
Received 11 August 2024, accepted 5 September 2024, date of publication 10 September 2024,
date of current version 20 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3456914

ARCog-NET: An Aerial Robot Cognitive Network
Architecture for Swarm Applications
Development
GABRYEL S. RAMOS 1, FELIPE DA R. HENRIQUES 1, (Member, IEEE),
DIEGO B. HADDAD 1, (Member, IEEE),
FABIO A. A. ANDRADE 2,3, (Senior Member, IEEE),
AND MILENA F. PINTO 1, (Member, IEEE)
1Federal Center for Technological Education Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro 20271-110, Brazil
2Department of Microsystems, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway (USN), 3184 Borre, Norway
3Drones and Autonomous Systems, NORCE Norwegian Research Centre, 9294 Tromsø, Norway

Corresponding author: Fabio A. A. Andrade (fabio@ieee.org)

This work was supported in part by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) under Grant 001 and
in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à
Pesquisa do Estado do Rio de Janeiro (FAPERJ).

ABSTRACT This work presents an advanced cognitive architecture for networked aerial robots to
implement autonomous swarm systems effectively. It focuses on designing, implementing, and evaluating
an architecture that enables unmanned aerial vehicles (UAVs) to coordinate and cooperate for complex
tasks, with or without human intervention. Inspired by artificial intelligence, cognitive science, and robotics,
the architecture integrates perception, planning, decision-making, and adaptive learning to optimize swarm
behavior in dynamic environments. The architecture uses a distributed processing model based on the ‘‘edge-
fog-cloud’’ (EFC) concept. Edge-level robots handle real-time data collection, local decision-making, and
environmental perception. Fog-level vehicles manage intermediate processing and supervision of the groups,
while cloud servers perform comprehensive data analysis and long-term storage, being the higher-level
hierarchy of the framework. This structure allows efficient distribution of computational tasks, with critical
decisions made at the robot level and complex analysis done in the fog or cloud. The implementation
of ARCog-NET involves deploying a multi-agent simulation system using the Robot Operating System
(ROS) and Gazebo simulator, facilitating the integration of sensors, communication protocols, and data
processing algorithms. The performance evaluation demonstrates the architecture’s effectiveness in a wind
farm inspection scenario, where the UAV swarm exhibits improved trajectory planning, collision avoidance,
and data processing efficiency. Simulation results show that ARCog-NET reduces latency, increases data
throughput, and enhances operational effectiveness, providing a robust platform for future developers to
focus on applications and direct robot control methods.

INDEX TERMS Cognitive architecture, edge-fog-cloud technologies, swarm systems, distributed data
processing, autonomy of aerial robots.

I. INTRODUCTION
Unmanned Aerial Vehicles (UAVs) are one of the most
versatile robot platforms due to their wide range of appli-
cations [1], [2]. To cite some uses, there is surveillance,
naval operations assistance, search and rescue, inspection,

The associate editor coordinating the review of this manuscript and

approving it for publication was Hadi Tabatabaee Malazi .

package delivering, environmental monitoring, topography,
among others [3], [4], [5], [6], [7], [8], [9]. The UAV
systems also have improved their capacities when combined
in groups or swarms, where coordinated vehicles can
share the same tasks or individually execute parts of a
bigger mission, gaining efficiency or even being able to
accomplish operations where a single robot wouldn’t be
enough [10].

129040

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-6482-2025
https://orcid.org/0000-0002-7221-7466
https://orcid.org/0000-0002-7634-5481
https://orcid.org/0000-0001-5599-8080
https://orcid.org/0000-0001-6916-700X
https://orcid.org/0000-0002-2960-6896

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

The integration of complex algorithms within aircraft
systems has led to the development of highly specialized solu-
tions tailored to specific applications [11]. Although many of
these systems excel in improving particular functions, only
a limited few contribute to advancing cognitive capabilities,
particularly in decision-making processes critical to aircraft
operations. Cognitive architecture plays a pivotal role in
organizing data and information flowwithin an agent, thereby
facilitating intelligent behavior emergence. However, exist-
ing research primarily focuses on low-level data interfaces
like sensors and actuators, neglecting the broader abstraction
of hardware [12].

Still, according to Pinto et al. [12], designing a com-
prehensive architecture capable of accommodating various
cognitive aspects remains a critical challenge. Key areas such
as knowledge representation, decision-making, and robotics
demand practical solutions to embed artificial cognition
effectively and decision-centric mission objectives. Achiev-
ing autonomous operation in robotic systems necessitates the
integration of specific, interconnected components. A well-
defined organizational structure is crucial for fostering
intelligent behavior emergence and facilitating interopera-
tion. Cognitive architectures offer promise in addressing
challenges like adaptability and scalability [13], [14]

The concept of cognition in computing refers to integrating
cognitive capabilities into computer systems, enabling them
to understand, learn from, and respond to their environment in
a manner akin to human cognition [15], [16]. This approach
leverages artificial intelligence and machine learning algo-
rithms to process and analyze vast amounts of data, make
decisions, and solve problems more efficiently. The goal is
to create systems that are not only reactive but also proactive
and adaptive, capable of anticipating needs and offering
solutions without explicit programming for every possible
scenario [17], [18]. Cognition in robotics, on the other
hand, focuses on imbuing robots with cognitive functions
to enhance their autonomy and interaction capabilities [19],
[20]. Cognitive robotics combines Artificial Intelligence
(AI), Machine Learning (ML), computer vision, and natural
language processing to enable robots to perceive their
environment, understand context, learn from experiences,
and make informed decisions. Such capabilities are essential
for complex tasks like navigation, manipulation in unstruc-
tured environments, and human-robot interaction, pushing
the boundaries of what robots can achieve independently
[21], [22].

To cite some possible cognitive-network applications
trends in robotics: (i) intelligent data processing (network
layers can perform context-aware processing, understanding
the significance of the data in relation to the robots’ mission
objectives); (ii) reduced latency for real-time decisions (it
facilitates near-instantaneous decision-making by processing
data in close physical proximity to the edge devices, essential
for the autonomous operation of robots); (iii) bandwidth
management and data prioritization (by intelligently analyz-
ing data, the network - mainly fog layer - can prioritize its

transit to the cloud, managing network resources efficiently);
(iv) autonomous local storage and caching (it decides what
data should be stored locally and what should be discarded or
sent to the cloud, optimizing network and storage resources);
(v) decentralized cognitive functions (the fog and edge layers
enable distributed cognition, allowing a robot swarm to adapt
to dynamic environments through collaborative intelligence.
The fog nodes may also aid in the decentralized coordination
of drones, for example, helping to manage communication,
navigation, and operational algorithms among the swarm);
(vi) enhanced resilience and redundancy (contributes to
the robustness of the network by maintaining operations
during cloud outages, utilizing its cognitive capabilities
to manage a robot swarm independently); (vii) proactive
security measures (cognitive network nodes, mainly in fog
layer, can identify potential security threats in real-time and
initiate protective protocols without waiting for cloud-based
analysis); (viii) energy-efficient operations (distributed Edge-
Fog-Cloud optimizes the energy consumption of robots by
processing data locally or in intermediary network layers,
reducing the need for long-range communications for every
processing load).

A. MAIN CONTRIBUTIONS
The main contribution of this research work lies in the
comprehensive exploration and integration of advanced
technologies and methodologies to enhance the capabilities
of UAV swarm networks. Specifically, this paper presents
the development and implementation of Aerial Robot Cog-
nitive Network Architecture (ARCog-NET). This cognitive
architecture is a collective algorithm designed for cognitive
UAV swarm networks operating within the Edge-Fog-
Cloud architecture. ARCog-NET operates in a loop-oriented
manner, with parallel iterations occurring at different network
nodes, represented by active robots within the swarm. These
nodes execute specific tasks across different levels of the
network structure to ensure smooth network operation while
UAVs perform their assigned missions.

The architecture encompasses various aspects such as
data management, information exchange, cognitive decision-
making for network and operation control, robot control
actions, data processing, storage, and human interaction
possibilities. Integrating fog and cloud computing resources
enhances the system’s mission control, supervision, and
data analytics capabilities. This architecture emphasizes the
importance of efficient communication strategies within the
EFC cognitive UAV swarm network. It aims to improve com-
munication among the swarm by analyzing latency, through-
put, package loss, interference, and power constraints, which
are crucial for achieving optimal system performance. The
main contributions of this paper can be summarized as:
• Development and implementation of a cognitive
architecture designed for UAV swarm networks
called ARCog-NET

This architecture integrates advanced technologies
and methodologies to enhance the coordination and

VOLUME 12, 2024 129041

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

cooperation of UAVs in swarm applications. One of the
standout features of ARCog-NET is its utilization of
the Edge-Fog-Cloud model for distributed processing.
This hierarchical structure allows for efficient distri-
bution of computational tasks across different levels,
significantly reducing latency and enabling real-time
decision-making. Edge-level UAVs handle real-time
data collection and local decision-making, fog-level
vehicles manage intermediate processing and supervi-
sion, and cloud servers perform comprehensive data
analysis and long-term storage.

• Implementation of a cognitive decision-making
process

The architecture incorporates cognitive decision-
making processes that enable UAVs to optimize their
behavior in dynamic environments. This includes
data management, information exchange, robot control
actions, and adaptive learning, ensuring UAVs can react
swiftly to obstacles and adapt to changing conditions.

• Development of a linear-structure trained model
for image compression, implemented with Keras
and already integrated into the control modules in
Robotic Operating System (ROS)

This Deep Learning (DL) model offers a versatile
and low computational cost solution for data compres-
sion. It is suitable for use with various image formats
within the UAV swarm system and is a built-in asset to
ARCog-NET communication features. This integration
enhances the efficiency of data transmission and pro-
cessing within the multi-UAV framework. The imple-
mentation and testing are detailed in Ramos et al. [23].

• Testing the ARCog-NET in a semi-realistic software
Gazebo along with ROS for evaluating the perfor-
mance and functionality of the proposed approach.

ARCog-NET is integrated with ROS, a widely
used framework for developing robotic applications.
This integration enables communication and interaction
between ARCog-NET and ROS-based UAV systems,
facilitating the implementation and testing of cognitive
algorithms within real-world robotic environments. The
performance of ARCog-NET is demonstrated through
a wind farm inspection scenario in software-in-the-loop
(SITL) testing, showcasing its effectiveness in trajectory
planning, collision avoidance, and data processing
efficiency.

B. ORGANIZATION
The rest of this paper is organized as follows. Section II
describes the related works and the state-of-art. Besides,
it introduces the necessary characteristics for cognitive
architectures and decision-making processes, which are
essential for comprehending the ARCOG-net framework.
Section III presents the overall proposed architecture for
creating the compression model and integrating it into the
multi-robot simulation and the mathematical foundations
for validating the methodology. Section IV presents the

simulation results and discusses the adopted algorithms.
It shows the ARCog-NET being applied in a wind farm
scenario. The final Section V concludes the paper.

II. BACKGROUND AND RELATED WORK
A. COGNITIVE ASPECTS
The field of robotics has seen significant advancements,
evolving from simple mechanical structures to complex
autonomous systems capable of interacting with their envi-
ronment in increasingly sophisticated ways. Central to this
evolution is the development of cognitive capabilities that
enable robots to perceive, understand, and act effectively
within their surroundings [12]. According to Dominey and
Warneken [24], the fields of psychology and computer
science are embracing a phase of collaboration driven by
advancements in robotics technology. Contrary to simula-
tions and classic AI applications, which are limited to virtual
environments, robots possess the sensory and motor skills
necessary to navigate and operate within the human physical
realm, enabling direct interaction.

This subsection outlines the essential aspects of cognition
that a robot must possess to achieve a higher level of
autonomy and interaction. These aspects include perception,
learning and adaptation, decision-making and problem-
solving, and memory [12], [15]. By integrating these
cognitive faculties, robots can better understand their envi-
ronment, make informed decisions, learn from experiences,
and interact with other robots meaningfully.

Perception is the foundational cognitive aspect, enabling
robots to acquire and process information in order to
take action [25]. Effective perception involves not just the
passive collection of data but also the active interpretation
of this data to understand the context and significance of
environmental stimuli. This perception data is part of the
cognition process, which also involves attention, association,
memory, reasoning, judgment, imagination, thought, and
language [26]
For robots to operate autonomously in changing environ-

ments, they must be able to learn from experiences and
adapt their behavior accordingly. ML algorithms, including
supervised, unsupervised, and reinforcement learning, are
crucial for this cognitive aspect [27]. Adaptive learning
enables robots to improve their performance over time based
on feedback from their actions and environmental changes.
Autonomous robots must be capable of making decisions
and solving problems in real-time to navigate complex
environments and achieve their goals. This involves eval-
uating possible actions, predicting outcomes, and selecting
the optimal course of action based on current objectives.
Decision-making and problem-solving require synthesizing
information from various cognitive processes, including
perception and memory [12].
Note that this level of autonomy is crucial for robots

operating in dynamic or unstructured environments, such
as search and rescue operations and other applications [5],

129042 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

[13], [28], [29]. With cognitive functions, robots can learn
from their experiences and adapt their behaviors to suit
their tasks and environments better. Adaptability extends the
utility of robots to a broader range of tasks and conditions,
improving their efficiency and effectiveness in changing
scenarios. Besides, cognitive processes enable robots to
identify problems, generate potential solutions, evaluate
their feasibility, and implement the most suitable ones.
This capability is essential for robots tasked with complex
missions where predefined algorithms may not suffice, such
as navigating unknown terrains or handling unexpected
obstacles in manufacturing processes.

