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ABSTRACT In recent years, the application of ultrasonic detection technology in the estimation of lithium
battery performance states has achieved some results, such as remaining capacity. The remaining capacity is
characterized by using ultrasonic feature quantities under a certain state of charge. Such methods to extract
features can lead to a phenomenon that multiple ultrasonic signals may correspond to a single state of charge,
increasing the contingency of feature extraction and reducing the accuracy of remaining capacity estimation.
To this end, an ultrasonic regional energy characterization method is proposed in this paper to enhance the
accuracy, and the correlation between ultrasonic regional energy feature quantity and remaining capacity is
analyzed. Then the intervals and sampling points to select feature quantities are decided, and the least squares
method is utilized to build the capacity degradation model, which can estimate remaining capacity. Finally,
the feasibility and effectiveness of the proposed estimation method are verified through experiments.

INDEX TERMS Lithium power battery, ultrasonic detection, regional energy feature, least squares,
remaining capacity.

I. INTRODUCTION
With the advantages of high energy density, low self
discharge rate and long service life, lithium power batteries
have been extensively applied to new energy vehicles,
consumer electronics, aerospace and aeronautics [1]. As a
kind of energy carrier [2], the remaining capacity of Li-ion
battery is one of the key parameters, which directly affects
the stability, reliability, and safety [3]. Due to the complicated
electrochemical processes and the uncertainty of operating
conditions, the degradation mechanism is complex, which
makes the estimation of remaining capacity difficult [4].
Accordingly, the estimation with accuracy and rapidity is of
great significance, and it is the main focus of battery health
management.
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Ultrasonic detection is widely used with the principle that
the propagation speed of ultrasound varies in different media.
Ultrasound has been applied to detect the state of batteries [5],
[6], [7], [8], [9], [10], [11]. The state characterization of
battery is the process of extracting acoustic features from
ultrasonic response signals to characterize battery states such
as State Of Charge (SOC) and State Of Health (SOH), while
acoustic featuresmainly include amplitude, flight time, sound
attenuation coefficient, guided wave signal, etc.

Studies [8], [9], [10] extract the above features from
ultrasonic response signals and their correlations with SOC,
whose prediction models are established combined with
machine-learning. The work reveals that the change of
acoustic signal is caused by the change of internal materials,
and the relation is explained by acoustic modeling. The
possibility of estimating SOC through acoustic methods is
proved. Yi et al. [11] discover the time of flight (ToF)
and signal amplitude (SA) of ultrasound is closely related

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 128541

https://orcid.org/0009-0001-7662-3090
https://orcid.org/0000-0002-8022-1959


Z. Cai et al.: Remaining Capacity Estimation of Li-Ion Battery

to the charge-discharge cycles and aging degree. Further
research indicates that ToF and SA can be utilized to estimate
remaining capacity as well as establishing SOH estimation
model.

The above results are based on the ultrasonic features
under the corresponding single SOC state respectively, while
multiple SOC states are ignored. Due to the step-wise
change trend of SOC during charging-discharging cycles,
a SOC corresponds not to a single time point, but to a time
period, while ultrasonic response signals are collected at
regular intervals, which leads to a single SOC responding
to multiple response signals within the corresponding time
period. Therefore, the contingency of feature characterization
is increased and estimation accuracy is reduced. To this end,
an regional feature quantity (FQ) characterisation method to
characterize remaining capacity is proposed, relevant FQs
based on regional data are extracted, and the selection of
intervals and sampling points is optimised. Then, the least
squares method are applied to establish a lithium battery
degradation model, which describes the relationship between
the proposed FQs and remaining capacity. Finally the model
performance is verified through experiments, which is proved
to be a new method for the estimation of the remaining
capacity of lithium batteries.

FIGURE 1. The process of the proposed estimating methods.

