
Received 28 May 2024, accepted 27 August 2024, date of publication 9 September 2024, date of current version 18 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3456041

AFD–An Architectural Language for
Integral Modeling
STEFAN TUBIĆ , ZAHARIJE RADIVOJEVIĆ , SAŠA STOJANOVIĆ , AND MILOŠ CVETANOVIĆ
School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia

Corresponding author: Stefan Tubić (stefan.tubic@etf.bg.ac.rs)

This work was supported by the Ministry of Science, Technological Development, and Innovation of Serbia
under Contract 451-03-65/2024-03/200103.

ABSTRACT Describing architectures of complex software systems using architectural languages is usually
done through multiple viewpoints that enable the creation of views. While the creation of views enables
the separation of stakeholders’ concerns with the system and eases manageability, it raises the problem
of inconsistencies among the views. This paper presents Annotated Functional Decomposition (AFD),
an architectural language that provides integral modeling as a possible solution to this problem. Integral
modeling creates a model by decomposing a system into its functions, which are annotated to simultane-
ously create multiple views. Having all created views available in the model at the same time facilitates
inconsistency management. AFD supports automated inconsistency detection and manual inconsistency
resolution.Moreover, AFD supports the automated translation of views to appropriate UML diagrams, which
facilitates adaptation to other methodological approaches. According to the criteria used in the literature for
the evaluation of 124 architectural languages, AFD provides nine out of 12 requirements that are important
to practitioners.

INDEX TERMS Architectural language, viewpoints, consistency, integral modeling, UML.

I. INTRODUCTION
Developing large software systems often results in complex
architectures, and over time, it has become a practice to
design, build, maintain, and analyze architectural descrip-
tions from multiple viewpoints [1]. Viewpoints enable differ-
ent stakeholders to focus on details based on their concerns.
Observing the system through viewpoints results in the cre-
ation of views. A large set of views may cause stakeholders
to end up with architectural descriptions that are difficult to
manage. Moreover, the description further requires ensuring
consistency between many different views and thus hinders
manageability. Ensuring consistency is a complex process
encompassing activities ranging from detection through res-
olution, all the way to tracking of inconsistencies.

Architectural languages and their tools are used to describe
architectures and address the complexity of software sys-
tems in different ways. Determining the weaknesses and
strengths of each architectural language can be done in terms

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

of requirements that are highly important to practitioners [2].
Requirements concerned with defining language syntax and
semantics distinguish visual and textual languages. Similarly,
how a language enables specifying, modifying, and main-
taining architectural descriptions encompasses a requirement
regarding support for multiple viewpoints. Additionally, the
operational usage of languages depends on tool support,
which among others encompasses a requirement for incon-
sistency management.

Even though a requirement for multiple viewpoints support
is highly desirable as it enables the separation of concerns,
it makes the problem of keeping views consistent more chal-
lenging. The creation of views is usually done independently
in separate places, either through separate diagrams or textual
descriptions. A greater number of viewsmakes system design
and understanding easier but inherently makes the problem
of detection and resolution of inconsistencies among views
more difficult.

This paper presents Annotated Functional Decomposi-
tion (AFD), a textual architectural language that enables the
creation of architectural descriptions of complex software

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 127165

https://orcid.org/0000-0002-1766-4407
https://orcid.org/0000-0002-9412-7699
https://orcid.org/0009-0007-1454-5991
https://orcid.org/0000-0003-1063-0340
https://orcid.org/0000-0002-3685-3879


S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

systems using functional decomposition as a methodological
design paradigm. In addition to functional decomposition,
AFD introduces annotations to support multiple viewpoints
and creation of views. Views in AFD are created together
in the same textual description, leading to an integral model
that should ease some inconsistency management activities.
Additionally, this paper presents an AFD tool that supports
the operational usage of AFD, not only for the creation of
an integral model, but also for the separation of the integral
model into views. Moreover, the AFD tool enables the trans-
formation of an architectural description given in the AFD to
the appropriate UML diagrams.

The remainder of this paper is organized as follows. The
second section presents a related work. The third section
introduces the AFD and its syntax and provides an example
of integral modeling in AFD. The fourth section explains
how viewpoints are represented in AFD and how AFD sup-
ports inconsistency management activities. The fifth section
describes the AFD Tool, its role in facilitating the manage-
ability of architectural descriptions, and depicts the generated
UML for the example given in the third section. The sixth
section evaluates the AFD in the context of other architectural
languages. The seventh section concludes the paper.