Several works from the literature proposed architectures
with cognition aspects to enhance the engagement between
robotic systems and their environment [12], [15], [30],
[31], [32]. The Intelligent Vehicle Control Architecture
(IVCA) introduced in [33] facilitates cooperation among
various aerial vehicles. While IVCA is designed to be
adaptable, its primary focus is on collaborative aircraft
operations. It employs ontologies for its foundation but
lacks details on hardware specifics or learning mechanisms.
In contrast, Selecký et al. [14] developed a UAV framework
emphasizing autonomous operations reliant on sensor data.
Yet, it falls short in incorporating learning functionalities, and
its hardware needs varywith the project scope. Aerostack [34]
stands out by offering a structured system for commanding
and managing autonomous, diverse teams directly from
the aircraft, focusing on navigation and avoiding obstacles.
Despite its advantages, Aerostack’s framework has room for
enhancement in Human In The Loop (HITL) integration,
team collaboration, and autonomous decision-making. There
is still a clear demand for frameworks incorporating cognitive
abilities and effectively managing interactions between
multiple robots and the HITL process. The HITL is a feature
that allows the human operator to intervene, make decisions,
and provide commands that guide the operations of the UAVs,
particularly in scenarios where the automated system may
struggle to find an optimal solution.

B. EDGE-FOG-COMPUTING NETWORK
An important aspect of the UAV multi-vehicle systems is
the communication strategy between each part. The vehicles
need to be able to send and receive data in a real-time
pipeline to know each other’s position, velocity, orientation,
and flight autonomy and communicate with the Ground
Control Stations (GCS) of the mission [35]. These network
systems may be designed as IoT-based (Internet of Things)
architectures or even be nodes of an IoT architecture itself,
like fog [36], fog-cloud [37], or Edge-Fog-Cloud (EFC)
networks [38]. The present work is particularly interested
in EFC design due to its versatility and low exploration in
robotics applications.

An EFC network represents a hierarchically structured
computing framework that orchestrates data processing
across multiple network layers to enhance IoT and smart

application performance [39]. ‘‘Edge’’ computing allows data
processing to occur at the source of data generation, effec-
tively reducing response times and conserving bandwidth by
not sending all data to the central cloud [40]. The ‘‘fog’’
layer acts as an intermediary that offers localized processing
and storage, facilitating lower latency and network traffic
and supporting mobility and geographical distribution [41].
Finally, the ‘‘cloud’’ provides a backbone with substantial
computational power and storage for non-time-critical and
complex processing tasks [42]. This tripartite model benefits
from the immediacy of edge computing, the geographic
distribution of fog computing, and the extensive resources of
cloud computing presenting a scalable and efficient solution
for modern computing challenges [43].
Edge computing is an emergent paradigm that brings

computational capabilities to the network’s periphery, closer
to data sources like IoT devices and sensors. This approach is
instrumental in reducing latency, enhancing data processing
speed, and mitigating bandwidth issues typically associated
with centralized cloud computing [44], [45]. By prepro-
cessing data locally, edge computing allows for real-time
analytics and swift decision-making, which are crucial in
applications such as autonomous vehicles, smart cities, and
healthcare monitoring systems [46], [47]. This paper assumes
that robotics groups functioning as edge nodes in a network
are the closest agents to the user (or operation goal).
These robots are, in fact, the ones executing the mission
they’re applied for and dealing with this operation’s events.
These events can be navigation-related (a constraint for the
robot continuing the trajectory) or mission-related (finding
a goal or receiving a command from another robot), for
example, detecting changes in environmental conditions, like
temperature, humidity, or the presence of certain chemicals
or gases, using onboard sensors identifying potential hazards
or obstacles in the path of a drone or robot, necessitating a
reroute or other immediate action, etc.

Fog computing is a distributed computing infrastructure
that extends cloud capabilities to the edge of the network,
enabling a new breed of applications and services [43].
By bringing the advantages of the cloud closer to where data
is produced and acted upon, fog computing facilitates low-
latency, network-efficient data processing, which is essential
in use cases such as the Internet of Things (IoT), 5G networks,
and real-time analytics [40], [48]. The decentralization
inherent in fog computing allows for localized decision-
making, critical in scenarios requiring immediate action,
such as smart transportation systems and emergency services
[42], [49].

Cloud computing has significantly influenced the field
of robotics, enabling enhanced computational power, vast
storage capabilities, and advanced robotics applications [50],
[51]. Robots can access powerful processing resources
through the cloud to perform complex tasks, collaborate
in real-time, and utilize machine learning algorithms for
improved autonomy and adaptability [52], [53]. This inte-
gration has given rise to the concept of ‘‘cloud robotics’’,

VOLUME 12, 2024 129043

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

which leverages the cloud for offloading heavy computa-
tion and providing services like mapping, navigation, and
vision recognition, dramatically expanding the potential
of robotic systems [54]. This paper also applies this
computing concept to robotics, integrating cognition for
autonomous, optimized, and adaptive decision-making and
control.

C. DECISION-MAKING
Decision-making in the context of robots refers to the pro-
cesses and mechanisms that allow a robot to autonomously
select actions based on its perceptions of the environment,
objectives, and internal state. Having a decision-maker
on board allows UAVs to operate effectively in highly
dynamic settings, even without centralized coordination.
This capability enables UAVs to adapt seamlessly to any
alterations in their surroundings. Traditional approaches to
autonomous decision-making typically rely on extensive
training with large datasets, which limits their ability to
provide a form of intelligence that can be applied across a
wide spectrum of scenarios [55].
In sectors with critical demands like the aerospace

industry, it’s essential for robotic systems to perform the
decision-making process by exhibiting predictable and stable
actions. Several techniques meet these criteria, with the
most commonly employed algorithms for decision-making
including Expert System (ES), Evolutionary Computation
(EC), Data Mining (DM), and Case-Based Reasoning (CBR)
[56]. DM is crucial for decision support systems, as it involves
modeling and identifying patterns to extract knowledge
effectively. Meanwhile, EC is adept at handling numerous
criteria, making it ideal for addressing intricate problems
in the real world. CBR is advantageous due to its minimal
computational demands and strong representation skills, yet
it fails to generate decisions for previously unseen scenarios.
Neural Networks (NN) have shown the most remarkable
outcomes, though they necessitate a substantial volume of
data for training.

This paper employs a Reinforcement Learning (RL)
approach for making decisions. RL is a machine learning
method that teaches an agent to make optimal decisions
through experiments. It focuses on the agent’s interaction
with an environment to achieve a specific goal without
explicit instructions on how to achieve it. RL is one of
the most popular research fields in the context of machine
learning [57], effectively addressing various problems and
challenges of artificial intelligence, as well as in the robotics
field [58]. In recent years, there has been significant progress
in leveraging reinforcement learning for UAV network opera-
tions and path planning. Murshed et al. [59] proposed a multi-
agent deep reinforcement learning approach for weighted
fair energy transfer in a UAV network, showcasing advanced
coordination techniques for optimizing energy efficiency
in UAV operations. Similarly, Brotee et al. [60] explored
a hybrid clustering and multi-agent reinforcement learning

approach for path planning in obstructed environments,
highlighting the benefits of coalition operations between
UAVs and UGVs.

By using RL, the robot is an agent that learns to make
decisions through a system of rewards and penalties. Each
action the agent performs results in feedback from the
environment, which can be positive (reward) or negative
(penalty). The agent uses this information to formulate a
strategy that maximizes rewards over time. According to
Leonetti et al. [61], managing execution and planning in real-
time involves dealing with models that may not always be
reliable. Besides, identifying and responding to failures may
not suffice for a robot. Thus, it’s essential for an intelligent
agent to recognize its errors, learn from them, and minimize
similar mistakes in the future. RL enables this capability, and
it is the algorithm that this paper uses as a decision-making
approach to the proposed framework ARCog-NET.

D. COGNITIVE ARCHITECTURE
In cognitive systems, data representation is crucial, which
often manifests as a dichotomy between symbolic and sub-
symbolic paradigms [62]. Symbolic representation involves
direct symbols such as words and ontologies, facilitating
knowledge verification and human understanding of deci-
sions, making it particularly suitable for aircraft applications.
Conversely, the sub-symbolic paradigm employs parallel data
representations, like neural network weights, which are not
directly accessible [12].
Generic architectures like State, Operator and Result

(SOAR) [31] and Adaptive Control of Thought–Rational
(ACT-R) [63] initially lack specific definitions for knowledge
representation. However, subsequent works have proposed
structures capable of both symbolic [31] and sub-symbolic
representations [64]. For this work, symbolic representation
primarily facilitates block interaction.

Another critical aspect is the system’s ability to handle
natural language. Extensions like Natural Language Under-
standing - State, Operator and Result (NL-SOAR) [65] and
Chunk Hierarchy and Retrieval Structures (CHREST) [31]
enhance general architectures to comprehend and generate
natural language outputs, supporting both simulated and
real-time environments. Our proposed architecture utilizes
symbolic knowledge for block interaction, ensuring a com-
prehensive understanding of reasoning processes.

Effective problem-solving and decision-making within
dynamic environments are crucial for autonomous systems.
Learning from previous experiences enhances the system’s
adaptability and reduces programming workload. Paper [65]
reviews decision-making methodologies in SOAR and ACT-
R, utilizing expert knowledge and situational memory
combined with rule-based logic. Similar approaches are seen
in [14] and Sanchez-Lopez et al. [34], incorporating heuristic
methods and centralized activity management for task
distribution and path planning. While some implementations,
such as Sampedro et al. [66], focus on specific tasks, broader

129044 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

and general mission decision-making capabilities remain
underdeveloped in current research. Our work addresses
this gap by integrating comprehensive decision-making
mechanisms suitable for diverse mission objectives.

In aerial applications, consistent and predictable algo-
rithms are essential for proper verification and validation.
Aerial Robotics Cognitive Architecture (ARCog), proposed
by Pinto et al. [12], presents an architecture focused on
HITL and team coordination for autonomous operations. The
approach relied on language for information representation
and decision-making processes. ARCog incorporates a func-
tional block utilizing the Case-based Reasoning approach to
learn and make decisions. Its architecture is designed for
compatibility with Linux-based hardware, enabling as close
to real-time data processing onboard the aircraft.

E. MULTI-ROBOT COLLABORATION
Several works presented ideas for simulating multi-UAV
systems and their communication network integration.
Luna et al. [67] presented a multi-UAV application for area
sensing with a novel path planning algorithm, with both
simulation and field test robust results. However, besides
presenting the network architecture and communication
protocols, one needs to consider the communication network
constraints (such as latency) that influence the mapping
mission.

In Alfeo et al. [68], a strategy for UAV swarm coordination
is also presented based on the biomimetic behavior of insect
groups. The paper has a complete approach regarding group
control modeling, and the authors presented a nice literature
review regarding the theme. Still, more information is needed
on practical and physical conditions for those systems, hard-
ware constraints, and communication architecture, presenting
only mathematical simulations and their results.

The research in multi-UAV systems that most approaches
and inspired the present work are based in Robotics Operating
System (ROS) [69], with Gazebo [70] physics simulator
integration. ROS is a collection of software frameworks for
robot development, which provide the functionality of an
operating system on a heterogeneous cluster of computers.
ROS also provides standard operating system services,
such as hardware abstraction, low-level device control, the
implementation of commonly used functionality, message
passing between processes, and package management.

Sets of running ROS processes are represented in graph
architecture. The processing occurs in nodes that can receive
and send messages, such as multiplex sensors, control,
state, planning, actuator, etc. This paper uses the system
to develop the multi-UAV control packages and send and
receive data between each node (or robot). The developed
ROS packages also run the autoencoder for data compression
in the simulation.

The ROS also has a package namedMicroAir Vehicle ROS
(MAVROS) [71], which is an extendable communication
node for ROS with a proxy for the Ground Control Station.

This package allows the developer to build applications
using Micro Air Vehicle Link (MAVLINK) [72], which is
a very lightweight messaging protocol for communicating
with drones and between onboard drone components. This
composition provides functionality for building abstraction of
controllers, sensors, and actuators for real drones with PX4
Autopilot [73] firmware, simulating physics conditions in
Gazebo and generating ready-to-deploy routines in real Flight
Controller Units (FCUs).

The Gazebo is an open-source 3D robotics simulator.
It integrates the Open Dynamic Engine (ODE) physics
engine, OpenGL rendering, and code for sensor simulation
and actuator control. The Gazebo can use various high-
performance physics engines like ODE, and Bullet [74].
It provides realistic rendering of environments, including
high-quality lighting, shadows, and textures. It can model
sensors that ‘‘see’’ the simulated environment, such as
laser range finders, cameras (including fish-eye), Kinect-
style sensors, etc. In the present work, the Gazebo software
simulates the environment, themain sensor (an RGB camera),
and the physics acting on the proposed framework.

In the work of Anagnostopoulos et al. [75], a framework
combining ROS and network simulators (Artery/OMNET++
[76]) is proposed, focusing on establishing a platform for
cooperative autonomous vehicles system developments. This
is a significant contribution since neither ROS nor Gazebo
has built-in support for complex communication simulations
(covering the OSI model).