The experiment platform to conduct ultrasonic detection is
introduced in Section II. The mapping relationship between
response signal and remaining capacity is analyzed in
section III-A. The selection of feature quantities is proceeded
in section III-B. Further, the appropriate intervals of feature
quantities are selected and the comparison with other feature
quantities is developed in section III-C. The establishment of
degradation model and the estimation of remaining capacity
is conducted in section IV. The work in this article is

summarized in section V. The overall estimation process is
illustrated in Fig.1:

II. EXPERIMENT PLATFORM
As represented in Fig.2, the remaining capacity detection
device for Li-ion battery consists of a Xinwei BTS cycle
charging-discharging device, a thermostat, and an ultrasonic
detection module (MITCCH MUT550B, 100KHz). The
ultrasonic transmitting and receiving probes are respectively
placed at the center of the upper and the corresponding lower
surfaces of the battery to be tested, fixed with coupling agent
and fixing device, as depicted in Fig.3. The receiving probe is
connected to a PC, which runs a data acquisition program in
MATLAB to save and display the waveform data of response
signal.

FIGURE 2. Detection device.

FIGURE 3. The position of probes and batteries.

During experiment, a 10000 mAH soft-pack lithium bat-
tery was placed in the thermostat, and the battery was cycled
using the charge-discharge instrument. The parameters for the
settings are displayed in Table 1.

Ultrasonic signal pulses are generated every 5s, after
penetrating the lithium battery, the receiving probe transmits
the received response signal to the PC for data saving.

III. DATA ANALYSIS AND FEATURE EXTRACTION
During the charging-discharging cycles, the insertion/
extraction of Li-ions may cause variable volume of the
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TABLE 1. Battery parameters and experimental conditions.

negative electrode active material, which will lead to the
cracking of the negative solid electrolyte interface (SEI),
exposing the active material to the electrolyte again, forming
a new SEI film. The addition of SEI film results in the
relaxation of the lattice structure, increasing the Young’s
modulus of material, and causes battery aging with reduced
capacity. The aging of lithium batteries is accompanied by
lithium deposition, electrode material relaxation, and other
phenomena, all of which can lead to changes in the Young’s
modulus and density of the electrode material. Therefore,
the remaining capacity of lithium batteries is directly related
to the properties above. Besides, due to the sensitivity of
ultrasound to the properties, an electrochemical-acoustic
coupling relationship can be established, as in (1):

Zultra =
√

ρE (1)

where Zultra, ρ and E represent acoustic impedance, material
density and Young’s modulus respectively. It is revealed in
equation that the density and Young’s modulus determine
the magnitude of the acoustic impedance, which affects
the attenuation of energy when the ultrasound penetrates
the medium, and results in the variance of response signal
energy. Due to the multi-layered and heterogeneous nature
of lithium-ion batteries [5], there is no well-established
model to describe the specific relationship between acoustic
impedance and attenuation [11]. However, it is known that
the amplitude and energy of ultrasound are influenced by
impedance and are closely related to material density and
Young’s modulus. According to the analysis above, the
remaining capacity of batteries can be characterized by
ultrasonic responding signals for its correlation with the
amplitude and energy of ultrasound.

A. SELECTION OF THE FEATURE QUANTITIES OF TOTAL
ENERGY
Fig.4 displays an ultrasonic response signal in a sampling
window, with the horizontal axis representing the sam-
pling window and the vertical axis representing the signal
amplitude. The sampling window size is 12 us. Through
experiments, it is found that by subdividing 12 us into
1200 sampling time points, a complete response signal can
be received. Owing to the long duration of a single charge-
discharge cycle, in a certain cycle, there are also many
ultrasonic response signals under a fixed sampling window.

Fig.5 depicts the ultrasonic response signals with different
cycle times under the same sampling window. It can be
concluded that as the number of cycles increases, the

battery gradually ages, the amplitude of the response signal
decreases, so does the area enclosed by the signal and the
horizontal axis (the area of ultrasonic response signal). Fig.5
indicates that the loss of ultrasonic with the same energy
is different when penetrating lithium batteries with different
degrees of aging.

FIGURE 4. Ultrasonic response signal.

FIGURE 5. Comparison of ultrasonic response signals at the same
discharge moment in different cycles.