II. RELATED WORK
Modeling complex software systems through multiple views
represents an approach that praises a differentiated and com-
plex scientific body of knowledge [3] in the domain of
viewpoints. Contributions made in the last couple of decades
have testified to the importance of multiple-viewpoint usage.
In 1995. Soni et al. [4] introduced the conceptual, mod-
ule, execution, and code viewpoints. In the same year,
Kruchten [5] introduced four mandatory viewpoints: logi-
cal, process, physical, and development, and one optional
viewpoint: scenarios. In 2000. IEEE created standard ‘‘IEEE
1471-2000’’ now known as ‘‘ISO/IEC 42010:2007’’ [6],
which introduced the concept of viewpoints to capture com-
mon descriptive frameworks across many systems. Unlike
approaches that prescribe a fixed set of viewpoints, this
standard advocates creating a set of viewpoints that best
serves the stakeholders and their concerns associated with a
system. In 2002. Clements et al. [7] introduced 17 viewpoints
categorized as module, component-and-connector, alloca-
tion, and hybrid styles. In 2002. Garland and Anthony [8]
introduced 14 viewpoints categorized as conceptual and
analysis, logical design, and environment/physical. In 2005.
Rozanski and Woods [9] introduced context, functional,
information, concurrency, development, deployment, and
operational viewpoints. In 2009. Taylor et al. [10] introduced
logical, physical, deployment, concurrency, and behavioral
viewpoints. In 2011. IEEE created standard ‘‘ISO/IEC/IEEE
42010:2011(E)’’ [11] which is a revision of the previous
standard and still does not prescribe a fixed set of viewpoints.
In 2018. Ozkaya [2] introduced the logical, information,
physical, deployment, behavior, concurrency, development,
and operational viewpoints.

However, the usage of viewpoints and the creation of views
raise the question of consistency among them. A couple
of inconsistency management frameworks that have been
defined throughout the years were unified by Spanoudakis
and Zisman [12] as a set of activities that more accurately
reflect the operationalization of the inconsistency manage-
ment process by the various techniques and methods that
have been developed to support it. These activities are the
detection of overlaps, detection of inconsistencies, diagno-
sis of inconsistencies, handling of inconsistencies, tracking
of inconsistencies, and specification and application of a
management policy for inconsistencies, some of which can
be performed using a certain technique or method. In their
systematic literature review, Cicchetti et al. [3] identified a
similar set of activities for the inconsistency management
process, followed by their set of techniques and methods.
Moreover, Cicchetti et al. argued that whenever multiple
views are created separately, achieving consistency in archi-
tectural descriptions is based on resolution mechanisms
specifically defined on pairs of views. The intricacy of
achieving consistency is represented by the necessity of
defining many binary consistency relations and correspond-
ing restoring procedures, and possibly arising the ripple effect
that might lead to a non-confluent process. The problem of
n-ary consistency relations remains unresolved, as it poses
severe difficulties in both theoretical and practical aspects.

In the analysis of existing architectural languages,
Ozkaya [2] evaluated both visual and textual languages and
showed that most of them provide support for multiple
viewpoints. However, only a portion of the analyzed lan-
guages deal with inconsistency management. Most languages
supporting multiple viewpoints create corresponding views
separately, either by multiple diagrams or textual descrip-
tions, which can hinder certain activities of inconsistency
management. In contrast to existing languages, this paper
proposes a language that supports multiple viewpoints but
creates corresponding views by bringing them together as an
integral model. Dealing with views on the integral model is
expected to ease certain inconsistencymanagement activities.

III. AFD
Annotated Functional Decomposition (AFD) is a textual
architectural language that enables the creation of architec-
tural descriptions of complex software systems. The idea
behind AFD is to use functional decomposition as a method-
ological design paradigm to ease comprehension by seeing a
system through its constituent parts. Furthermore, by intro-
ducing annotations, AFD extends functional decomposition
and implements all four pillars of computational thinking [13]
as a methodological problem-solving approach. To facilitate
understanding, the annotations are represented as five levels
of decomposition. The first level is mandatory, while the other
four are orthogonal, and therefore optional. The first level
describes the decomposition, the second describes the control
flow, and the third describes the data flow,the fourth describes
reuse, and the fifth describes implementation. Each level

127166 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 1. The first level of decomposition – Functions for Retail payment
process example.

will be further explained in the example given in Figs. 1-5,
depicting a simplified retail payment process.

The first level of decomposition represents the basic struc-
ture of a system by defining its functions (Fig. 1). The
system’s function can be further decomposed into subfunc-
tions and represented by indenting relative to each other.
Functions defined in this level can be further described with
annotations that form other decomposition levels.

The second level of decomposition represents a set of anno-
tations that defines the control flow of a system (Fig. 2). The
control flow defines the execution order of the functions, con-
ditional executions, loop executions, and parallel executions.
The execution order of the functions is defined by writing
ordinal numbers before function definition. The conditional
and loop execution of a function are achieved by writing a
condition after the function name, marking it for conditional
or loop execution, respectively. A group of functions can be
marked for exclusive execution, such as functions in lines
17 and 20, and for parallel execution, such as functions in
lines 25 and 26.