Similarly to the previous citation, Mohini [77] also pre-
sented a framework for integrating a ROS/Gazebo simulation
with a benchmark network simulator NS-3 [78]. The author
used the PX4Autopilot [79], [80] packages for ROS, building
a multi-UAV system simulation that can be adapted for
several communication systems between nodes or robots
of the group (such as Wi-Fi or GSM). The author also
studied the effects of communication losses and delays,
taking into account the robustness of the system modeling.
The main contribution of the present work regarding this is
data compression, which [77] did not cover.

Following a similar path, Acharya et al. [81] and [82] pro-
posed similar frameworks for integrating ROS and network
simulators for multi-robot systems development. Both types
of research deal with time synchronization, as ROS/Gazebo
simulations are based on continuous iterations, and net-
work simulators are based on discrete event time steps.
Finally, Pinto et al. [13] presented a framework for analyzing
fog-cloud computing cooperation applied to information
processing in UAVs. The results are based on mathematical
data processing models in a multi-robot communication
system and communication pipeline parameters. Still, they
lack physical simulation results of real robots since the
presented results rely only on mathematical modeling.

Regarding data compression, Liu et al. [83] presented an
autoencoder model for compressing scientific floating-point
data without losing key information in data. A comprehensive
study on autoencoders was conducted, but the author’s model

VOLUME 12, 2024 129045

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

still needs to be tuned to reach higher compression rates
without losing crucial data. Grassa et al. [84] and Zebang
and Sei-ichiro [85] proposed two linear autoencoder models.
In [84], the model is trained with satellite multispectral
and hyperspectral RGB images. The second reference used
a densely connected autoencoder for data compression,
which was trained with high-resolution images to get richer
feature extraction, then used a U-net network to decrease the
distortion caused by compression. Both models demonstrated
improvements compared to other methods (such as traditional
JPG) but were slow for real-time data compression, which is
necessary for the setup under configuration.

Unlike the mentioned works, this work aims to develop
a multi-UAV simulation framework with ROS and Gazebo
packages and integrate it with a data (image) compression
DL model, developed with Keras and already integrated into
the control modules in ROS, evaluating its robustness within
the robot system. This compressor is chosen because of its
versatility and low computational cost. Once trained, the
model can be used with several image formats. This research
presents a generic multi-UAV development platform with
reconfigurable separated sensors and controls.

Table 1 provides a comparative overview of some of the
cited works alongside key characteristics relevant to our
proposed approach. In this table, ‘‘Yes’’ means the work
addresses the respective aspect, and the symbol ‘‘−’’ means
the aspect is not applicable or not mentioned in the work.

Most cited works demonstrate some decision-making
capability, albeit with different approaches and methodolo-
gies. While some explicitly address this aspect, others do
not focus extensively. Integration with ROS and/or Gazebo
for simulation purposes is a common theme among the
works, facilitating the development and testing of robotic
systems in simulated environments. However, fewer works
concentrate on physical robot simulation, simulating real-
world hardware components and interactions. This aspect is
critical for validating algorithms and behaviors in realistic
settings. Similarly, data compression techniques, although
not a primary focus in many works are addressed in
some ways to manage and transmit sensor data efficiently,
especially in resource-constrained systems.

III. THE PROPOSED ARCog-NET ARCHITECTURE
The basic cycle of ARCog-NET functioning is a loop-
oriented collective algorithm in which each iteration happens
in parallel at different network nodes (where a network
node can be understood as an active robot of the swarm)
that occupies different levels of the structure. Each level
has specific tasks to accomplish to keep the whole network
working while the robots execute the mission that the
swarm is tasked with. In general, data structures, flows
and filtering, information exchange, cognitive decision-
making for network control and operation control, robot
control actions, data processing, data storage, and human
interaction possibilities for each network level that should
run at each node. Figure 1 presents a basic representation

TABLE 1. Comparison of key aspects in related works for UAV swarm
architecture.

of ARCog-NET with two groups of edge agents coordinated
by two fog coordinators each and connected to a cloud
mainframe for mission control and supervision.

Various communication issues can significantly impact the
system’s overall efficacy and performance in the context
of the EFC cognitive UAV swarm network generated by
ARCog-NET. To cite some:

• Latency: Critical for real-time operations, latency
becomes a concern when data must traverse multiple
layers from edge to cloud, potentially delaying decision-
making processes.

• Bandwidth Limitations: The drone’s high volume of
data can exceed the available bandwidth, leading to
transmission bottlenecks, especially during peak data
transfer periods.

• Interference: Communication can be disrupted by envi-
ronmental factors, electronic interference, or competing
signals, leading to data loss or miscommunication.

• Security and Privacy: Open wireless communication
channels present vulnerabilities to security breaches and

129046 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

FIGURE 1. ARCog-NET basic representation.

privacy intrusions, necessitating robust encryption and
security protocols.

• Scalability: As the drone network expands, the commu-
nication infrastructure must scale accordingly without
compromising performance or increasing latency.

• Energy Constraints: Drones are limited by battery life,
with communication protocols consuming significant
energy. Thus, efficient energy use is paramount for
sustained operations.

Overcoming these communication challenges is crucial
for deploying effective and autonomous cognitive drone
swarm networks, and the proposed framework is designed to
simulate those constraints, as will be discussed later. ARCog-
NET was also designed with a specific message format that
keeps the same structure regardless of the dataflow between
layers or nodes and is always broadcast through theMAVLink
protocol. This message structure is basically an array of
arrays following the representation presented in Figure 2.

FIGURE 2. ARCog-NET message structure representation.

Message content is the core of exchanging informa-
tion, passing commands through the network, or requests
addressed downstream or upstream. In the present archi-
tecture, these messages were divided into categories (or
workflows), which represent the kind of message (data,
processed data, request, or command) and the node (agent,

coordinator, or server) they’re being sent or coming from.
Table 2 represents these workflow descriptions, which will
be important to understand the data structures of the layers
in the following subsections dealing with the implemented
architecture’s algorithms and data. It is important to notice
that future developers can add workflows to the basic
structure.

TABLE 2. Complete workflow descriptions.

The size of ARCog-NET message fields and the control
overhead received permessage or communication depends on
the specific implementation details of the network protocol
(in this case, MAVLink [72]) and the data structures used
in the communication process. Every packet has 8 bytes
dedicated to theMAVLink header, 2 checksum bytes (totaling
10 control overhead bytes), 32 bytes for message ID, message

VOLUME 12, 2024 129047

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

type, sender ID, and receiver ID, respectively (totaling
128 bytes), and 48 bytes for date/hour of message emission.
The message content may vary in size. A position data
message, for example, has 12 bytes (4 for each one of the
x, y, and z coordinates), and a high-definition image is sent
as a message occupying up to 70 bytes per packet. This way,
ARCog-NET messages always have up to 256 fixed bytes.

Note that MAVLink does not handle routing or Media
Access Control (MAC) layer functions directly, it can be
used effectively in a networked environment with multiple
nodes by leveraging additional networking protocols and
infrastructure. In ARCog-NET architecture, for instance,
MAVLink is used for transmitting structured messages across
the network, with the actual data routing and handling man-
aged by the underlying network infrastructure. This approach
allows MAVLink to support communication among multiple
UAVs and nodes in the network, facilitating coordinated
operations and data exchange

A. THEORETICAL MODELING AND ALGORITHMS
The choice of employing a cognitive-based decision-making
flight algorithm grounded in Particle Swarm Optimization
(PSO) for Unmanned Aerial Vehicle (UAV) operations is
underpinned by several compelling factors. First, cognitive-
based algorithms leverage principles from cognitive science
and artificial intelligence to simulate human-like decision-
making processes, enhancing the autonomy and adaptability
of UAVs in dynamic environments. PSO, inspired by the
social behavior of birds flocking or fish schooling, is par-
ticularly well-suited for optimization problems involving
multiple objectives and constraints, such as those encountered
in UAV flight planning and execution. Its ability to efficiently
explore and exploit the search space enables UAVs to identify
optimal flight paths that balance various factors like energy
consumption, obstacle avoidance, and mission completion
time. Additionally, PSO’s iterative nature allows UAVs to
continually refine their strategies based on real-time data,
promoting robust performance in unpredictable scenarios.
By integrating cognitive models with PSO, the decision-
making process becomes more sophisticated, enabling UAVs
to handle complex tasks with minimal human intervention.
This approach not only improves the efficiency and reliability
of UAVmissions but also enhances their capability to operate
in challenging environments, making it a preferred choice for
advanced UAV flight algorithms.

In ARCog-NET, UAVs will be assumed to operate in
an area A ∈ R3. The robots are represented like network
nodes, being e the edge layer agents belong to the group
e = {e1, e2, e3, . . . , em}, and f is the group with the
fog coordinator represented as f = {f1, f2, f3, . . . , fn},
where em and fn are the maximum numbers of edge agents
and fog coordinators, respectively. The assumptions for the
framework modeling are that the transmission rate between
components is constant, the processing power of each
component is known and constant, and the latency and energy

consumption depend on the amount of data processed and
transmitted.

Time ti is the initial moment of the operation in which
the UAVs are deployed, the initial number of groups, agents
per group, and coordinators assigned by the cloud supervisor
HITL. Also, the initial trajectory points and flight trajectory
deviation when an event happens can be set by the human
supervisor at the beginning. It is important to notice that
initially, fixed trajectories are considered for each agent and
coordinator (calculated by the process loop or set by a human)
in the ARCog-NET algorithm (t = 0), and flying trajectory
modifications may occur at any time t > 0 throughout the
operation. The number of objective-trajectory points at the
beginning of the operation for the i-th drone assigned to a
layer L ∈ {e, f } is nLi , and the number of objective-trajectory
points at any given time during the operation (t) is the variable
nLip . This way, the number of objective points is:

nLip =
M∑

λ=1

N∑
γ=1

O∑
k=1

Pκ
Li (xλ, yγ , zk), (1)

in which t > 0 is the moment where the trajectory is
modified by any operation event, handled locally or by
request/command in other layers, and Pκ

Li is the κ-th point
of a UAV i in layer L executing the trajectory TLi . M , N
and O are the maximum number of x, y and z coordinates
of the points of this trajectory, therefore represents the
total count of three-dimensional points in a finite set. The
indices λ, γ , and k traverse the coordinates x, y, and
z, respectively. Pκ

Li (xλ, yγ , zk) indicates the presence of a
point at the coordinate xλ, yγ , zk). Note that Equation 1
calculates the total number of three-dimensional points
that the UAVs need to navigate to accomplish their tasks
efficiently. This function is crucial because it defines how the
UAVs’ trajectories are determined and adapted in response to
dynamic environmental factors, such as obstacles or changes
in mission parameters. By optimizing these trajectories,
the UAVs can ensure maximum coverage with minimal
energy consumption and operational time, which is essential
for the success of swarm-based autonomous systems. It is
also important to know an incremental function denoted in
Equation (2), which represents how much a point κ changes
when it is modified by an event:

1Pκ (t − ti)

=

{
δκ
p , for [||Pκ

Li (t)new|| − ||P
κ
Li (t)old||] ≥ 0,

−δκ
p , for [||Pκ

Li (t)new|| − ||P
κ
Li (t)old||] < 0,

(2)

being δκ
p = |[||P

κ
Li (t)new||]−[||P

κ
Li (t)old||]| at time t , Pκ

Li (t)new
is the new κ trajectory TLi point and P

κ
Li (t)new is the previous

one. For a generic i-th flying robot assigned in a layer L
(e or f) in the present framework, the position of a node’s j-th
‘‘current objective’’ (doesn’t matter the layer) at any given
time t is PLiobjj (t) ∈ R3. Just for a mathematical generalization,
it is considered that each robot flies toward its objective in
a fixed height, which will be modified by random mission

129048 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

events by a Particle Swarm Optimization (PSO) algorithm.
Actually, the objective’s position depends on which task the
swarm is applied, as it may be constant (trajectory flight for
photogrammetry, for example) or suddenly modified by an
operation event (the agent found an obstacle or received a
trajectory modification command). The ‘‘objective motion’’
can be described as:

θ
Li
objj

(t) = arctan

 PLiobjj [y](ti)− P
Li
objj

[y](t)

PLiobjj [x](ti)− P
Li
objj

[x](t)

V Li
objj

(t) =
||PLiobjj (t)− P

Li
objj

(ti)||

t − ti
PLiobjj [x](ti+1) = PLiobjj [x](t)+ V

Li
objj

(t) · cos θ
Li
objj

(t) ·1t

PLiobjj [y](ti+1) = PLiobjj [y](t)+ V
Li
objj

(t) · sin θ
Li
objj

(t) ·1t,

(3)

where V Li
objj

denotes the ‘‘objective’s speed’’ (or how fast the
position of the j-th objective changed considering the UAV
as an inertial referential), and θ

Li
objj

is the ‘‘heading’’ of this
objective (the direction in which this objective changed in
relation to the UAV), both at any time where t . The robots
may fly at variable altitudes in relation to the ground-relative
level. Therefore, the position of the UAV at any time t
and at any given layer (except cloud, which is not a UAV
and is considered fixed) is denoted by PLi (t) ∈ R3. The
robots fly between objectives through vectorial speed control
considering constant height for mathematical simplification,
which is modeled by the following equations:

θLi (t) = arctan
(
PLi [y](ti)− PLi [y](t)
PLi [x](ti)− PLi [x](t)

)
VLi (t) =

||PLi (t)− PLi (ti)||
t − ti

PLi [x](ti+1) = PLi [x](t)+ VLi (t) · cos θLi (t) ·1t
PLi [y](ti+1) = PLi [y](t)+ VLi (t) · sin θLi (t) ·1t,

(4)

in which VLi (t) and θLi (t) denote the instant velocity and the
instant heading of any UAV in a given layer, respectively. It is
assumed that CLi (t) is the trajectory coverage at time t of
navigated points PLi of a UAV in relation to its PLiobjj objective
trajectory points. The coverage represents the trajectory
traveled by a robot i between two consecutive moments t and
t + τ , where τ is a fixed time step. As TLi is the defined
trajectory of waypoints performed (or to be performed) by an
i-th UAV connected to ARCog-NET at layer L in an observed
time t (being ti the previous time), and Pκ (t) is the κ-th point
of this trajectory, the total coverageC total

Li of the trajectory can
be described as:

Cκ
Li (t − ti) = 1Pκ (t − ti)

C total
Li =

1

nLip

∑n
Li
p

k=0
Cκ
Li (t − ti),

(5)

where nLip is the number of points observed in a time interval.
This way, C total

Li will depend on how efficiently nLip is defined,

especially when navigation events happen (which could be
a detected obstacle by an edge agent or a command to
change trajectory by a superior layer). Thus, C total

Li can
be understood as the reward for a navigation trajectory
decision. When an event happens, by default, the method to
calculate new trajectory points in the present work is the PSO
algorithm [86].