The ultrasonic energy loss is defined in (2), where
Preceive, Ppulse and Pattenuation are the energy received by
probe, generated by probe, and attenuated during penetration,
respectively. The more serious the battery aging is, the
greater the energy loss during transmission, the smaller the
received energy by probe, and the smaller the response signal
area. Therefore, the ultrasonic response area can be used
to characterize the remaining capacity at current number of
cycles, as shown in the blue part of Fig.6.

Preceive = Ppulse − Pattenuation (2)

As the aging of batteries intensifies, the time for a single
charge-discharge cycle under the same conditions reduces.
Since ultrasonic sampling is done at a fixed time, this results
in different number of sampling windows under different
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FIGURE 6. The enclosed area of response signal.

cycle times. As shown in Fig.7, it is a graph of the relationship
between cycles times and sampling windows numbers. It is
visible in the graph that as the number of cycles increases, the
aging becomes more severe, the charging-discharging time
decreases, and so does the number of sampling windows per
cycle. In order to ensure that there are the same number
of sampling windows in all cycles, the maximum common
number is taken. By analysing, the paper sets the number of
sampling windows in a single cycle to 500, with a sampling
interval of 5 s, resulting in a total sampling time of 2500 s,
approximately.

FIGURE 7. The number of sampling windows under different cycle times.

The area of 500 sampled response waveforms in a single
cycle is calculated, that is, the ultrasonic energy feature under
current sample window, and 500 energy features as trend
curves are plotted. Similarly, the same calculation method is
also applied to batteries with different cycle times, after the
energy feature extraction of ultrasonic response signal, the
results as shown in Fig.8. The horizontal axis is the number
of sample windows of response signals in a single cycle, and
the vertical axis is the calculated FQ. As shown in Fig.8,
with the discharge process continues, the SOC decreases, and
the energy FQ also decreases accordingly. As the number of

cycles increases, the energy FQ of ultrasonic response signals
are significantly different under different cycle times, and the
overall trend remains downward.

FIGURE 8. The area of sampled waveforms under different
charge-discharge cycles.

As illustrated in Fig.8, there are 500 FQs in a single
cycle. In order to characterize the remaining capacity using
a single FQ, the area enclosed by the curve and the horizontal
axis in Fig.8 (total energy FQ) is used to characterize the
remaining capacity in the current cycle, as depicted in the
yellow portion of Fig.9. The yellow part can be regarded
as the total energy FQ of the response signal in a single
cycle. Similar total energy FQ calculation was performed on
other charge-discharge cycles, and the results are depicted
in Fig.10. The horizontal axis represents the number of
cycles, and the vertical axis represents the total energy of the
ultrasonic signal. As shown in Fig.10, as the number of cycles
increases, the remaining capacity decreases, and the total
energy FQ of the ultrasonic signal also shows a downward
trend.

FIGURE 9. Total energy of the response signal in a single cycle.

In order to investigate the correlation between the ultra-
sonic signal FQ and the remaining capacity of the battery,
a quantitative analysis was carried out using the Pearson
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FIGURE 10. The total energy under different cycles.

correlation coefficient analysis method. As shown in (3), x
and y are correlation quantities, xi and yi are the ith samples
of correlation quantities, x and y are sample means:

corrx,y =
6(x − x)(y− y)

(
√∑n

i=1(xi − x)2)(
√∑n

i=1(yi − y)2)
(3)

The corr() function value in Fig.10 is the Pearson
correlation coefficient between the total energy of the
ultrasonic signal and the remaining capacity. From this value
(0.962), it can be judged that the total energy of the ultrasonic
signal is strongly correlated with the remaining capacity.

B. SELECTION OF THE FEATURE QUANTITIES OF TOTAL
INSTANTANEOUS ENERGY
It can be revealed in Fig.5 that in addition to the enclosed
area, the response signals at different cycle times have
distinct differences in peak values, which represent the
maximum instantaneous energy. Similar to the area feature
extraction method, 500 maximum instantaneous energy FQs
are selected in a single cycle, as shown in Fig.11. The
curves in Fig.11 display the trend of maximum instantaneous
energy FQs in different cycles. It can be seen from the figure
that the maximum instantaneous energy FQs in a single
cycle gradually decreases as the discharge process continues.
As the number of cycles increases, the remaining capacity and
the amplitude of the curves gradually decrease.