The third level of decomposition represents a set of annota-
tions that defines the data flow of a system (Fig. 3). The data
flow defines the data input objects, data output objects, input
streams, and output streams. The data object can be input to
a function such as the payment data object in line 5, and the
function can output a data object such as the data object sum
in line 5. Data objects can have parts that are data objects,
as depicted in line 6, where ordId is the data object and is
a part of the payment data object. The input stream can be
decomposed into a set of data objects as depicted in line 2,
where the input stream PaymentInput is decomposed into
ordId and CCNum data objects, whereas the output stream
can be composed of a set of data objects as depicted in

FIGURE 2. The second level of decomposition – Control flow for Retail
payment process example.

FIGURE 3. The third level of decomposition - Data flow for Retail
payment process example.

line 28, where the PaymentOutput output stream is composed
of status data object. The input and output streams represent
data that flow through a system at a higher level of abstraction
in the decomposition.

The fourth level of decomposition represents a set of anno-
tations that enables the reuse of already defined functions
(Fig. 4). Function can be marked to be reused as a function
in line 6. Other functions can be marked to reuse the reusable
function such as function in line 26.

The fifth level of decomposition represents a set of anno-
tations that defines the implementation aspect of a system.
In addition to the implementation aspect, Fig. 5 shows the
remaining four levels of decomposition for completeness of
the example. The implementation aspect defines the execu-
tors of functions, states of data objects, types of data objects,
components, nodes, resources, and actors. An executor is part
of a system that is responsible for functionexecution and is
defined inside square brackets after a function definition. The
executor can be a method of a class, such as the method
cPayment of a class Payment in line 3, a method of an object

VOLUME 12, 2024 127167



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 4. The fourth level of decomposition - Reuse for Retail payment
process example.

like tryPayment of an object Payment in line 4, or a service
like the bank service in line 15.

Data objects can define states and state transitions. The
state is written in parentheses after the name of the data
object. In line 3, a data object payment is in the state Ini-
tialized. After a transaction is done, the state of the payment
data object is changed to Successful in line 19 when the
transaction is successful, and the payment object is in the
state Initialized. After a transaction is done, the state of
the payment data object is changed to Failed in line 22 when
the transaction is not successful, and the payment object is
in the state Initialized.

The data type can be defined for a data object. Moreover,
the hierarchy of data types can also be defined. The data type
is written after a data object name and colon (:) symbol, and
can be a primitive or class data type. In line 2, the order id and
credit card number data objects are primitive-type integers.
In line 3, the payment data object is a class-type Payment.
In line 7, the persistence manager data object is of class type
StoreDatabasePersistenceManager, which extends the class
PersistenceManager. In line 9, items data object is a collection
of objects of the class-type Item.

Data types can be grouped into system components. Com-
ponents are logical groups of class types. A physical artifact
such a file can manifest a logical component. After writing
the class name, the component to which it belongs can be
defined in parentheses. The component is defined by writing
a physical name and logical name of the component and
separating them by the colon symbol (:). In line 1, class
Store belongs to a component Store that is physically stored
in file store.jar. A component Store is a subcomponent of
a component System. In line 8, class Order belongs to the

component Persistence, whose physical name has not yet
been defined.

Execution of the function is done on a node. A node
is a generic machine in which artifacts are deployed, and
functions are executed. A node can have an instance that
represents the existing machine. A node is defined by writing
at symbol (@), followed by a logical name for a node and
a physical name for a node instance. The function in line 4
is marked to be executed on a FinanceServer node on the
existing machine identified with the URL www.finance.com.

A function can be related to certain resources. The exe-
cution of a function may require access to a database or
development of a function may require testing examples,
or the operational usage of a function may require infor-
mation related to installation and configuration. Resource
usage is defined as the operation performed on a resource.
A resource can have a defined type. Resource usage is written
in curly brackets after a function definition. In line 25, the
payment is stored in a table Payment using the SQL insert
operation.

The function can have assigned actors. Actors are entities
outside the system that can use the functions of the sys-
tem. Actors that interact with a function can be defined by
writing the circumflex symbol (^), followed by their names.
The payment function in line 1 can be explicitly used by a
system administrator, which implicates the usage of all its
sub-functions. Similarly, the function in line 4, which tries
a payment, can be used explicitly by the finance sector.

All previously described annotations are defined in the
AFD through its context-free grammar, which consists of
41 rules. The rules and coverage of the decomposition lev-
els by the rules are given in the appendix of this paper.
An overview of some annotations used in the Retail payment
process example is depicted in Table 1. For each level of
decomposition, the table provides annotations and their loca-
tion in the example, followed by brief explanations.

IV. INTEGRAL MODELING AND INCONSISTENCY
MANAGEMENT IN AFD
AFD is characterized by its ability to model a complex
software system by decomposing it through five levels of
decomposition. Each level of decomposition is represented
with certain AFD annotations. In decomposition, all anno-
tations are written side by side, and therefore, an integral
model of the entire software system is created. Having an
integral model that contains all information about the system
is not limiting, as it still supports the separation of concerns
associated with the system because the introduced levels of
decomposition may bemapped to appropriate viewpoints that
are identified in the literature.