ARCog-NET employs a cognitively improved PSO
algorithm to calculate trajectory points of flight planning,
improving classic PSO processing time and trajectory points
precision. Basically, the trajectories executed by the UAVs
are saved and used for building new trajectories using
PSO algorithm. This way, improving the trajectory for
new events becomes quicker if the calculation has to be
done again. By integrating reinforcement learning into the
PSO algorithm, we achieve a more adaptive and efficient
trajectory path planning method for UAVs. The RL-enhanced
PSO dynamically adjusts its parameters based on navigation
feedback, leading to improved convergence rates and solution
quality.

As robots must navigate through dynamic environments
while avoiding collisions, by employing ARCog-NET PSO,
these UAVs can quickly adapt their paths in response to
changes in their surroundings, ensuring continuous operation
without manual intervention. Similarly, in swarm operations,
PSO enables each UAV to independently plan its path while
maintaining formation integrity and avoiding both static and
moving obstacles, or send a request to a superior layer for it
to calculate a trajectory for it. This capability is critical for
missions in complex terrains or urban environments, where
the operational space is often cluttered and unpredictable.
Also, ARCog-NET adds the functionality of comparing a new
PSO trajectory with already calculated navigation decisions
to verify if a previous decision is better than the current one
calculated, repeating the previous decision of the historical
database.

The ARCog-NET PSO is compared with classic PSO [87],
A* [88], Dijkstra [89] and RRT [90] in convergence time,
success rate, coverage, computational cost and scalability.
Classic PSO, while effective, struggles with premature con-
vergence and adaptability. ARCog-NET PSO improves this
by using a cognitive navigation points base to enhance per-
formance in dynamic environments, allowing it to be used in
real-time applications. While A* excels in static pathfinding,
it lacks adaptability for dynamic UAV operations. ARCog-
NET PSO balances exploration and exploitation, offering
superior performance and robustness for complex UAV
swarm tasks. Dijkstra’s algorithm is renowned for its ability
to find the shortest path in graphs with non-negative edge
weights, ensuring optimal solutions. By comparing ARCog-
NET to Dijkstra, it is possible to highlight how closely
ARCog-NET achieves optimal path solutions, particularly in
static and well-defined environments. Finally, RRT (Rapidly-
exploring Random Tree) is designed to efficiently explore
large, high-dimensional spaces and is widely used in robotics
for real-time path planning. By comparing ARCog-NET to

VOLUME 12, 2024 129049

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

RRT, it’s possible to illustrate ARCog-NET’s capability to
effectively explore and exploit search spaces in dynamic UAV
environments.

Once the framework gives a connected robot the ability
to access all knowledge base of other robots in its cluster
(for edge points), another cluster (in case of fog), or the
whole network (for cloud processing), improving the chance
of finding the better solution, incrementedwith the possibility
of consulting a human supervisor (i.e., through HITL) to
guarantee a safe operation in cases that the network can’t find
a solution. The historic matrix of trajectory points coverage
at a time t , HLi (t), will present the coverage of the i-th UAV
of layer L at a time t:

HLi (t) =

C
L ′1
L1
(t) · · · C

L ′1
Ln (t)

...
. . .

...

C
L ′m
L1

(t) · · · C
L ′m
Ln (t)

 . (6)

Therefore, when an operation event happens in time t , the
decision to modify the trajectory of the i-th node belonging to
L processed by the j-th node of L ′ is the one that presents the
best-optimized coverage result. It is important to notice that
a UAV will only have coverage registered for its processing
and the processing performed in superior layers that it has
communication (like a coordinator if it is an agent or the cloud

if it is a coordinator), otherwise C
L ′j
Li (t) = 0. The knowledge

base of each UAV is then described by:

κLi = {HLi (t0),HLi (t1), · · · ,HLi (tn)}. (7)

The knowledge base may start empty, with the robots
making decisions locally at the first events while the
knowledge base of each layer is improved, or consulting the
HITL every time at the first events to start populating the base
and reducing the need for consulting the human every time
as the network becomes progressively smart. For each event
that a decision should be made, there is a matrix for decision
weights WLi (t) associated to the matrix HLi (t). This weight
matrix can be described as:

WLi (t) =

w
L ′1
L1
(t) · · · w

L ′1
Ln (t)

...
. . .

...

w
L ′m
L1
(t) · · · w

L ′m
Ln (t)

 , (8)

in which w
L ′j
Li is the weight of the trajectory planning decision

for the i-th robot at L commanded by node j at L ′. This way,
each element of a HLi (t) matrix represents a coverage result
of a trajectory calculated by an individual j in layer L ′ for
the respective individual i in layer L (notice that the situation
Li = L ′j may happen in case of a local coverage decision) and
this element is related to the respectiveWLi (t) weights matrix.
The elements of the weight matrix represent the effectiveness
of each coverage possibility obtained when calculating new
trajectory coverage and are used as anchors for looking at
the knowledge base. The weight history for this drone can

be described as:

ωLi = {WLi (t0),WLi (t1), · · · ,WLi (tn)}. (9)

Choosing a new trajectory when an event happens
depends on how this decision is supposed to benefit one’s
mission, which is the optimal coverage process explained
in Equation (5). If a processing layer produces the best

coverage at a time t , it will have its w
L ′j
Li rewarded. Otherwise,

it will be penalized, therefore modifying the vector of weights
ωLi . This loop is a reinforcement learning process, which
improves collective decision-making in the present system,
giving better solutions privilege over ineffective solutions as
the operation happens.

To sum up the reinforcement learning process, when an
event happens to a vehicle i of layer L, this UAV will try to
calculate a trajectory deviation to optimize current trajectory
coverage. It will then look at the weights vector ωLi to see if
a matrix of weights at any given time t , WLi (t), produced an

interesting decision weight w
L ′j
Li (t) that is higher than others.

This weight will point to a previous time when an event also
happened, and at that time, the event was processed by the
node L ′j , and that should be accessed through the knowledge
base vector κLi , which will point to matrices of coverage
history HLi (t). Algorithm 1 represents the implemented path
planning algorithm for dealing with navigation events.

If the coverage of that previous decision produced a better
result than the result that the UAV just calculated, it will
copy the result, improve its weight matrix, save it at the base,
and update the weight vector, knowledge base, and historical
matrix. Otherwise, the UAV can continue looking at the base,
use the newly calculated result, or send a request to superior
layers for a new decision. This process can scale up until
the cloud, which will require the human supervisor for an
intervention in the last instance. After the decision is taken
and executed, the UAV will evaluate the real results, confirm
the coverage, and keep the improved weight or penalize
it, updating the last decision taken one last time. Figure 3
summarizes the reinforcement learning loop, and the diagram
in Figure 4 represents the simplified cognitive algorithm of
ARCog-NET.

FIGURE 3. ARCog-NET reinforcement learning process of the cognitive
decision-making loop.

129050 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

Algorithm 1 Particle Swarm Optimization for ARCog-NET
navigation event trajectory path planning
1: Input: TLi : Initial trajectory positions of UAV i
2: V Liobjj : Initial velocities of trajectory points
3: κLi : Current knowledge base
4: ωLi : Current decision weights history
5: ti: Previous time
6: t: Current time
7: Cmin: Minimum coverage threshold
8: maxit : Maximum number of iterations
9: minerr : Minimum error threshold
10: while Error > minerr and Iterations ≤ maxit do
11: for PinTLi do
12: CLi (t − ti) = 1P(t − ti)
13: if CLi (t − ti) ≥ Cmin then
14: Trajectory keep (P)
15: else
16: Trajectory drop (P)
17: New_Point = empty
18: for a do in ωLi :
19: for b do in WLi (rows):
20: for c do in WLi (columns):

21: Get BestFitting(w
L′i
Li
)

22: end for
23: end for
24: end for
25: P← κLi [a]{HLi [b, c]}
26: end if
27: end for
28: Update Trajectory points:
29: for κinrange(length(P)) do
30: Get best fitting κ-th P:

31: V Liobjjκ (t) =
||P

Li
objj κ

[x](t)−P
Li
objj κ−1

(t)||

t−ti

32: θ
Li
objjκ

(t) = arctan

 P
Li
objj κ

[y](t)−P
Li
objj κ−1

[y](t)

P
Li
objj κ

[x](t)−P
Li
objj κ−1

[x](t)

33: PLiobjjκ

[x](t) = PLiobjjκ−1
[x](ti)+V

Li
objjκ

(t) ·cos θ
Li
objjκ

(t) ·

1t
34: PLiobjjκ

[y](t) = PLiobjjκ−1
[y](ti)+V

Li
objjκ

(t) · sin θ
Li
objjκ

(t) ·

1t
35: if |CLiκ (t) - CLiκ−1(t)| ≤ Error then
36: Error← |CLiκ (t) - CLiκ−1(t)|
37: end if
38: end for
39: Iterations← Iterations +1
40: end while
41: ti ← t
42: Create new HLi (t) matrix incorporating the new CL

′

L (t)
43: Incorporate new HLi (t) to knowledge base κLi
44: Create new WLi (t) matrix incorporating modified wL

′

L (t)
45: Incorporate new WLi (t) to weights history ωLi
46: Output: TLi = Poptimized: Optimized trajectory positions
47: κLi : New knowledge base
48: ωLi : New decision weights history

At the edge layer, the process starts by identifying an
agent’s particular tag number, followed by the retrieval of
current UAV positions and objectives. These are used to
calculate new objectives to optimize the trajectory coverage
while accomplishing the mission. The proposed solution

is then compared with an existing knowledge base. If an
improvement is found, it’s added to a solution vector and the
knowledge base. Subsequently, an action is executed, and the
effectiveness of the last action is evaluated, with adjustments
made to the action weight based on the outcome. Suppose the
agent doesn’t find an improvement action in the knowledge
base but finds a suitable action previously executed. In that
case, it can repeat this solution, update its weight, and save
it again as a new solution in the knowledge base. If the edge
agent doesn’t find a fitting solution for the operational event,
it can request a new solution from the fog layer coordinator.

Simultaneously, the fog layer is engaged in a similar
process. It checks for incoming requests from the edge and
identifies relevant tags (its own, from its group of agents,
or from other fog coordinators). Depending on whether it’s
processing an edge request or responding to a fog event,
it calculates new objectives to optimize trajectory coverage.
It then assesses the efficiency of the solution against its
knowledge base. Efficient solutions are rewarded and updated
in the solution vector and knowledge base. After sending
decision data (in case of a cognitive processing request) or
executing an action (in case of a self-fog-cognition usage),
the fog layer evaluates the effectiveness of the last action and
updates the weights and knowledge base of the last decision,
concluding its cognition process.

Parallel to this, the cloud layer operates by recognizing
requests or commands directed to it. When a layer L tag is
detected, it gathers current UAV data points and objectives
to compute new objectives that optimize that flight coverage.
These objectives are weighed against the cloud’s knowledge
base. If a more effective solution is found, it’s incorporated
into the solution vector, updated in the knowledge base, and
then executed. Otherwise, it should use a similar solution
previously saved on the knowledge base (since the cloud
has the most complete knowledge base of all layers). The
process in the cloud layer wraps up with an evaluation of
the new decision taken, updating weights, saving it to the
knowledge base and other layers, and sending the processed
action command to the requester.

Summing it up, the cognition of ARCog-NET can be
modeled as a coverage optimization problem, in which the
weights of each decision will help locate the best solution
of an operational event in each node search or create a
new solution if it doesn’t find one. Each layer employs a
systematic approach for continual learning and adaptation
throughout the algorithm, incorporating feedback into their
respective knowledge bases and adjusting their decision
strategies accordingly. This mechanism allows the layers to
operate independently and cohesively within the network’s
cognitive architecture.