Similarly, there are 500 peak FQs in a single cycle. In order
to characterize the remaining capacity using a single FQ, the
area enclosed by the peak FQ curve and the horizontal axis
under a single cycle is used to characterize the remaining
capacity, as depicted in the orange portion of Fig.12.

The orange part can be regarded as the sum of maximum
instantaneous energy of response signal received in a single
cycle. Using the same method to characterize other cycles,
the results can be gathered in Fig.13. There is a obvious
trend in the figure that as the battery degrades, the sum of
the maximum instantaneous energy received in a single cycle
appears a gradual decrease trend. corr() function in Fig.12
is the calculated value of Pearson correlation coefficient, and

FIGURE 11. The peak of sampled waveforms under different
charge-discharge cycles.

FIGURE 12. Total instantaneous energy of the response signal in a single
cycle.

the result implies that the extracted FQ of total instantaneous
energy is closely linked to remaining capacity.

FIGURE 13. The total instantaneous energy under different cycles.

C. SELECTION OF FEATURE QUANTITIES
The abovementioned (the total energy and total instantaneous
energy, referred to as TE and TIE respectively) two regional
FQs are based on full cycle data, which requires long
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intervals, long sampling time and large database. In order to
improve the representation ability and extraction efficiency,
different sampling intervals and times will be compared in
this section to select FQ extraction intervals and sampling
points.

To investigate the influence of different sampling intervals
on the representation of TEFQ, 500 sampling points in a
single cycle were averaged into groups of 100 points each,
and the TEFQ as well as the correlation coefficient of
each group is calculated to study the remaining capacity
representation ability. Fig.14 is a graph of correlation
analysis results for different sampling intervals, with the
horizontal axis representing average interval, as indicated
by Marker1 in Table 2, and the vertical axis represents
correlation coefficient. In Fig.14, it is evident that after
grouping, the FQ based on the sampling points ranging
from 400 to 500 has the strongest representation ability.

FIGURE 14. The correlation coefficients of TE under mean divided
sampling intervals.

TABLE 2. The sampling interval settings of TE.

As for different sampling points on the characterisation
of TEFQ, the chosen sampling interval from Fig.15 was
further disassembled according to the settings in Table 2,
Marker2, to select suitable number of sampling points. Fig.15
presents the results of different sampling points, in which the
horizontal axis represents different points selection methods
and the vertical axis represents correlation coefficients. The
first four sampling methods are selected at intervals of 2, 4,
5, and 10 within the range of 400 to 500 and the correlation

coefficient of TEFQ is calculated. As a result, the number of
sampling points corresponding to each TEFQ is 50, 25, 20,
and 10, respectively, rather than 500. This approach reduces
computational complexity and enhances sampling speed; the
latter three methods are conducted in 50 sampling points each
and the correlation of TEFQ is also calculated.

FIGURE 15. The correlation coefficients of TE under non-mean sampling
intervals.

Based on Fig.15, it is evident that the TEFQ within 425 to
475 exhibits the best representation ability. Consequently, this
study adopts the TEFQ within this interval for subsequent
modeling of remaining capacity estimation. In comparison
to the original 500 points, the new interval is compressed to
50 points, which not only reduces the data volume but also
enhances the correlation.

The optimization method for TIEFQ is similar to that for
TE. The settings of sampling intervals and points are as shown
in Table 3, and the correlation results are presented in Fig.16
and Fig.17.

TABLE 3. The sampling interval settings of TIE.

Among them, Fig.16 illustrates the correlation analysis
results of different sampling intervals. It can be seen from
the figure that the FQ extracted from sampling points 400 to
500 has the strongest representation ability. Fig.18 further
talks the characterization ability with different number of
sampling points within 400 to 500. Based on Fig.17, the
TIEFQ within 425 to 475 exhibits the strongest characteristic
ability. Therefore, it is selected as the second feature for
subsequent estimation.
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FIGURE 16. The correlation coefficients of TIE under mean divided
sampling intervals.

FIGURE 17. The correlation coefficients of TIE under non-mean sampling
intervals.

