3.

[25] W. Yang, H. Yu, B. Cui, R. Sui, and T. Gu, ‘‘Deep neural network pruning
method based on sensitive layers and reinforcement learning,’’ Artif. Intell.
Rev., vol. 56, no. 2, pp. 1897–1917, 2023, doi: 10.1007/s10462-023-10566-
5.

[26] Ł. Dudziak, M. S. Abdelfattah, R. Vipperla, S. Laskaridis, and
N. D. Lane, ‘‘ShrinkML: End-to-end ASR model compression using
reinforcement learning,’’ in Proc. Interspeech, Sep. 2019, pp. 1–5, doi:
10.21437/INTERSPEECH.2019-2811.

[27] G. Gonzalez-Sahagun, S. E. Conant-Pablos, J. C. Ortiz-Bayliss, and
J. M. Cruz-Duarte, ‘‘A generalist reinforcement learning agent for
compressing convolutional neural networks,’’ IEEE Access, vol. 12,
pp. 51100–51114, 2024, doi: 10.1109/ACCESS.2024.3385857.

[28] S. Yu, A. Mazaheri, and A. Jannesari, ‘‘Topology-aware network pruning
using multi-stage graph embedding and reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn., 2022, pp. 25656–25667.

136146 VOLUME 12, 2024

http://dx.doi.org/10.1007/s10489-022-03508-1
http://dx.doi.org/10.1007/s10489-022-03508-1
http://dx.doi.org/10.1007/s10489-022-03221-z
http://dx.doi.org/10.1007/s11554-023-01274-y
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1145/3447582
http://dx.doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1007/978-3-030-01234-2
http://dx.doi.org/10.1007/978-3-030-01234-2
http://dx.doi.org/10.1109/TMC.2020.2999956
http://dx.doi.org/10.1109/ACCESS.2022.3188119
http://dx.doi.org/10.1109/IJCNN.2010.5596468
http://dx.doi.org/10.1007/s12652-022-03793-1
http://dx.doi.org/10.1007/s00521-022-07161-0
http://dx.doi.org/10.1007/s11063-022-11058-3
http://dx.doi.org/10.1007/s10462-023-10566-5
http://dx.doi.org/10.1007/s10462-023-10566-5
http://dx.doi.org/10.21437/INTERSPEECH.2019-2811
http://dx.doi.org/10.1109/ACCESS.2024.3385857

G. Gonzalez-Sahagun et al.: Generalist RL Agent for Compressing Multiple Convolutional Networks Using SVD

[29] M. Alwani, Y. Wang, and V. Madhavan, ‘‘DECORE: Deep compression
with reinforcement learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2022, pp. 12339–12349.

[30] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2815–2823, doi: 10.1109/CVPR.2019.00293.

[31] Z.Wang, N. D. Freitas, andM. Lanctot, ‘‘Dueling network architectures for
deep reinforcement learning,’’ in Proc. Int. Conf. Int. Conf. Mach. Learn.,
vol. 48, Jun. 2016, pp. 1995–2003.

[32] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning
with double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., vol. 30, 2016,
pp. 1–7.

[33] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[34] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747.

[35] T. Clanuwat, M. Bober-Irizar, A. Kitamoto, A. Lamb, K. Yamamoto,
and D. Ha, ‘‘Deep learning for classical Japanese literature,’’
arXiv:1812.01718, 2018.

[36] Y. LeCun, C. Cortes, and C. Burges. (2010). MNIST Handwritten Digit
Database. [Online]. Available: https://yann.lecun.com/exdb/mnist

[37] L. V. Dias, P. B. Miranda, A. C. Nascimento, F. R. Cordeiro, R. F. Mello,
and R. B. Prudncio, ‘‘ImageDataset2Vec: An image dataset embedding
for algorithm selection,’’ Expert Syst. Appl., vol. 180, Oct. 2021,
Art. no. 115053, doi: 10.1016/j.eswa.2021.115053.

[38] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 6000–6010.

[39] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei,
‘‘Deep reinforcement learning from human preferences,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 4302–4310.

[40] S. Han, H. Mao, and W. J. Dally, ‘‘Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,’’
2015, arXiv:1510.00149.

[41] F. Manessi, A. Rozza, S. Bianco, P. Napoletano, and R. Schettini,
‘‘Automated pruning for deep neural network compression,’’ in Proc. 24th
Int. Conf. Pattern Recognit. (ICPR), 2018, pp. 657–664.