It is important to point out that the treatment of the
event is mainly directed to trajectory switching, and this
modification may be caused by obstacles, communication
failures, increasing latency rates, packet loss, and energy
consumption, etc. In other words, UAVs can trigger new
trajectory calculations or request networks to deal with this

VOLUME 12, 2024 129051

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

FIGURE 4. ARCog-NET flight cognition algorithm flowchart.

also based on communication or flight parameters. The
network may also change the data routing pipeline, node’s
roles, number of UAVs in a group, or switch nodes between
groups based on how the communication and flight behave,
relying only on network management without changing the
trajectories, but in this case, the presented models are not
activated.

B. SIMULATION
Crafting a simulation architecture for ARCog-NET vali-
dation aims to enhance the development and testing of
its usage in UAV swarm systems. Using ROS [69] and
Gazebo [70] to provide a flexible framework for writing
robot software and performing simulations has become
a standard for researchers and developers working on
autonomous systems. By incorporating Gazebo, a high-
fidelity 3D robotics simulator, this architecture achieves
realistic modeling of UAV dynamics and environmental
interactions. When these capabilities are augmented with
the MAVLink ROS (MAVROS) package [71], a ROS-based
library that enables Micro Air Vehicle Link (MAVLink)
protocol communication [72] between ROS and the ArduPi-
lot/PX4 platforms [73], the simulation gains the ability to
replicate real-world UAV behaviors and control mechanisms
closely.

Based on the algorithms running at each ROS node
on respective layers presented in previous topics, the data
structures formatting between nodes, and the theoretical
model of the network’s cognition, the data flow within
ARCog-NET architecture is one of the most important
parameters to define the framework and practical operation
of this tool. As previously known, the network is segmented
into three kinds of primary nodes: the agent, coordinator,
and server, each serving distinct functions and interconnected
through data transmission channels. Although ARCog-NET

can be used for developing general aerial robot swarm
applications, this work presents the usage of the MAVLink
as a standard transmission protocol and also for exchanging
internal data between sensors and other modules. Due to
its versatility for integration with real-life hardware [79],
[80], lots of sensor plugin packages, and ease of modeling
and integrating new sensors with MAVROS, this can be
considered as a contribution of the architecture presented
in this research. To understand ARCog-NET simulation
methodology, it is crucial to know the framework’s simplified
dataflow represented in Figure 5.
Data flows seamlessly through this architecture, with

the MAVLink protocol enabling communication across the
network or between components. This ensures that sensor
data, navigation commands, and other critical information
are shared efficiently between the Agents, the Coordinators,
and the Server. For instance, data generated by the Agents’
sensors is sent to the Coordinator, who decides whether to
act on the data locally or send it through the network to
the Server for further analysis. The flowchart also outlines
various data types and their flow paths. For example,
sensor data (type A), local commands (type B), and HITL
commands (type E) are channeled through different paths to
ensure timely and appropriate responses within the network.
The system’s design facilitates robust and flexible UAV
operations, enabling real-time responses to local events and
integrating human oversight through the cloud for strategic
decision-making.

The ARCog-NET is designed to have an FCU dedi-
cated only to flight control, peripherals, and avionic data
gathering, and all the data processing, decision-making,
communication, and complementary operations that demand
computational load may be executed on embedded boards
like Raspberry Pi [91] or Galileo [92]. These offboard
computers will command FCU through serial communication

129052 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

FIGURE 5. ARCog-NET simplified dataflow representation.

while executing the algorithms presented in the present
section. One of the advantages of this topology is the use
of ROS packages that may run into the offboard controllers,
with its simulation already being tested on Gazebo. The infor-
mation may be exchanged between nodes and layers through
free-to-air modulated signals using radio transmitter/receiver
pairs. The cloud layer must have improved communication
power, as it doesn’t have hardware component constraints
(since it is expected that it is a ground-based control
unit) and may be farther from the cloud and edge UAV
devices.

All development of ARCog-NET custom packages was
made with Python 3.8.10 language, using mainly the libraries
TensorFlow, Numpy, SciPy, sci-kit learn, OpenCV, raspy, and
macros. The robot packages used ROS Noetic, and the sim-
ulations ran in the Gazebo 11 environment and with plugins.
The main machine used for programming and simulation
was a Lenovo IdeaPad Gaming 3i, with the following specs:
4,4GHz Intel Core i5 processor, 16 GB DDR4 3200MHz
RAM, NVIDIA GeForce RTX 3050 4GB video board,
512GB SSD storage, and Ubuntu 20.04.6 LTS operating
system. The simulated UAVs are all Yuneec Typhoon H480
hexacopters with PixHawk Px4 FCU, Raspberry 5 as an
offboard embedded computer, and radio telemetry and
communication modules, with the specs presented in Table 3.
Table 4 shows the simplified hardware power consumption
considered in the simulations. The performance of each

mission was evaluated alongside the network parameters
described in the next topics.

It is important to point out that ARCog-NET is built
to use the communication protocol MAVLink as its base
for exchanging messages between components and nodes,
but the proposed topology of using embedded computer
hardware coupled to the Flight Control Unit (FCU) allows
compatibility with many existing network systems. This
allows the proposed architecture to integrate into current
network infrastructures without requiring significant modifi-
cations. The architecture can utilize existing communication
channels like WiFi, LTE, 5G, and other wireless technologies
to maintain connectivity and data flow between UAVs
and other network components. The architecture supports
communication with mobile devices through its cloud layer,
which acts as a central hub for mission control and data
analysis. Mobile devices, such as smartphones and tablets,
can interface with the cloud layer to receive real-time updates,
send commands, and monitor UAV operations (best option).
Edge and fog layers may also have interfaces with mobile
devices for exchanging real-time data directly from the
respective nodes (agents and coordinators), but this can cause
a latency increase in these UAVs due to processing load and
also more power consumption.

In the simulation, Agents (edge) represent individual
UAVs equipped with sensors and embedded computers.
They handle local processing tasks like navigation and

VOLUME 12, 2024 129053

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

sensor data analysis. The processed data can include images,
flight data, and sensor outputs, which are then sent to the
Coordinator (fog) for further decision-making or directly
to the Server for storage and higher-level analysis. At the
core of this architecture, the Coordinator is responsible for
trajectory planning and mission supervision. It sends and
receives commands to and from the Server (cloud) while
also handling requests from Agents. This node processes
data such as sensor inputs and navigation commands, making
decisions that are then communicated to the Agents and the
Server for cohesive mission execution. The Server, operating
within the cloud layer, oversees the entire mission, providing
additional processing power for data organization and long-
term storage. It also plays a crucial role in decision-making,
particularly with HITL commands, where a human operator
can intervene and control the swarm’s actions, ensuring
mission flexibility and adaptability to changing conditions.

The main idea adopted for developing the UAVs’ simu-
lation was to launch separated agents with the PX4 FCU
and develop custom nodes representing offboard controllers.
These offboard nodes will communicate to their respective
FCU through MAVLink protocol (in this case, MAVROS)
to receive data from sensors, alarms, status, position,
velocity, and any other variable that is important for the

TABLE 3. Communication and processing power specifications.

TABLE 4. Power consumption of different hardware components.

operational controller of each robot. In real life, this offboard
controller may be a companion computer like a Raspberry
Pi attached to the UAV, and the communication between
the UAV and the companion computer may happen through
serial communication via USB or the MAVLink telemetry
radio (one attached to the FCU and one attached to the
embedded computer). In the offboard controller, packages
for controlling its respective UAV may be developed, but
also for communicating with the simulated network and for
using a different sensor that can’t be embedded in the UAV’s
FCU. For example, this sensor could be an RGB camera,
which in simulation is a Gazebo external plugin streaming
the image ‘‘seen’’ by each UAV through a pipeline using
the Python GStreamer library and OpenCV, transformed to
a camera node that communicates to each offboard node. The
active ROS nodes diagram for a 2 UAV group (one edge agent
and one fog coordinator) developed under ARCog-NET is
presented in Figure 6.

Besides the sensor data, an example of data processing is
the image compression autoencoder model used for image
compression and decompression in simulation. It is also
integrated into the offboard nodes, taking the camera’s image
from the camera nodes and transmitting it to the network.
In real life, data communication may be addressed with
radio transceivers, WiFi, ZigBee, LoRa, or other wireless
communication technology associated with the companion
computer. The simulated UAV was a Typhoon H480 model,
and the simulation was performed with groups of 1 to
10 vehicles. The next step in creating the simulation in ROS
and Gazebo to test the ARCog-NET packages and behavior
was to create generic missions to receive applications that
could be assigned to a UAV group. A mission was designed,
for that matter, being this scenario a representation of a
vertical wind turbine field, where the UAVs should take
off from a land base and fly through wind turbines for
predictive maintenance surveillance using coverage path
planning algorithms.

The simulation environment developed for this first
application and the UAVs experimented are presented in
Figure 7, and here, the major concern is autonomous
navigation and interference between communications. The
goal of this simulation is to check the capability of the
ARCog-NET framework to plan and execute the task of
flight between a known mesh of relatively close obstacles
while avoiding collisions between robots and these objects,
reducing communication interference, latency, and package
loss between layers and allow a good level of data throughput

129054 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

FIGURE 6. Active ROS nodes and topics for 2 UAV and a serve in simulation.

because the robots are being used to inspect the wind turbines
structures for predictive maintenance.

FIGURE 7. Swarm of 10 Typhoon H480 and vertical wind farm in
simulation.

Theoretically, the fog coordinator can manage a group
of 10 Edge agents in ARCog-NET, depending on its
computational capacity and the network’s requirements. The
nodes handle commands, requests, and data through queue
management, as presented in 2. Fairness is maintained using
fair scheduling algorithms, load balancing, priority adjust-
ment, and real-time feedback mechanisms. This ensures that
all Edge agents are treated equitably and the overall system
operates efficiently. Mathematically, ARCog-NET has no
fog coordinator limitation, depending on the processing
hardware, transmission and protocol limitations.

The simulation is executed with one to ten vehicles
connected in ARCog-NET, 10 times for each connected robot
count, being 100 simulations in total. The server (cloud layer)
is initially configured to request the structure to use some
of those robots as fog nodes (which can vary from 1 to
10 robots), which are also edge group coordinators. The
number of the other edge agents may vary throughout the
mission, so a fog coordinator may have up to 9 agents
connected to it. While flying to seek wind turbine pathology,
the UAVs are subjected to a collision between each other and
the structures, and the ARCog-NET capabilities are used to
calculate new trajectories and deviations. The robots alsomay

Algorithm 2 ARCog-NET Client Setup and Message Han-
dling
1: Define message_id, message_type, sender_id,

receiver_id, date, message_content
2: Initialize ARCog-NET client
3: Load queue
4: Connect to receiver_id
5: procedureOnMessage(receiver_id, sender_id, message,

message_type):
6: if message_type = command then
7: HandleTaskRequest(message.payload)
8: else if message_type = request then
9: ProcessStatusUpdate(message.payload)
10: else if message_type = data then
11: ProcessData(message.payload)
12: end if
13: Update queue
14: end procedure
15: Set message handling function: OnMessage
16: Subscribe to sender_id, message_type, message_content
17: Start ARCog-NET client loop

pre-process sent images (compression) and request superior
layers to process decisions or for HITL decisions.

It is important to note that the initial delay in starting
a mission with the UAV swarm typically arises from the
need to initialize the UAVs (i.e., establish communication
links, and initialize onboard sensors and systems). Thus, this
delay in starting the mission may vary depending on the
mission’s complexity and the number of UAVs involved.
Each UAV must establish a stable communication link,
exchange initial data, and confirm its position and status
within the swarm. The increased number of UAVs also
places a higher computational load on the fog and cloud

VOLUME 12, 2024 129055

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

layers for processing, potentially contributing to further
delays. However, ARCog-NET is designed to mitigate this
issue by efficiently distributing computational tasks across
the network layers, ensuring that mission initiation remains
within acceptable timeframes even as the swarm size grows.

IV. SIMULATION RESULTS
To exemplify trajectories planned and executed by a group
of 10 UAVs in a simulation executed with this UAV counting,
a video was captured and presented in [93]. Figure 8 shows
these executed trajectories, performed at the same time, in a
cartesian plan graphic.

It is possible to notice how the initially calculated trajec-
tories graph, which was planned using the PSO algorithm
presented, shows that on certain occasions, some of the
UAVs would collide with an obstacle (a vertical wind turbine,
represented in the graph as black points). Alternatively, on the
navigated trajectories graph, it is possible to notice the evasive
actions performed by the UAVs while accomplishing the
mission, also calculated with the PSO decision-making loop
presented in the Methodology. The obstacle avoidance is
essentially the decision to fly around the obstacle, bypassing
it ‘‘above’’ or ‘‘below’’ on the xy-plan. As exposed in
Section III, this obstacle avoidance event decision can be
made in each layer by a robot or in its superior layer by
request.

Note that, unlike typical drones that rely on reactive
obstacle avoidance, ARCog-NET encompasses perception,
planning, decision-making, and adaptive learning. This
integration allows UAVs to not only react to obstacles but also
predict and plan their movements intelligently based on past
experiences and real-time data. Besides, its reinforcement
learning capability allows UAVs to improve their decision-
making process continually. Thismeans that UAVs learn from
each mission, enhancing their obstacle-avoidance strategies
over time.

The performance of the ARCog-NET algorithm was
also compared with other classic path-planning strategies,
as mentioned before. Table 5 shows the results of a
mathematical simulation of the UAVs using different types
of implementation. Overall, ARCog-NET PSO excels in
balancing convergence speed, success rate, computational
cost, and scalability. It improves upon classic PSO and
outperforms Dijkstra’s in most metrics while remaining
competitive with A* and RRT, making it a robust choice for
UAV swarm path planning in dynamic environments.