Fig.18 depicts the trend of extracted FQs within the
optimized sampling interval. In the figure, corr() function is
the calculated Pearson correlation coefficient, the horizontal
axis is the number of cycles, and the vertical axis is the
calculated value of FQ. Compared to Fig.10 and Fig.13, it can
be observed that the correlation between the selected FQs
and remaining capacity has been obviously enhanced after
optimization.

To compare the two FQs proposed above (TEFQ and
TIEFQ) and the FQ based on single time point, the area and
peak FQs of ultrasonic response signal at SOC= 100% under
different cycle numbers are extracted, and the correlation
with remaining capacity is calculated, in Fig.19. When the
battery is sampled at a single time point, the correlation
between the extracted ultrasonic area FQ and the remaining
capacity is 0.943, and the correlation between the peak
FQ and the remaining capacity is 0.898. Comparing Fig.18
and Fig.19, it can be discovered that the FQ correlation
based on regional energy (TE and TIE) is higher than that
based on extreme value (area and peak), and the curve is
smoother.

FIGURE 18. The correlation coefficients of TE and TIE under different
cycle times.

FIGURE 19. The correlation coefficients of area and peak under different
cycle times.

IV. ESTABLISHMENT OF CAPACITY DEGRADATION
MODEL AND ESTIMATION OF REMAINING CAPACITY
A. ESTABLISHMENT OF CAPACITY DEGRADATION MODEL
The battery capacity degradation model is established based
on the extracted TE, TIE FQs, along with the least squares
method. The process is illustrated in Fig.20.

FIGURE 20. The establishment process of battery capacity degradation
model.

The dataset, consisting of 200 charge-discharge cycles,
is divided into a training set and a testing set. The training
set comprises the first 90% of the data, while the testing set
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comprises the remaining 10%. The training data is utilized
for establishing the degradation model. The testing data is
employed to evaluate the performance of the degradation
model. To demonstrate the representational capacities of FQs
based on single time (area and peak) and interval energy (TE
and TIE), this study separately builds capacity degradation
models, conducting a comparative analysis.

According to the model construction method described in
Fig. 20, the training set sample data is sampled to construct a
capacity degradation model based on a single time point FQ,
and the model expression is shown in (4).

Capacity1SOC=1 = 4.2902AreaSOC=1

+ 1061.5711PeakSOC=1 + 5370.6676

(4)

where Capacity1SOC=1 is the predicted output of the degra-
dation model, AreaSOC=1 is area FQ of response signal in
a single time point, and PeakSOC=1 is peak FQ of response
signal in a single time point.

Similarly, the capacity degradation model based on
regional energy FQ is established, as shown in (5).

Capacity1Energy = 0.0721EnergyArea
+ 21.777EnergyPeak + 6686.8224 (5)

where Capacity1Energy is the predicted output based on
energy, while EnergyArea and EnergyPeak are TE and TIE FQs
respectively.

Based on the training set sample data, two capacity
degradation models are applied to calculate the remaining
capacity of the battery, and the results are shown in Fig. 21.
The blue, red and green curves represent the actual capacity
degradation, the capacity calculation result based on single
time FQs (area and peak), the capacity calculation result
based on regional FQs (TE and TIE) respectively. From the
figure, it can be seen that the fitting curves based on regional
energy FQs are closer to the actual capacity degradation
curve, with higher accuracy.

FIGURE 21. The fitting results of degradation model 1.

In order to further investigate the characterisation ability
based on regional energy FQs under different prediction

starting points, the first 80% of the dataset was used as a
training set and the second 20% as a test set for model
construction and validation. Equation (6) is a degradation
model based on a single time point, and (7) is a degradation
model based on regional energy, with individual parameters
similar to those in (4) and (5).

Capacity2SOC=1 = 4.8697AreaSOC=1

+ 1347.7089PeakSOC=1 + 4517.8707

(6)

Capacity2Energy = 0.0744EnergyArea
+ 24.4535EnergyPeak + 6449.3178 (7)

The model fitting is depicted in Fig.22, from which it can
be seen that although the training sample data is reduced and
the capacity interval to be predicted is increased, the fitting
curve based on the regional energy is yet closer to the actual
capacity degradation curve and has higher accuracy.