[42] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, ‘‘Sparse
convolutional neural networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 806–814.

[43] A. Raihan and T. Aamodt, ‘‘Sparse weight activation training,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 15625–15638.

[44] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, ‘‘A fast and elitist
multiobjective genetic algorithm: NSGA-II,’’ IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002, doi: 10.1109/4235.996017.

GABRIEL GONZALEZ-SAHAGUN received the
B.S. degree in digital systems and robotics and
the M.Sc. degree in intelligent systems from the
Tecnolgico de Monterrey, in 2014 and 2017,
respectively, where he is currently pursuing the
Ph.D. degree in computer science with the
Department of Computer Science. His research
interests include computer vision, robotics, and
evolutionary algorithms. Afterward, he was with
Ocean Freight Exchange, where he was the Lead

Engineer in developing a scheduling optimization system prototype for fuel
delivery in the port of Singapore. The project was awarded first place
in Singapore’s Smart Port Challenge 2018. Later, he became a Research
Associate with the Tecnologico de Monterrey, where he has been taught
computational intelligence and computer vision courses, since 2019.

SANTIAGO ENRIQUE CONANT-PABLOS
(Member, IEEE) received the B.Sc. degree
in industrial engineering from the Instituto
Tecnologico de Sonora and the M.Sc. degree in
computer science and the Ph.D. degree in artificial
intelligence from the Tecnologico de Monterrey,
in 2004. He is currently an Associate Research
Professor with the School of Engineering and
Sciences, Tecnologico de Monterrey, a Researcher
of the Group with a Strategic Focus on Advanced

Artificial Intelligence, and an Adjoint Member of the SOI-STEM
Interdisciplinary Group, Institute for the Future of Education. His research
interests include machine learning, computer vision, evolutionary and
bio-inspired computation, hyper-heuristics design, and natural language
processing. He is a member of Mexican National System of Researchers
and Mexican Academy of Computing.

JOSÉ CARLOS ORTIZ-BAYLISS (Member,
IEEE) was born in Culiacan, Sinaloa, Mexico,
in 1981. He received the B.Sc. degree in computer
engineering from the Universidad Tecnologica de
la Mixteca, in 2005, the B.Sc. degree in project
management from the Universidad Virtual del
Estado de Guanajuato, in 2019, the M.Sc. degree
in computer sciences from the Tecnologico de
Monterrey, in 2008, the M.Ed. degree from the
Universidad del Valle de Mexico, in 2017, the

M.Ed.A. degree from the Instituto de Estudios Universitarios, in 2019,
and the Ph.D. degree from the Tecnologico de Monterrey, in 2011. He is
currently an Assistant Research Professor with the School of Engineering
and Sciences, Tecnologico de Monterrey. His research interests include
computational intelligence, machine learning, heuristics, metaheuristics, and
hyper-heuristics for solving combinatorial optimization problems. He is a
member of Mexican National System of Researchers, Mexican Academy of
Computing, and the Association for Computing Machinery.

JORGE M. CRUZ-DUARTE (Senior Member,
IEEE) was born in Ocaa, Norte de Santander,
Colombia, in 1990. He received the B.Sc. and
M.Sc. degrees in electronics engineering from
the Universidad Industrial de Santander (UIS),
Bucaramanga, Santander, Colombia, in 2012 and
2015, respectively, and the Ph.D. degree in electri-
cal engineering from the Universidad de Guanaju-
ato (UGTO), Guanajuato, Mexico, in 2018.

From 2019 to 2021, he was on a postdoctoral
stay with the Tecnolgico de Monterrey (TEC) in collaboration with Chinese
Academy of Sciences (CAS). Since 2021, he has been a Research Professor
with the Research Group on Advanced Artificial Intelligence, TEC, and a
member of Mexican National System of Researchers (SNI-CONAHCyT),
ACM, and AMEXCOMP. His research interests include automatic design,
heuristics, fractional calculus, applied thermodynamics, data science, and
artificial intelligence.

VOLUME 12, 2024 136147

http://dx.doi.org/10.1109/CVPR.2019.00293
http://dx.doi.org/10.1016/j.eswa.2021.115053
http://dx.doi.org/10.1109/4235.996017