Figure 9 shows the number of decisions made at each layer
according to the number of UAVs on each simulation.

With a single UAV, the structure becomes only edge-cloud
or only fog-cloud (depending on the cloud’s configuration,
but in practice, these two topologies have the same capabil-
ities). With more than 1 robot, the structure will necessarily
have an edge node and a fog node alongside the cloud layer.
That being said, the graph suggests variability in the number
of decisions processed at different layers, likely showing how

FIGURE 8. UAVs flying between wind turbines.

increasing the number of UAVs impacts the decision load at
each layer. Most simple decisions are expected to be made
in the edge layer without sending processing requests to the
layers above. At 2 UAVs, it is possible to see an interesting
behavior of ARCog-NET, as one robot is an edge node and
the other is a fog (and they can change roles as the mission
unfolds), the median number of processed decisions are very
close in these two layers for this number of UAVs on the
mission, with the edge agent having more processing than the
fog coordinator.

Overall, most of the decisions are taken with cloud
processing, which is an expected result as this layer has
more computer power and access to all knowledge bases of
the entire structure, making this layer more efficient for the
cognitive reinforcement learning decision-making process.
The layer where the decision-making loop is processed also
affects latency, alongside a number of connections (capacity),
distance, interference, and other parameters presented in
Section III. Although the number of decisions processed
in cloud and fog increases with more UAVs in simulation,
the average latency decreases each time and becomes more
stable. This represents how the proposed architecture of

129056 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

TABLE 5. Numerical comparison of path planning algorithms.

FIGURE 9. Number of decisions processed on each ARCog-NET layer in
the wind field simulation.

distributed data processing and decision-making algorithms
allows more efficient missions when analyzing the big
picture. The whole simulation average latency with respect
to the number of UAVs is presented in Figure 10.

FIGURE 10. Average ARCog-NET latency by number of UAVs in the wind
field simulation.

This graph shows that ARCog-NET also has a latency sat-
uration as the number of UAVs in the network increases. The
stability of the architecture in terms of latency, represented
as the error bar at each point, also increases as more robots
are added as network nodes. This is also a logical result,
considering that more robots represent more connections,
more processing power, less distance between each node,
and also a larger knowledge base of decisions. With the
ARCog-NET asset to automatically and dynamically set up

its structure (robots designed as edge and fog nodes) and the
connections between each layer during themission, this result
represents an excellent theoretical way to show that ARCog-
NET is suitable for known environments outdoor missions
with a mesh of objects involved.

With more UAVs connected and executing a mission,
more data will flow through network nodes, and more
data processing and decision-making available computing
power, data routing, and fewer buffer queues. This decreases
the latency, as presented before, and gives ARCog-NET
more capacity to deal with interference and momentary
communication loss. However, the throughput graph of
Figure 11 also shows a throughput saturation of the proposed
architecture after the number of 8 UAVs are added to the
architecture in this simulation scenario. This represents that
the framework probably reached its capability of processing,
dealing with data, routing network communications, and
accomplishing the given task while using the simulated
hardware.

FIGURE 11. Proposed architecture’s average throughput over the number
of UAVs in operation in the wind field simulation.

The next step in evaluating and confirming the ARCog-
NET’s viability is to discuss the quality of service (QoS).
Latency and throughput in this first simulation have already
shown that the proposed architecture has good capabilities of
controlling coordinated group flight behavior while dealing
with communication, but it also lacks optimization for
working properly with the full hardware and communication
technologies that each UAV is equipped with in simulation.
While the edge and fog UAVs or cloud server are busy
dealing with incoming data, processing data from buffer
queue, or even packing information for streaming, it may

VOLUME 12, 2024 129057

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

occur data packet loss, which represents a good indicator of
QoS.

For calculating packet loss, the number of packets
transmitted by each UAV is monitored and compared to the
number of packets successfully received by the intended
recipient. Packet loss is determined by the difference between
these two values. This calculation considers all types of
packets, including control messages, data packets, and any
other communication relevant to the UAV’s operations. The
size of packets in the ARCog-NET system depends on
the type of data being transmitted. Typically, the packets
can range from small control messages of a few bytes to
larger data packets that might include image or video data.
For control messages and telemetry data, packet sizes are
relatively small, usually around 20 to 100 bytes. For image
data, especially high-resolution images or video streams,
packet sizes can be larger, but not exceeding 256 bytes,
depending on the compression and the resolution of the data.

The critical situation is when just one UAV is used with
the proposed framework, where packet loss seems to reach
its peak. This result is caused by the lack of distributed
processing, node communication, and small knowledge base
formation, as just one network node (or robot) operates with
the cloud layer. Figure 12 shows the average packet loss for
each number of UAVs connected at ARCog-NET in the wind
field simulation.

Besides, the percentage of packets lost is very low. This
result confirms that, in fact, for this scenario, there is a
saturation in ARCog-NET capabilities that do not scale up,
even if more robots are added to the network. This also
shows that the proposed architecture performs relatively well
for a single-robot ground control base but is very inefficient
compared to the results the user may get when more UAVs
are added. In practical terms, this architecture may represent
a more complex way to control only one robot in a mission.
The package loss results are also in line with latency and
throughput readings, presenting both the performance and
stability of ARCog-NET.

FIGURE 12. ARCog-NET framework average packet loss over a number of
UAVs in operation in the wind field simulation.

One important aspect of analyzing is data compression
when discussing the network performance associated with

FIGURE 13. Compression example of a picture of corrosion found at a
wind turbine shaft.

FIGURE 14. PSNR, SSIM, and MS-SSIM variation for interlinked
compression in wind field simulation.

FIGURE 15. Availability of each layer in the wind field simulation for
ARCog-NET.

the robot’s performance to accomplish the objective. For this
particular mission, each UAV image is important as the user

129058 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

FIGURE 16. CPU usage of each layer at each time instant in the wind field simulation.

(supervisor) HITL may identify corrosion or other kind of
damage at the wind turbines being inspected. As presented in
Section III, there is a built-in data compressor for images in
ARCog-NET, which is an autoencoder that allows successive
compression and decompression stages in a way that the data
can be streamed without any information loss (raw data) or
greater losses that the end-user may allow (users set which
compression level is more interesting to themselves, and this
asset is reconfigurable during the mission). The compression
will also affect latency, throughput, and packet loss because
the more the data is compressed, the fewer transmission
parameters are demanded. Still, more processing loads
are required (for data compression and decompression).
The details of the implemented autoencoder, training, and
evaluation results can be found at [23], developed by the
authors of the present study. A compression result example is
presented in Figure 13, which shows an image captured from
one of the robots during the wind field simulation detailing
corrosion found at one of the wind turbines’ rotary shafts and
how this image is affected by successive compression with
the trained autoencoder.

It is possible to notice that it’s still possible to identify dam-
age at the structure even with five successive compressions.
However, at 10 compression levels, the picture becomes
unrecognizable, affecting the mission objective. Also, this
example shows big and easy-to-identify damage, so smaller
ones may also be affected by less compression. The model
compressing and decompressing computation is fast, so the
byte volume transmission reduction (with the cost of losing
data) can be achieved by compressing the image several times
before streaming it. The number of compressions for each
UAV transmitting image could be defined in the offboard
controller nodes, which is the group’s collective decision
on which agent should detail more or less the data they’re
sending. In this simulation case, the number of compressions
is a decision made by the cloud supervisor HITL. In order

to validate the autoencoder’s performance, images from the
UAVs were used during the simulation, being compressed
from 1 to 10 times, and the Peak signal-to-noise ratio (PSNR),
Structural Similarity Index (SSIM), and Multi-Scale SSIM
(MS-SSIM) were computed. Figure 14 presents the variation
results for each indicator.

The similarity of the compressed image decreases with
successive compression as expected, and the signal/noise
relation also decays fast. After the seventh compression, the
image is practically unrecognizable. Even though image data
compression may improve network performance, it should
not be used indiscriminately as it may also hinder the
mission’s goals. Figure 15 is a violin plot of the average
availability of each layer of ARCog-NET observed during the
wind field simulation.

Except for the edge layer, the graph shows that the layers
have good availability as the wider areas of the violin
are above 60% of availability, and fog and cloud have
79.16% and 78.56% of average availability, respectively. The
edge layer represents a concern, as the areas are equally
distributed over higher and lower availability, and the average
availability of this layer is 53.11%, which is a relatively
low result. In fact, the edge layer seems to be more affected
by the number of UAVs than the fog, and the processing
algorithm in this layer can be improved. This result may cause
scalability concerns for increasing robots as edge nodes,
which will be addressed in future research reviews. However,
ARCog-NET can be considered a feasible option for control
and communication for UAV swarms operating in known
outdoor environments. The other factor that has a combined
influence on the network and the robot’s performance is
power consumption. Figures 16 and 17 present the Central
Process Unit (CPU) usage percentage at each time instant and
the power consumption (considering UAV, transmission, and
processing energy) for the simulations using 10 UAVs, which
are the worst case scenario for evaluating this parameter.

VOLUME 12, 2024 129059

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

FIGURE 17. Power consumption of each layer at each time instant in the
wind field simulation for the proposed framework.

The CPU usage for the edge layer is 30.18%, for the
fog layer is 50.03%, and for the cloud 59.91%. As edge

and fog have similar computational capabilities, the big
difference in CPU usage can be explained by the fact that
edge agents have less data processing to do, as these robots
are more dedicated to collecting and preprocessing data
and fly safely through the environment, as fog nodes have
edge group coordinators roles, data processing, filtering, and
midway storage while also flying safely. By looking only
at CPU usage, the cloud layer seems similar to fog, but
this processing is not at the same scale. Cloud computing
capabilities are much larger than those of the embedded
systems of UAVs, and in fact, this can be seen in the power
consumption graph. Edge and fog, even with the robot nodes,
have lower power consumption levels than the cloud, which
has only computers and radio communications. At the power
consumption graphs, it’s also possible to see the initial peak
for edge and fog layers, representing the takeoff energy
drained by the group. Of course, the power drained from each
UAV and by the cloud server will not have the same saturation
observed in other parameters for this first simulation, as more
robots in the group represent more energy demand added to
the network.

Regarding scalability, the simulations with varying num-
bers of UAVs demonstrated that ARCog-NET could effi-
ciently manage up to 10 UAVs. Initially, with fewer UAVs,
most decisions are made at the edge layer. As more UAVs
are added, the fog and cloud layers take on a larger
share of the decision-making process, effectively managing
the computational load and preventing any single layer
from becoming a bottleneck. However, further testing with
more scenarios and a larger number of UAVs is necessary.
In the tests, each UAV performed its tasks effectively while
maintaining communication and coordination with other
nodes. The results showed that with an increased number of
UAVs, the architecture could handle more complex scenarios
with higher data throughput and improved operational
effectiveness. In this sense, the results also show once again
that ARCog-NET is a suitable architecture for robot swarm
development in outdoor known environments applications,
but it still has optimizations to explore.

V. CONCLUSION AND FUTURE WORK
The proposed framework in this paper, entitled ARCog-
NET, not only facilitates improved collaboration among
UAV swarms by incorporating advanced data management
and cognitive decision-making processes but also integrates
with existing network structures, ensuring efficient oper-
ation and task execution by the UAVs. Notably, one of
the standout features of ARCog-NET compared to other
cognitive architectures of the literature is its use of the EFC
model for distributed processing. Thismodel enables efficient
distribution of computational tasks, where real-time data
collection and initial decision-making occur at the edge level
(UAV level), intermediate processing happens at the fog level
(group of UAVs), and complex analysis and long-term data
storage are managed at the cloud level. This hierarchical
structure significantly reduces latency, allowing UAVs to

129060 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

react more swiftly to obstacles. Additionally, it enables the
system to scale with the number of UAVs in the swarm,
ensuring optimal performance in complex environments.

The implementation of ARCog-NET, in conjunction with
ROS and tested in the Gazebo simulation environment, under-
scores the work’s contribution to the practical application
of cognitive architectures in UAV swarms. The detailed
testing and evaluation revealed not only the functionality
and performance improvements by ARCog-NET but also the
potential for future advancements in UAV swarm operations,
particularly in terms of communication efficiency, opera-
tional reliability, and mission effectiveness.

At this point, it is a fact that the proposed architecture
seems to be suitable as a swarm robot controller architecture,
but it works below the full simulated hardware capabilities.
To improve the proposed architecture performance, more
simulation scenarios and applications may be executed
and analyzed. Also, more communication optimizations
can be studied and implemented, such as dynamic data
routing and smart group clustering (currently, it uses
only proximity between robots). Another factor that can
make results more reliable is using network communica-
tion simulators such as Omnet to evaluate communication
parameters.

As ROS packages are ready to deploy in physical hardware,
this suggests that the proposed architecture is also ready for
field tests, which would be an important step in confirming
ARCog-NET as a solution for developing UAV swarm
applications, which is its main objective. Finally, it is
possible - under some adaptations - to use ARCog-NET in
different and heterogeneous robot groups, as the framework
was developed mainly based on PixHawk Px4 hardware, and
this FCU can be used in terrestrial, aquatic, and underwater
robots as well, not to mention different aerial robots
typologies.