Over the years, various approaches have introduced dif-
ferent sets of viewpoints. The sets differ from each other
in terms of the number, naming, and meaning of view-
points. However, the existing standard does not prescribe a
fixed set of viewpoints; therefore, to demonstrate the usage
of viewpoints in AFD, an example viewpoint set contains

127168 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 5. The fifth level of decomposition - Implementation for Retail payment process example.

TABLE 1. Overview of some annotations used in Retail payment process example.

the following viewpoints: functional, execution, information,
implementation, data state, component, deployment, context,
and resource. The functional viewpoint describes a system
in terms of its basic functions and the relationships between
them. The execution viewpoint describes the control flow
of the system. The information viewpoint describes the data
and relationships between the data and data flow. The imple-
mentation viewpoint describes the data types, relationships
between data types, and parts of a system that executes
functions. The data state viewpoint describes the state of the

data and the transitions between data states. The component
viewpoint describes a system as a set of logical components
and their physical manifestations. The deployment viewpoint
defines how the software components are mapped to the
hardware. The context viewpoint defines external system
actors, and how they interact with a system through use
cases. The resource viewpoint defines operations on logical
and physical resources that the system uses, and may also
be used to describe nonfunctional requirements [14] [15] or
represent resources needed for development and operational

VOLUME 12, 2024 127169



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

TABLE 2. Mapping of example viewpoints to the viewpoints in literature.

processes. The mapping between the example viewpoint set
and the viewpoints in the literature is presented in Table 2. All
viewpoint sets in Table 2 share similar concerns associated
with a system.

The introduced viewpoints were mapped to the levels of
decomposition and AFD annotations, as shown in Table 3.
The existing relationships between the levels of decompo-
sition are the cause of the relationships between viewpoints
and the appropriate views. Creating an integral model starts
with functions; therefore, a functional view of the system
is created. Other views are created later, and they always
directly or indirectly annotate the functional view, as depicted
in Fig. 6. The data presented in the information view can be
part of a condition defined in the execution view. The imple-
mentation view annotates the information view; however, the
data presented in the information view can be a part of the
executor defined in the implementation view. The data state
view annotates the information view, and may present states
that can be part of a condition defined in the execution view.

TABLE 3. Mapping the example viewpoint set to the levels of
decomposition and AFD annotations.

FIGURE 6. Relationships between Viewpoints. Full arrow – annotation
relationship, dashed arrow – ‘‘part of’’ relationship.

The component view annotates the implementation view and
the deployment view annotates the resource view.

Creating a model as a set of views could create con-
sistency problems if the rules defined for the viewpoints
are not satisfied. Therefore, the need for inconsistency
management arises. Cicchetti et al. analyzed 40 research
studies and defined a taxonomy for characterizing solutions
for multi-view modeling [3] and listed activities regarding
inconsistency management, such as specification of over-
laps, inconsistency detection, and inconsistency resolution.
Even broader set of activities is listed in the framework
defined by Spanoudakis and Zisman [12], which besides
specification and application of an inconsistency manage-
ment policy includes the detection of overlaps, detection
of inconsistencies, diagnosis of inconsistencies, handling of
inconsistencies, and tracking of inconsistencies. By provid-
ing integral modeling, AFD facilitates activities related to
the detection of overlaps, detection of inconsistencies, and
handling of inconsistencies and uses some of the techniques
and methods mentioned by Spanoudakis and Cicchetti. The
diagnosis and tracking of inconsistencies are not supported
by AFD.

The detection of overlaps in AFD is done using Similarity
Analysis. According to Spanoudakis’ terminology Similarity
Analysis is performed using automated comparisons between

127170 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

TABLE 4. Pairs of viewpoints that can have overlapping elements.
Y – Yes, N – No, / - Not Applicable.

views. Elements in AFD are described mainly by their
name, so similarity analysis is performed by comparison
of element names in views that belong to viewpoints that
can have overlapping elements. Example viewpoints that
can have overlapping elements are presented in Table 4.
Overlapping elements are a consequence of a ‘‘part of’’ rela-
tionships between viewpoints as shown in Fig. 6. According
to Cicchetti’s taxonomy, AFD provides implicit detection of
overlaps established through the use of conventions, such as
naming and so forth.

The detection of inconstancies in AFD is done by checking
the satisfiability of specific consistency rules using Special
forms of analysis. Spanoudakis identified consistency rule
categories that can be defined by the language and can be,
among others, in the category of well-formedness or descrip-
tion identity rule. Well-formedness refers to rules that must
be satisfied by the views for them to be legitimate views of
the language in which they have been expressed. The AFD
defines well-formedness rules for each viewpoint as a set of
semantic checks. Example of well-formedness rule for Func-
tional viewpoint is: ‘‘Function that is reusable has unique
name in decomposition.’’ An example of well-formedness
rule for the implementation viewpoint is: ‘‘There must be
no cycle in class inheritance.’’ As AFD is a language in
which views are written side-by-side, well-formedness rules
are also defined for combinations of views. An example of
a well-formedness rule for the combination of functional
and execution viewpoints is: ‘‘Function must have an ordi-
nal number in the prefix.’’ Example of well-formedness
rule for combination of Functional and Information view-
points is: ‘‘Function that references reusable Function must
have the same number of data flows as reusable Function.’’
Description identity rules require different overlapping ele-
ments of views to have identical descriptions. In the case of
AFD, descriptions of overlapping elements are their names;
therefore, if two elements overlap, their descriptions are

the same. These rules are always satisfied and are not
explicitly defined. According to Cicchetti’s taxonomy, AFD
provides automated inconsistency detection using operational
semantics.