FIGURE 22. The fitting results of degradation model 2.

B. ESTIMATION OF REMAINING CAPACITY
In order to verify the effectiveness of the constructed
degradation model for predicting remaining capacity, the
latter 10% test set data was substituted into the degradation
model ((4) and (5)) to estimate the capacity of the latter 10%
batteries, and the results are demonstrated in Fig.23.

The blue curve is the actual capacity degradation curve,
the red curve is the prediction result curve of the degradation
model based on single time point energy FQ, and the green
curve is the prediction result curve based on internal energy
FQ. From the experimental results, it can be seen that
the degradation model based on internal energy has better
prediction performance. The average error is 190 mAH,
while that of model based on single time point is 407 mAH.
Therefore, the experimental results verify that the estimation
performance of model using the internal energy FQs is better
than that using single time energy FQs.

Similarly, the latter 20% test data is used to substitute into
the degradation models ((6) and (7)) to predict the remaining
capacity of the latter 20% batteries, and the results are shown
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FIGURE 23. Estimation result of degradation model 1.

in Fig.24. The average prediction error of the curve based
on single time point energy FQ is 642.63 mAH; the average
prediction error of the curve based on the internal energy FQ
is 274.76 mAH. From the figure, although the interval need
to be estimate is larger, the estimation performance of model
using the internal energy FQs is still better and guarantees
favourable prediction accuracy.

FIGURE 24. Estimation result of degradation model 2.

V. CONCLUSION
Based on the correlation of ultrasonic response signal and
capacity degeneration, the FQ of ultrasonic regional energy
is proposed to represent the remaining capacity of battery
in this paper as well as to enhance the prediction accuracy
of remaining capacity. The extraction method of regional
energy FQ is studied and analyzed, and the best intervals
and numbers of sampling are selected. The least squares
method is adopted to fit the relationship model between the
regional energy FQ and capacity degradation. The feasibility
and effectiveness of the proposed method to estimate the
remaining capacity is verified. The paper draws the following
conclusions:

(1) Under different charge-discharge cycles of the battery,
the collected ultrasonic response signal is correlated with
the degradation state of the battery. Based on the response
signal, the characteristics such as the area enclosed by the
waveform and the horizontal axis (energy feature quantity)
can be extracted to characterize the capacity degradation
of the battery. In order to ensure that the battery has the
same number of ultrasonic sampling windows under different
degradation state cycles, the specific sampling period value is
given. The above feature extraction method effectively avoids
the defect of characterizing the remaining capacity of battery
relying on the ultrasonic feature in a single SOC state.

(2) To solve the problem of non-uniqueness caused by
multiple energy features generated in a single cycle, two
features, TEFQ and TIEFQ, are proposed in this paper. In this
way, a single feature is used to characterize the remaining
capacity in a certain charge-discharge cycle.

(3) Without reducing the correlation between the extracted
FQ and the remaining capacity, localised ultrasonic interval
data in a single cycle is used to extract TE and TIE
to represent remaining capacity, which enables enhancing
extraction speed and reducing computational complexity.

(4) Based on the interval information of the ultrasonic
response signal, this paper innovatively extracted two feature
quantities, namely, TE and TIE, to characterize the remaining
capacity of lithium-ion batteries. It solves the problem of
low estimation accuracy caused by using ultrasonic feature
under a single SOC in the conventional method. In practical
applications such as electric vehicles, lithium-ion power
batteries work by building battery packs in series and parallel,
and the operating conditions of batteries will also change.
Considering variable working conditions and battery pack,
further research on the basis of this paper will be carried out.

REFERENCES
[1] X. Gong, R. Xiong, and C. C. Mi, ‘‘A data-driven bias-correction-

method-based lithium-ion battery modeling approach for electric vehicle
applications,’’ IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 1759–1765,
Mar. 2016.

[2] B. Scrosati and J. Garche, ‘‘Lithium batteries: Status, prospects and
future,’’ J. Power Sources, vol. 195, no. 9, pp. 2419–2430, May 2010.