In terms of evaluation, this research work opens up several
future possibilities. For instance, as more end devices can
be added to the system, the latency can increase due to
the additional processing load on the edge and fog layers,
being a critical issue for real-time operations where prompt
decision-making is crucial. A future implementation will
involve the use of a dynamic load-balancing mechanism
across the edge and fog layers in order to allocate processing
tasks more intelligently by prioritizing critical real-time data
while offloading less time-sensitive tasks to cloud layers or
secondary nodes.

ACKNOWLEDGMENT
The authors would like to thank the following Brazilian
Federal Agencies, CNPq, FAPERJ, and CEFET-RJ, for
supporting this research work.

REFERENCES
[1] J. Parikh and A. Basu, Unmanned Aerial Vehicles: State-of-the-Art,

Challenges and Future Scope. Hoboken, NJ, USA: Wiley, 2021, ch. 2,
pp. 29–42.

[2] G. S. Ramos, M. F. Pinto, F. O. Coelho, L. M. Honório, and D. B. Haddad,
‘‘Hybrid methodology based on computational vision and sensor fusion
for assisting autonomous UAV on offshore messenger cable transfer
operation,’’ Robotica, vol. 40, no. 8, pp. 2786–2814, Aug. 2022.

[3] M. F. Pinto, A. G. Melo, Andre. L. M. Marcato, and C. Urdiales,
‘‘Case-based reasoning approach applied to surveillance system using an
autonomous unmanned aerial vehicle,’’ in Proc. IEEE 26th Int. Symp. Ind.
Electron. (ISIE), Jun. 2017, pp. 1324–1329.

[4] G. S. Ramos, D. B. Haddad, A. L. Barros, L. de Melo Honorio, and
M. F. Pinto, ‘‘EKF-based vision-assisted target tracking and approaching
for autonomous UAV in offshore mooring tasks,’’ IEEE J. Miniaturization
Air Space Syst., vol. 3, no. 2, pp. 53–66, Jun. 2022.

[5] C. D. Rodin, L. N. de Lima, F. A. de Alcantara Andrade, D. B. Haddad,
T. A. Johansen, and R. Storvold, ‘‘Object classification in thermal images
using convolutional neural networks for search and rescue missions with
unmanned aerial systems,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2018, pp. 1–8.

[6] G. S. Berger, M. Teixeira, A. Cantieri, J. Lima, A. I. Pereira, A. Valente,
G. G. R. D. Castro, and M. F. Pinto, ‘‘Cooperative heterogeneous robots
for autonomous insects trap monitoring system in a precision agriculture
scenario,’’ Agriculture, vol. 13, no. 2, p. 239, Jan. 2023.

[7] L. D. P. Pugliese, F. Guerriero, and G. Macrina, ‘‘Using drones for parcels
delivery process,’’ Proc. Manuf., vol. 42, pp. 488–497, Jan. 2020.

[8] D. R. Green, J. J. Hagon, C. Gomez, and B. J. Gregory, ‘‘Using low-cost
UAVs for environmental monitoring, mapping, and modelling: Examples
from the coastal zone,’’ in Coastal Management, R. Krishnamurthy,
M. Jonathan, S. Srinivasalu, and B. Glaeser, Eds., New York, NY, USA:
Academic, 2019, pp. 465–501.

[9] S.Manfreda, P. Dvorak, J. Mullerova, S. Herban, P. Vuono, J. A. Justel, and
M. Perks, ‘‘Assessing the accuracy of digital surface models derived from
optical imagery acquired with unmanned aerial systems,’’ Drones, vol. 3,
no. 1, p. 15, Jan. 2019.

[10] A. Tahir, J. Boling, M.-H. Haghbayan, H. T. Toivonen, and J. Plosila,
‘‘Swarms of unmanned aerial vehicles—A survey,’’ J. Ind. Inf. Integr.,
vol. 16, Dec. 2019, Art. no. 100106.

[11] Y. Du, C. W. de Silva, and D. Liu, ‘‘A multi-agent hybrid cognitive
architecture with self-awareness for homecare robot,’’ in Proc. 9th Int.
Conf. Comput. Sci. Educ., Aug. 2014, pp. 223–228.

[12] M. F. Pinto, L. M. Honório, A. L. M. Marcato, M. A. R. Dantas,
A. G. Melo, M. Capretz, and C. Urdiales, ‘‘ARCog: An aerial robotics
cognitive architecture,’’ Robotica, vol. 39, no. 3, pp. 483–502, Mar. 2021.

[13] M. F. Pinto, A. L.M.Marcato, A. G.Melo, L.M. Honório, and C. Urdiales,
‘‘A framework for analyzing fog-cloud computing cooperation applied to
information processing of UAVs,’’ Wireless Commun. Mobile Comput.,
vol. 2019, pp. 1–14, Jan. 2019.

[14] M. Seleckỳ, M. Rollo, P. Losiewicz, J. Reade, and N. Maida, ‘‘Framework
for incremental development of complex unmanned aircraft systems,’’ in
Proc. Integr. Commun., Navigat., Surveill. Conf. (ICNS), Apr. 2015, p. J3.

[15] P. Langley, J. E. Laird, and S. Rogers, ‘‘Cognitive architectures and general
intelligent systems,’’ AI Mag., vol. 30, no. 2, p. 33, 2009.

[16] D. S. Modha, R. Ananthanarayanan, S. K. Esser, A. Ndirango,
A. J. Sherbondy, and R. Singh, ‘‘Cognitive computing,’’ Commun. ACM,
vol. 54, no. 8, pp. 62–71, 2011.

[17] M. T. Cox, ‘‘Metacognition in computation: A selected research review,’’
Artif. Intell., vol. 169, no. 2, pp. 104–141, Dec. 2005.

[18] J. A. Reggia, ‘‘The rise of autonomous artificial cognitive systems: Issues
and challenges,’’ IEEE Comput. Intell. Mag., vol. 8, no. 3, pp. 16–31,
Jan. 2013.

[19] A. Chella, M. Cossentino, R. Pirrone, and A. Ruisi, ‘‘Robotic cognitive
architectures: A perspective,’’ in Proc. Annu. Conf. North Amer. Fuzzy Inf.
Process. Soc., Jun. 2009, pp. 1–6.

[20] D. Vernon, Artificial Cognitive Systems: A Primer. Cambridge, MA, USA:
MIT Press, 2016.

[21] N. Hawes, ‘‘The STRANDS project: Long-term autonomy in everyday
environments,’’ IEEE Robot. Autom. Mag., vol. 24, no. 3, pp. 146–156,
Sep. 2017.

[22] J. L. Krichmar, ‘‘Design principles for biologically inspired cognitive
robotics,’’ Biol. Cybern., vol. 112, nos. 1–2, pp. 97–111, 2018.

[23] G. S. Ramos, A. A. De Lima, L. F. Almeida, J. Lima, and M. F. Pinto,
‘‘Simulation and evaluation of deep learning autoencoders for image
compression in multi-UAV network systems,’’ in Proc. Latin Amer. Robot.
Symp. (LARS), Brazilian Symp. Robot. (SBR), Workshop Robot. Educ.
(WRE), Oct. 2023, pp. 41–46.

VOLUME 12, 2024 129061

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

[24] P. F. Dominey and F. Warneken, ‘‘The basis of shared intentions in human
and robot cognition,’’ New Ideas Psychol., vol. 29, no. 3, pp. 260–274,
Dec. 2011.

[25] P. Haazebroek, S. van Dantzig, and B. Hommel, ‘‘A computational model
of perception and action for cognitive robotics,’’ Cognit. Process., vol. 12,
no. 4, pp. 355–365, Nov. 2011.

[26] D. E. Rumelhart, ‘‘Schemata: The building blocks of cognition,’’ in
Theoretical Issues in Reading Comprehension. Evanston, IL, USA:
Routledge, 2017, pp. 33–58.

[27] T. Ogata, K. Takahashi, T. Yamada, S. Murata, and K. Sasaki, ‘‘Machine
learning for cognitive robotics,’’ in Cognitive Robotics. Cambridge, MA,
USA: MIT Press, 2022.

[28] M. F. Pinto, L. M. Honorio, A. Melo, and A. L. M. Marcato, ‘‘A robotic
cognitive architecture for slope and dam inspections,’’ Sensors, vol. 20,
no. 16, p. 4579, Aug. 2020.

[29] F. A. de Alcantara Andrade, A. R. Hovenburg, L. N. de Lima, C. D. Rodin,
T. A. Johansen, R. Storvold, C. A. M. Correia, and D. B. Haddad,
‘‘Autonomous unmanned aerial vehicles in search and rescue missions
using real-time cooperative model predictive control,’’ Sensors, vol. 19,
no. 19, p. 4067, Sep. 2019.

[30] Y. Yang, C. Fermuller, and Y. Aloimonos, ‘‘A cognitive system for human
manipulation action understanding,’’ in Proc. 2nd Annu. Conf. Adv. Cognit.
Syst. (ACS), vol. 2, 2013, pp. 109–124.

[31] J. E. Laird, K. R. Kinkade, S. Mohan, and J. Z. Xu, ‘‘Cognitive robotics
using the soar cognitive architecture,’’ in Proc. Workshops 26th AAAI Conf.
Artif. Intell., Cogn. Robot., 2012, pp. 46–54.

[32] C. C. Insaurralde, ‘‘Service-oriented agent architecture for unmanned air
vehicles,’’ in Proc. IEEE/AIAA 33rd Digit. Avionics Syst. Conf. (DASC),
Oct. 2014, pp. 8B1-1–8B1-14.

[33] S. Emel’yanov, D. Makarov, A. I. Panov, and K. Yakovlev, ‘‘Multilayer
cognitive architecture for UAV control,’’ Cognit. Syst. Res., vol. 39,
pp. 58–72, Sep. 2016.

[34] J. L. Sanchez-Lopez, M. Molina, H. Bavle, C. Sampedro, R. A. Suárez
Fernández, and P. Campoy, ‘‘A multi-layered component-based approach
for the development of aerial robotic systems: The aerostack framework,’’
J. Intell. Robotic Syst., vol. 88, nos. 2–4, pp. 683–709, Dec. 2017.

[35] G. Asaamoning, P. Mendes, D. Rosário, and E. Cerqueira, ‘‘Drone
swarms as networked control systems by integration of networking and
computing,’’ Sensors, vol. 21, no. 8, p. 2642, Apr. 2021.

[36] A. Gupta and S. K. Gupta, ‘‘UAV aided fog network (UAFN): A proposal
framework for better QoS,’’ in Proc. 2nd Int. Conf. Comput. Inf. Technol.
(ICCIT), Jan. 2022, pp. 265–270.

[37] H. A. Alharbi, B. A. Yosuf, M. Aldossary, J. Almutairi, and
J. M. H. Elmirghani, ‘‘Energy efficient UAV-based service offloading over
cloud-fog architectures,’’ IEEE Access, vol. 10, pp. 89598–89613, 2022.

[38] Z. Chen, N. Xiao, and D. Han, ‘‘A multilevel mobile fog computing
offloading model based on UAV-assisted and heterogeneous network,’’
Wireless Commun. Mobile Comput., vol. 2020, pp. 1–11, Jul. 2020.

[39] C. Mouradian, D. Naboulsi, S. Yangui, R. H. Glitho, M. J. Morrow, and
P. A. Polakos, ‘‘A comprehensive survey on fog computing: State-of-the-
art and research challenges,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 1,
pp. 416–464, 1st Quart., 2018.

[40] S. Yi, C. Li, and Q. Li, ‘‘A survey of fog computing: Concepts, applications
and issues,’’ in Proc. Workshop Mobile Big Data, 2015, pp. 37–42.

[41] M. Chiang and T. Zhang, ‘‘Fog and IoT: An overview of research
opportunities,’’ IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[42] L. M. Vaquero and L. Rodero-Merino, ‘‘Finding your way in the fog:
Towards a comprehensive definition of fog computing,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 44, no. 5, pp. 27–32, Oct. 2014.

[43] A. V. Dastjerdi and R. Buyya, ‘‘Fog computing: Helping the Internet of
Things realize its potential,’’ IEEE Comput., vol. 49, no. 8, pp. 112–116,
Aug. 2016.

[44] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, ‘‘Edge computing: Vision and
challenges,’’ IEEE Internet Things J., vol. 3, no. 5, pp. 637–646, Oct. 2016.

[45] M. Satyanarayanan, ‘‘The emergence of edge computing,’’ IEEE Comput.,
vol. 50, no. 1, pp. 30–39, Jan. 2017.

[46] E. Ahmed and M. H. Rehmani, ‘‘Mobile edge computing: Opportunities,
solutions, and challenges,’’ Future Gener. Comput. Syst., vol. 70,
pp. 59–63, May 2017.

[47] G. Premsankar, M. Di Francesco, and T. Taleb, ‘‘Edge computing for the
Internet of Things: A case study,’’ IEEE Internet Things J., vol. 5, no. 2,
pp. 1275–1284, Apr. 2018.

[48] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, ‘‘Fog computing and its
role in the Internet of Things,’’ in Proc. 1st Ed., MCC Workshop Mobile
Cloud Comput., 2012, pp. 13–16.

[49] I. Stojmenovic, ‘‘Fog computing: A cloud to the ground support for
smart things and machine-to-machine networks,’’ in Proc. Australas.
Telecommun. Netw. Appl. Conf. (ATNAC), Nov. 2014, pp. 117–122.