Handling of inconsistencies in AFD is done using Synoptic
technique. According to Spanoudakis’ terminology Synop-
tic technique defines that stakeholders are involved in the
generation of solutions for handling inconsistencies. Incon-
sistencies in views created by AFD, which do not satisfy the
consistency rules, can be resolved by stakeholders. There-
fore, the resolution of inconsistencies is a manual process
performed by stakeholders. According to Cicchetti’s taxon-
omy, AFD provides manual inconsistency resolution, which
is delegated to stakeholders.

V. AFD TOOL
The AFD Tool provides support for the practical use of AFD
and is available online at https://afd.etf.bg.ac.rs/. The tool
enables stakeholders to create, change, analyze, and manage
the architectural description of a system. The architectural
description represented as an integral model in AFD can be
separated into views according to the viewpoints selected by
a stakeholder. Eventual inconsistencies among the views are
detected by AFD Tool and presented in the integral model to
be easier understood and handled by a stakeholder. Besides
that, AFD Tool can translate the integral model into appro-
priate UML diagrams, which can eventually be used in other
tools.

The AFD Tool is implemented as a web application and
is depicted in Fig. 7. A menu bar is located on the top of
the window. The menu bar contains File, Edit, Viewpoints,
UML, andHelp buttons. A toolbar is located on the left side of
the window. The toolbar consists of a search button, save file
button, Viewpoints side panel button, UML side panel button,
and Settings side panel button. Depending on the selected
button on the tool bar, the corresponding side panel is shown.
A status bar is located at the bottom of the window. The status
bar shows the line and column numbers of the cursor and file
encoding. The central panel of the tool window consists of a
text editor in the middle and line numbers on the left side.

The text editor contains an architectural description written
in AFD and colored such that each color represents a different
viewpoint. In addition to coloring, viewpoints can be shown
or hidden using the Viewpoints side panel. Considering that
the architectural description can consist of a number of func-
tions that stakeholders are not currently managing, the AFD
Tool also enables folding certain functions by clicking the
arrows located just after the line numbers. Clicking an arrow
left to a certain function folds all its sub-functions. After
hiding certain viewpoints and folding certain sub-functions,
the AFD Tool enables stakeholders to copy only the visible
text of the architectural description.

The AFD Tool provides support for the inconsistency man-
agement process by allowing the detection of inconsistencies
and presenting them to a stakeholder. Consistency checks can
be turned on or off using the Check consistency button at

VOLUME 12, 2024 127171



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 7. AFD Tool. 1 – Menu bar, 2 - Tool bar, 3 – Side panel, 4 – Status bar, 5 – Central panel.

the bottom of the Viewpoints side panel. Consistency rules
that are not satisfied are presented to a stakeholder by the
underlying parts of an architectural description that violate
these rules and bymarking lines in which violations aremade.
A description of a violated rule is visible after the mouse hov-
ers over the underlined part of the architectural description.
The detected inconsistencies are left to the stakeholders to
handle them manually.

After handling all inconsistencies, if any, an architectural
description can be translated by the AFD Tool into UML
diagrams. The AFD Tool provides translation to seven UML
diagrams: class, component, deployment, activity, sequence,
state, and use-case diagram. Class, component, and deploy-
ment UML diagrams describe the structural design of a
system, whereas activity, sequence, state, and use case
UML diagrams describe the behavioral design of a sys-
tem. Given an architectural description, not all views are
necessary for the translation to a specific UML diagram.
Table 5 lists the viewpoints used in the translation to a
specific UML diagram type. The algorithms for the gen-
eration of UML diagram types are given in the appendix
of the paper, while the diagrams generated for the Retail
payment process example given in Fig. 5 are presented
in Figs. 8-14. Figure 8 depicts the class diagram consist-
ing of classes, their relationships, fields and methods. For
example, line 7 contains StoreDatabasePersistanceManger-
>PersistanceManager, which is translated to the class
diagram as classes StoreDatabasePersistanceManger and
PersistanceManager, where the first one extends the second
one. Figure 9 depicts component diagram consisting of

TABLE 5. Mapping of example viewpoints to UML diagrams.

components, their compositions, relationships and artifacts’
manifestations of components. For example, lines 1 and
18 contain System.Store and System.Payment respectively
which are translated to the component diagram into compo-
nent System consisting of components Store and Payment.
Figure 10 consists of two diagrams, the first depicting
nodes and nodes’ occurrences, and the second depicting
artifacts’ deployment on the identified nodes. For exam-
ple, line 1 contains @StoreServer:www.store.com, which
is translated to the node StoreServer and its occurrence
www.store.com on the first deployment diagram. Line 1
contains store.jar:. . . StoreServer which is translated to the
deployment of artifact store.jar to the node StoreServer on
the second deployment diagram. Figure 11 consists of a set
of activity diagrams defining system activities and its control