[3] R. Xiong, J. Cao, Q. Yu, H. He, and F. Sun, ‘‘Critical review on the battery
state of charge estimation methods for electric vehicles,’’ IEEE Access,
vol. 6, pp. 1832–1843, 2018.

[4] A. V. Virkar, ‘‘Amodel for degradation of electrochemical devices based on
linear non-equilibrium thermodynamics and its application to lithium ion
batteries,’’ J. Power Sources, vol. 196, no. 14, pp. 5970–5984, Jul. 2011.

[5] B. Long, W. Xian, L. Jiang, and Z. Liu, ‘‘An improved autoregressive
model by particle swarm optimization for prognostics of lithium-ion
batteries,’’Microelectron. Rel., vol. 53, no. 6, pp. 821–831, Jun. 2013.

[6] Z. Cai, H. Jiang, T. Pan, C. Qin, J. Xu, and Y. Wang, ‘‘Remaining capacity
prediction of li-ion batteries based on ultrasonic signals,’’ J. Chin. Inst.
Engineers, vol. 47, no. 2, pp. 215–225, Feb. 2024.

[7] Z. Cai, T. Pan, H. Jiang, Z. Li, and Y. Wang, ‘‘State-of-charge estimation
of lithium-ion batteries based on ultrasonic detection,’’ J. Energy Storage,
vol. 65, Aug. 2023, Art. no. 107264.

[8] R. Li, W. Li, H. Zhang, Y. Zhou, and W. Tian, ‘‘On-line estimation method
of lithium-ion battery health status based on PSO-SVM,’’ Frontiers Energy
Res., vol. 9, pp. 693249–693261, Jul. 2021.

[9] X. Cui and T. Hu, ‘‘State of health diagnosis and remaining useful life
prediction for lithium-ion battery based on data model fusion method,’’
IEEE Access, vol. 8, pp. 207298–207307, 2020.

VOLUME 12, 2024 128549



Z. Cai et al.: Remaining Capacity Estimation of Li-Ion Battery

[10] P. Kurzweil, W. Scheuerpflug, B. Frenzel, C. Schell, and J. Schottenbauer,
‘‘Differential capacity as a tool for SOC and SOH estimation of lithium ion
batteries using charge/discharge curves, cyclic voltammetry, impedance
spectroscopy, and heat events: A tutorial,’’ Energies, vol. 15, no. 13,
p. 4520, Jun. 2022.

[11] M. Yi, F. Jiang, L. Lu, S. Hou, J. Ren, X. Han, and L. Huang, ‘‘Ultrasonic
tomography study of metal defect detection in lithium-ion battery,’’
Frontiers Energy Res., vol. 9, p. 909, Dec. 2021.

ZHIDUAN CAI (Member, IEEE) was born in
Jiangxi, China, in 1978. He received the master’s
degree in mechanical design and theory from
Jingdezhen Ceramic University, China, in 2007.
His research interests include intelligent manufac-
turing technology, performance state evaluation,
and health management of lithium-ion batteries in
electrical vehicles.

HAOYE JIANG was born in Zhejiang, China,
in 1997. He received the B.Eng. degree in elec-
trical engineering and automation from Huzhou
College, Huzhou, China, in 2020. He is cur-
rently pursuing the M.Sc. degree in electronic
information with Huzhou University. His current
research interests include life estimation and
health management of lithium-ion batteries in
electrical vehicles.

LIHAO XU was born in Zhejiang, China, in 1996.
He received the bachelor’s degree in traffic equip-
ment and control fromNorthwestern Polytechnical
University, China, in 2018, and the master’s degree
in control engineering from Zhejiang University,
China, in 2021. His research interests include the
control of aerial robots and health management of
lithium-ion batteries in electric vehicles.

CHENWEI QIN was born in Zhejiang, China,
in 1998. He received the B.Eng. degree in elec-
trical engineering and automation from Huzhou
University, Huzhou, China, in 2020. He is cur-
rently pursuing the M.Sc. degree in electronic
information with Huzhou University. His current
research interests include life estimation and
health management of lithium-ion batteries in
electrical vehicles.

128550 VOLUME 12, 2024