[50] J. Kuffner, ‘‘Cloud-enabled robots,’’ IEEE Internet Comput., vol. 14, no. 2,
pp. 44–46, Jan. 2010.

[51] J. Wan, S. Tang, H. Yan, D. Li, S. Wang, and A. V. Vasilakos,
‘‘Cloud robotics: Current status and open issues,’’ IEEE Access, vol. 4,
pp. 2797–2807, 2016.

[52] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, ‘‘A survey of research on
cloud robotics and automation,’’ IEEE Trans. Autom. Sci. Eng., vol. 12,
no. 2, pp. 398–409, Apr. 2015.

[53] S. Sareen, S. K. Sood, and S. K. Gupta, ‘‘IoT-based cloud framework
to control Ebola virus outbreak,’’ J. Ambient Intell. Humanized Comput.,
vol. 9, no. 3, pp. 459–476, Jun. 2018.

[54] O. Saha and P. Dasgupta, ‘‘A comprehensive survey of recent trends in
cloud robotics architectures and applications,’’Robotics, vol. 7, no. 3, p. 47,
2018.

[55] T. Das, ‘‘Intelligent techniques in decision making: A survey,’’ Indian J.
Sci. Technol., vol. 9, no. 12, pp. 1–6, 2016.

[56] S.-H. Liao, ‘‘Expert system methodologies and applications—A decade
review from 1995 to 2004,’’ Expert Syst. Appl., vol. 28, no. 1, pp. 93–103,
Jan. 2005.

[57] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[58] G. G. R. de Castro, M. F. Pinto, I. Z. Biundini, A. G. Melo,
A. L. M. Marcato, and D. B. Haddad, ‘‘Dynamic path planning based on
neural networks for aerial inspection,’’ J. Control, Autom. Electr. Syst.,
vol. 34, no. 1, pp. 85–105, Feb. 2023.

[59] S. Murshed, A. S. Nibir, M. A. Razzaque, P. Roy, A. Z. Elhendi,
M. R. Hassan, andM.M. Hassan, ‘‘Weighted fair energy transfer in a UAV
network: A multi-agent deep reinforcement learning approach,’’ Energy,
vol. 292, Apr. 2024, Art. no. 130527.

[60] S. Brotee, F. Kabir, M. A. Razzaque, P. Roy, M. Mamun-Or-Rashid,
M. R. Hassan, and M. M. Hassan, ‘‘Optimizing UAV-UGV coalition
operations: A hybrid clustering and multi-agent reinforcement learning
approach for path planning in obstructed environment,’’ Ad Hoc Netw.,
vol. 160, Jul. 2024, Art. no. 103519.

[61] M. Leonetti, L. Iocchi, and P. Stone, ‘‘A synthesis of automated planning
and reinforcement learning for efficient, robust decision-making,’’ Artif.
Intell., vol. 241, pp. 103–130, Dec. 2016.

[62] T. D. Kelley, ‘‘Symbolic and sub-symbolic representations in computa-
tional models of human cognition: What can be learned from biology?’’
Theory Psychol., vol. 13, no. 6, pp. 847–860, Dec. 2003.

[63] J. T. Ball, ‘‘Advantages of ACT-R over prolog for natural language
analysis,’’ in Proc. 22nd Annu. Conf. Behav. Represent. Modeling
Simulation, 2013, pp. 53–60.

[64] M. V. Butz, ‘‘Toward a unified sub-symbolic computational theory of
cognition,’’ Frontiers Psychol., vol. 7, p. 925, Jun. 2016.

[65] J. W. Tweedale, ‘‘A review of cognitive decision-making within future
mission systems,’’ Proc. Comput. Sci., vol. 35, pp. 1043–1052, Jan. 2014.

[66] C. Sampedro, H. Bavle, J. L. Sanchez-Lopez, R. A. S. Fernández,
A. Rodríguez-Ramos,M.Molina, and P. Campoy, ‘‘A flexible and dynamic
mission planning architecture for UAV swarm coordination,’’ in Proc. Int.
Conf. Unmanned Aircr. Syst. (ICUAS), Jun. 2016, pp. 355–363.

[67] M. A. Luna, M. S. A. Isaac, A. R. Ragab, P. Campoy, P. F. Peña, and
M. Molina, ‘‘Fast multi-UAV path planning for optimal area coverage in
aerial sensing applications,’’ Sensors, vol. 22, no. 6, p. 2297, Mar. 2022.

[68] A. L. Alfeo, M. G. C. A. Cimino, N. D. Francesco, A. Lazzeri, M. Lega,
and G. Vaglini, ‘‘Swarm coordination of mini-UAVs for target search using
imperfect sensors,’’ 2019, arXiv:1901.02885.

[69] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, ‘‘ROS: An open-source robot operating system,’’ in Proc.
ICRA Workshop Open Source Softw., vol. 3, Kobe, Japan, 2009, p. 5.

[70] Gazebo. (2021). Gazebo Robot Simulator. Accessed: Feb. 26, 2021.
[Online]. Available: http://gazebosim.org/

[71] ROS. (2022). Mavros. Accessed: Dec. 4, 2022. [Online]. Available:
http://wiki.ros.org/mavros

[72] MAVLINK. (2022).Mavlink. Accessed: Dec. 4, 2022. [Online]. Available:
https://mavlink.io/en/

129062 VOLUME 12, 2024

G. S. Ramos et al.: ARCog-NET for Swarm Applications Development

[73] PX4. (2022). Px4 Autopilot. Accessed: Dec. 4, 2022. [Online]. Available:
https://px4.io/

[74] T. Erez, Y. Tassa, and E. Todorov, ‘‘Simulation tools for model-based
robotics: Comparison of bullet, Havok, MuJoCo, ODE and PhysX,’’ in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2015, pp. 4397–4404.

[75] C. Anagnostopoulos, C. Koulamas, A. Lalos, and C. Stylios, ‘‘Open-source
integrated simulation framework for cooperative autonomous vehicles,’’ in
Proc. 11th Medit. Conf. Embedded Comput. (MECO), Jun. 2022, pp. 1–4.

[76] OMNET++. (2022). Omnet++: Discrete Event Simulator. Accessed:
Dec. 4, 2022. [Online]. Available: https://omnetpp.org/

[77] A. Mohini, ‘‘CDSSim–multi UAV communication and control simulation
framework,’’ M.S. thesis, Dept., Eng. Appl. Sci.: Comput. Eng., Univ.
Cincinnati, Cincinnati, OH, USA, 2019.

[78] NS-3. (2022). Ns-3 Network Simulator. Accessed: Dec. 4, 2022. [Online].
Available: https://www.nsnam.org/

[79] PX4. (2021). Controller Diagrams. Accessed: Jun. 15, 2021. [Online].
Available: https://docs.px4.io/main/en/flight_stack/controller_diagrams.
html

[80] PX4. (2021). Multicopter Pid Tuning Guide (Manual/Advanced).
Accessed: Jun. 15, 2021. [Online]. Available: https://docs.px4.io/main/en/
config_mc/pid_tuning_guide_multicopter.html

[81] S. Acharya, A. Bharadwaj, Y. Simmhan, A. Gopalan, P. Parag, and
H. Tyagi, ‘‘CORNET: A co-simulation middleware for robot networks,’’
in Proc. Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2020,
pp. 245–251.

[82] M. Calvo-Fullana, D. Mox, A. Pyattaev, J. Fink, V. Kumar, and A. Ribeiro,
‘‘ROS-NetSim: A framework for the integration of robotic and network
simulators,’’ IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1120–1127,
Apr. 2021.

[83] T. Liu, J. Wang, Q. Liu, S. Alibhai, T. Lu, and X. He, ‘‘High-ratio lossy
compression: Exploring the autoencoder to compress scientific data,’’
IEEE Trans. Big Data, vol. 9, no. 1, pp. 22–36, Feb. 2023.

[84] R. La Grassa, C. Re, G. Cremonese, and I. Gallo, ‘‘Hyperspectral
data compression using fully convolutional autoencoder,’’ Remote Sens.,
vol. 14, no. 10, p. 2472, May 2022.

[85] S. Zebang and K. Sei-Ichiro, ‘‘Densely connected AutoEncoders for image
compression,’’ in Proc. 2nd Int. Conf. Image Graph. Process., New York,
NY, USA, Feb. 2019, pp. 78–83.

[86] S. M. H. Kalami. (2021). Path-Planning: A Collection of Path
Planning Algorithms. Accessed: Mar. 24, 2023. [Online]. Available:
https://github.com/smkalami/path-planning

[87] R. E. J. Kennedy, ‘‘Particle swarm optimization,’’ inProc. Int. Conf. Neural
Netw., Perth, WA, Australia, Nov. 1995, pp. 1942–1948.

[88] P. Hart, N. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[89] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[90] S. M. LaValle, Rapidly-Exploring Random Trees: A New Tool for Path
Planning, Standard TR 98-11, 1998.

[91] R. P. Foundation. Raspberry Pi. Accessed: Mar. 19, 2024. [Online].
Available: https://www.raspberrypi.org

[92] I. Corporation. Intel Galileo Board. Accessed: Mar. 19, 2024. [Online].
Available: https://www.intel.com/content/www/us/en/products/details/
boards-kits/galileo.html

[93] G. S. Ramos. (Apr. 2024). Arcog-Net—Simulation 01–Wind Energy
Turbines Field Surveyllance. Accessed: Apr. 17, 2024. [Online]. Available:
https://youtu.be/LXOZyww0Jhs

GABRYEL S. RAMOS received the degree in
electrical engineering from the Federal Institute
of Education, Science and Technology, Campus
Vitória, Espírito Santo, the master’s degree in
robotics from the Federal Center for Technological
Education Celso Suckow da Fonseca (Cefet/RJ),
and the Ph.D. degree in robotics from the Post-
graduate Program of Instrumentation and Applied
Optics (PPGIO), Cefet/RJ and UFF. He has
developed work in the areas of robotics, instru-

mentation, artificial intelligence, digital image processing, and computer
vision, working mainly on the following topics: mobile robotics, educational
robotics, digital image processing, computer vision, AI, instrumentation,
scientific instrumentation, and works in oil and gas sector, since 2018.

FELIPE DA R. HENRIQUES (Member, IEEE)
received the degree in electrical engineering with
an emphasis on telecommunications and the mas-
ter’s degree in electronic engineering from the
State University of Rio de Janeiro, in 2006 and
2010, respectively, and the Ph.D. degree in elec-
trical engineering from the Federal University
of Rio of January, in 2015. He is currently the
Director of Uned Petrópolis, CEFET/RJ, where he
works as an EBTT Professor of technical courses

in telecommunications integrated with the High School and computer
engineering courses. In addition, he also works in the Graduate Program in
Computer Science (PPCIC) and the Graduate Program in Instrumentation
and Applied Optics (PPGIO), CEFET/RJ. He has experience in electrical
engineering, with an emphasis on telecommunications systems, signal
processing, and computer networks. He works mainly on the following
topics: Wireless sensor networks, sparse representations and compressive
sampling, and adaptive filtering.

DIEGO B. HADDAD (Member, IEEE) was born
in Niterói, Rio de Janeiro, Brazil, in 1983.
He received the B.Sc. degree in electrical engineer-
ing, in 2005, and the M.Sc. and D.Sc. degrees in
electrical engineering from the Federal University
of Rio de Janeiro, Brazil, in 2008 and 2013,
respectively. He is currently with the Federal
Center for Technological Education Celso Suckow
da Fonseca (CEFET/RJ). His research interests
include signal processing, machine learning, com-

puter vision, and adaptive filtering algorithms.

FABIO A. A. ANDRADE (Senior Member,
IEEE) received the Ph.D. degree in engineering
cybernetics fromNorwegian University of Science
and Technology. Hewas anAdjunct Professor with
the Federal Center for Technological Education
Celso Suckow da Fonseca, Rio de Janeiro, and a
Technical Advisor with TracSense. He was with
Brazilian Department of Airspace Control and
was an Assistant Professor with Brazilian Naval
Academy. He is currently an Associate Professor

with the University of South-Eastern Norway and a Research Scientist with
the NORCENorwegian Research Centre. He has several published works on
robotics and machine learning. He is the Former Chair of the IEEE Norway
Chapter of Robotics and Control Systems and the Co-Founder of Umaker.

MILENA F. PINTO (Member, IEEE) received
the master’s, Ph.D., and postdoctoral degrees in
engineering electrical from the Federal University
of Juiz de Fora (UFJF), with a doctoral year
with Technische Universität München, and the
degree in control and automation engineering
from CEFET-MG. She was a Visiting Professor
with the Polytechnic Institute of Bragança (IPB),
Portugal. She was an Advisor for agreements and
international relations with CEFET-RJ, from June

2022 to November 2022. She was the Coordinator of the Postgraduate
Program PPGIO, CEFET-RJ/UFF, from February to June 2022. She is
currently a Professor of the electronic engineering course (CCGELT) and
a Permanent Professor with the Postgraduate Departments in Electrical
Engineering (PPEEL) and Instrumentation and Applied Optics (PPGIO),
Federal Center for Technological Education Celso Suckow da Fonseca
(CEFET-RJ). She is a Young Scientist of Our State (FAPERJ). Her areas
of research interests include artificial intelligence, embedded electronics,
robotic systems, ROS, unmanned aerial vehicles, data processing, and fog-
cloud computing.

VOLUME 12, 2024 129063