127172 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 8. Generated UML class diagram for Retail payment process
example.

flow. For example, line 11 contains GetSumForItems. . . /item
in items which is translated on the second activity diagram
to the loop condition represented by the decision node.
Figure 12 depicts sequences of method calls in a set of gen-
erated sequence diagrams. For example, lines 4 and 12 con-
tain TryPayment. . . [0:payment] and GetItemPrice. . . [0:item]
respectively, which is translated on the sequence diagram to
themethod TryPayment of object payment calling themethod
GetItemPrice of object item. Figure 13 depicts an identi-
fied state machine with its states and state transitions. For
example, line 20 contains /status!=200 AND (Initialized),
which is translated on the state diagram to the transition
from the state Initialized to some other state under condition
status!=200. Figure 14 consists of system’s use cases, their
relationships and usage of use cases by actors. For exam-
ple, line 4 contains TryPayment. . . ^FinanceSector which is
translated on the use case diagram to the actor FinanceSector
which uses TryPayment use case.

The AFD Tool, even though created as a simple instrument
for using AFD and not as a full-fledged IDE, demonstrates
how AFD and integral modeling can ease managing of archi-
tectural descriptions. Creating an integral model that can be
separated into views by color-coding viewpoints or hiding
them, if necessary, can help comprehend the complexities of
the modeled system. At the same time, having the integral
model available all the time facilitates some inconsistency
management activities. Moreover, the ability to translate
an integral model into appropriate UML diagrams makes
adoption of AFD and its possible integration with other
methodologies more feasible.

VI. EVALUATION OF AFD IN CONTEXT OF OTHER
ARCHITECTURAL LANGUAGES
The topic of architectural languages has been of great inter-
est to the software architecture community and the number

FIGURE 9. Generated UML component diagram for Retail payment
process example.

of languages has been increasing swiftly [2]. In the 2000s,
Medvidovic et al.. provided a classification and compari-
son framework for architectural languages. The framework
defines component, connector, architectural configurations,
and tool support features, some of which are required and
some can be optionally provided by languages [16]. In 2015.
Lago et al. proposed a framework of language require-
ments [17] based on Malavolta et al. ‘s survey, which was
conducted on 48 practitioners from 40 IT companies and
aimed to understand practitioners’ needs from architectural
languages [18]. In 2018. Ozkaya used the requirements
defined by Lago et al. and decomposed them into sub require-
ments according to Lago et al. and other seminal software
architecture publications. Ozkaya analyzed existing archi-
tectural languages that were determined by Malavolta et al.
with an aim to aid new architectural language developers in
comparing existing languages and determining their weak-
nesses and strengths in terms of support for a number of
requirements [2]. The requirements defined by Ozkaya are
divided in three groups: language definition, language fea-
tures, and tool support, which are presented in Table 6. In the
remainder of this section, AFD will be critically evaluated in
comparison with 124 other architectural languages, group by
group, in accordance with each requirement defined.

Language definition requirement group consists of a nota-
tion set, nonfunctional requirements, and formal semantic
requirements. The notation set of an architectural language
can be either textual or visual, either of which is preferred by
practitioners depending on their experience and needs. The
AFD is an architectural language that uses a textual notation
set to create an architectural description of a system. TheAFD
textual notation set is defined by its syntax rules. The textual
notation set is used by 40% of architectural languages.

Nonfunctional requirements describe the quality require-
ments of a software system, such as performance and
security requirements. The AFD provides the specification
of nonfunctional requirements by informal notation, which
is covered by the resource viewpoint. Nonfunctional require-
ments are supported by 21% of architectural languages, and

VOLUME 12, 2024 127173



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 10. Generated UML deployment diagram for Retail payment process example.

FIGURE 11. Generated UML activity diagrams for retail payment process example.

the specification of nonfunctional requirements by informal
notation is supported by 13% of architectural languages.

Semantics of architectural language are defined either
formally or informally. The formal semantics of an architec-
tural language are defined by mathematically based formal
methods, whereas the informal semantics of an architectural
language are defined in plain English. The semantics of AFD
is informally defined by the semantic rules. Informal seman-
tics are supported by 52% of the architectural languages.

Language features requirement group consists of multi-
ple viewpoints, extensibility, customization, and program-
ming framework requirements. The multiple viewpoints
considered by Ozkaya are the Logical, Information, Physi-
cal, Deployment, Behavior, Concurrency, Development, and
Operational viewpoints [2]. Ozkaya viewpoints are mapped
to example viewpoints defined by the AFD in Table 3.
Example viewpoints which AFD provides are the Func-
tional, Execution, Information, Implementation, Data state,
Component, Deployment, Context, and Resource viewpoints.

The example viewpoints are functional, component, context,
information, data state, and execution are provided by 47%
of architectural languages, while the deployment viewpoint
is provided by only 15% of architectural languages.

Extensibility and customization are concerned with the
ability to extend a language according to the requirements
of interest. The extension of a language can be syntax or
semantic. A syntax extension includes the ability to add new,
modify, or remove existing architectural elements without
changing the semantics of a language. Syntax extension can
be achieved by introducing new, modifying, or removing
the existing syntax rules of a language. Semantic extension
includes the ability to add new viewpoints, new nonfunctional
properties, interaction protocols, and connectors. Seman-
tic extension can be achieved by introducing new syntax
rules, and semantic rules into a language. AFD syntax can
be extended by inheriting existing rules and adding new
language rules. Extending the AFD syntax promotes the
addition of new architectural elements, modifying existing or

127174 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 12. Generated UML sequence diagrams for retail payment process example.

FIGURE 13. Generated UML state diagram for retail payment process
example.

removing undesired architectural elements without changing
theAFD semantics. AFD semantics can be extended by inher-
iting existing rules, adding new language rules, writing new
semantic rules, and using the resource viewpoint. Extending
AFD semantics promotes the addition of new viewpoints,
the creation of architectural elements inside new viewpoints,

FIGURE 14. Generated UML use case diagram for retail payment process
example.

and new nonfunctional elements inside the resource view-
point. Extensibility and customization are provided by 16%
of architectural languages, where almost none of the architec-
tural languages use language inheritance as a technique for
syntax and semantic extension and customization.

VOLUME 12, 2024 127175



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

TABLE 6. Requirements for architectural languages defined by Ozkaya [2] and their support by AFD. 124 architectural languages referred to in the table
were determined by Malavolta et al.

Programming framework supports architectural languages
in their utilization in the software development process. The
programming framework consists of a modeling editor that
enables the creation of views that architectural language
supports, and can optionally generate software implemen-
tation code. Specifying, modifying, and maintaining the
architectural description in AFD is enabled by the AFD Tool,
which serves as an AFD modeling editor. The programming

framework is provided by 56% of architectural languages, all
of which provide modeling editor for creating architectural
descriptions.

Tool support requirement group consists of automated
analysis, versioning, collaboration, knowledge management,
software architecture-centric design, and large-view man-
agement requirements. Automated analysis is considered as
the automated checking for the following analysis goals:

127176 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

TABLE 7. Decomposition levels covered by the annotated functional decomposition language rules – part 1.

consistency, completeness, correctness, and compatibility.
Consistency is concerned with architectural elements that

overlap in different viewpoints and that do not have sat-
isfactory joint description; therefore, it is concerned with

VOLUME 12, 2024 127177



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

TABLE 8. Decomposition levels covered by the annotated functional decomposition language rules – part 2.

any contradictions between architectural elements from dif-
ferent viewpoints. Completeness can determine whether

the architectural description satisfies all the defined sys-
tem requirements. Correctness can indicate whether an

127178 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

TABLE 9. Decomposition levels covered by the annotated functional decomposition language rules – part 3.

architectural description satisfies the desired system proper-
ties defined by stakeholders, such as well-definedness rules,
deadlock, and race conditions. Compatibility can determine
whether architectural descriptions match any architectural
style or design guideline. The AFD Tool provides automated
analysis with the goal of consistency in a way that the
AFD tool automatically detects inconsistencies through its
semantic rules, which rely on Boolean Logic, and delegates
resolution of inconsistencies to a stakeholder. Automated
analysis is provided by 47% of architectural languages, but
none of the architectural languages supporting automated
analysis considers all four goals of analysis. Of all the archi-
tectural languages, 19.3% provide an automated analysis with
consistency as a goal.

Versioning is considered with keeping and accessing
architectural elements of architectural desciption. Different
versions of an architectural element can be stored in a

repository and later accessed and reused as part of the archi-
tectural description. Versioning is not provided by the AFD
Tool. Versioning is provided by 15% of the architectural
languages.

Collaboration with stakeholders reduces the time needed
for the creation of architectural descriptions and enhances
their quality. Collaboration can be either synchronous
or asynchronous. Synchronous collaboration requires
stakeholders to work on architectural descriptions at the same
time, whereas asynchronous collaboration allows stakehold-
ers to work on architectural descriptions at different times
that best suit their schedule. Collaboration is not provided
by the AFD Tool. Collaboration is provided by 8% of all
architectural languages, all of which provide asynchronous
collaboration.

Knowledge management is considered providing and shar-
ing knowledge on architectural language with practitioners.

VOLUME 12, 2024 127179



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 15. A pseudo code of an algorithm for generation of UML class diagrams.

FIGURE 16. A pseudo code of an algorithm for generation of UML
component diagram.

Knowledge about architectural languages is usually shared
by a website that provides materials that can be used by
practitioners such as tutorials, user manuals, publications,

tools, and others, and directs them in any discussion platform
such as forums and user groups. Knowledge of AFD and
AFD Tool is managed on a website where an introduction to
AFD and its tool, publications, and contact information are
provided. Knowledge management is provided by 23% of the
architectural languages.

Software architecture-centric design is considered by inte-
grating software architecture processes in other stages of the
software development process, such as the specification of
requirements, low-level software design, and software imple-
mentation. Software architecture-centric design in some
architectural languages is provided by their tool, which
enables functionalities such as automated analysis, automatic
generation of low-level software design and implementation
code, reusing software architecture via repositories, and
integrating software architecture specifications with require-
ments specification. Software architecture-centric design is
provided in the AFD by integrating the AFD Tool as part of
a software development process. After the system require-
ments are defined as the result of the first phase of the
software development process, the AFD Tool can be used
to create an architectural description of the system. After
an architectural description is created, the AFD Tool can
generate UML diagrams as a visual representation of the
software architecture. UML is used to visually represent
architectural description as it is popular among practitioners
for modeling software architectures from different view-
points [1]. After creating architectural description and option-
ally generating UML diagrams, software implementation is

127180 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 17. A pseudo code of an algorithm for generation of UML deployment diagram.

FIGURE 18. A pseudo code of an algorithm for generation of UML activity diagrams.

performed as the next phase of the software development
process.

Large-view management involves techniques for repre-
senting large and complex systems in an understandable

way in a view that can be easily understood and analyzed.
While multiple-viewpoint support is crucial for representing
different aspects of a software system, architectural lan-
guages should also support the specification of large views.

VOLUME 12, 2024 127181



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 19. A pseudo code of an algorithm for generation of UML sequence diagrams.

Large view management can be performed in architectural
languages using different techniques: composite compo-
nents, composite connector structures, inheritance, composite
behaviors, and aspect-oriented specifications. Composite
components handle the scalability of a system by specifying
component structures in terms of other subcomponents
and their interactions. Composite components are the most
preferred technique for large-view management used by
architectural languages. Composite connector structures
enable the specification of complex interaction protocols in
terms of simpler interaction mechanisms. Inheritance, as a
principle defined in the object- oriented software engineering

paradigm as a technique in large-view management, enables
the extension of component specification, its structure, and
behavior, with another component specification. Compos-
ite behaviors specify component behaviors in terms of the
behaviors of existing components. Aspect-oriented speci-
fications handle complex cross-cutting concerns, such as
security, access control, and nonfunctional properties, and
specify them modularly as aspects. Large-view management
is provided by the AFD Tool inside the component viewpoint
by specifying the components and their structural composi-
tion, and therefore using a composite components technique.
Large-view management is provided by 56% of architectural

127182 VOLUME 12, 2024



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

FIGURE 20. A pseudo code of an algorithm for generation of UML state diagrams.

FIGURE 21. A pseudo code of an algorithm for generation of UML use
case diagram.

languages, whereas composite components as a technique of
large-view management is provided by 35% of architectural
languages.

From the previous analysis, it can be summarized that
AFD and its tool provide 9 out of 12 requirements for archi-
tectural languages, except for formal semantics, versioning,
and collaboration, and provide 13 of 20 sub-requirements for
architectural languages. However, in addition to supporting
large-view management, which aims to increase the manage-
ability of architectural descriptions, AFD provides integral
modeling. Integral modeling, although not depicted as one
of the requirements for architectural languages in Table 6,
should enable easier resolution of inconsistencies, regardless
of their source, which increases themanageability of architec-
tural descriptions. According to a quantitative an qualitative
evaluation presented in a previous work, AFD was perceived
by two-thirds of students on an information systems course as
easy to understand for use during problem-solving, more than
one-third of students expressed optimism about the appli-
cability of AFD in practice, and students who used AFD
achieved higher average grades than those who used UML
sequential diagrams for solving the same problems [19].

VII. CONCLUSION
Over the years, various architectural languages have been cre-
ated to describe complex software systems. A large number
of available languages describe architectures from multiple
viewpoints, thus serving stakeholders’ needs. Although using
viewpoints helps in dealing with complex systems, it arises
a problem of consistency among views created according to
these viewpoints. The architectural language AFD described
in this paper provides integral modeling as a possible solution

VOLUME 12, 2024 127183



S. Tubić et al.: AFD–An Architectural Language for Integral Modeling

to the problem. Integral modeling supports viewpoints and
enables the creation of views side by side, thus facilitat-
ing both the detection and resolution of inconsistencies.
Moreover, integral models created in the AFD can be trans-
lated into appropriate UML diagrams for further design and
analysis.

Previous work and the initial experiments with AFD in an
undergraduate information systems course showed positive
results during exams and optimism regarding practical use.
An additional evaluation conducted in this paper according
to the requirements used in the literature for the evaluation of
124 architectural languages showed that AFD provides nine
out of 12 requirements. Unsupported requirements encom-
passing formal semantics, versioning, and collaboration will
be provided in upcoming versions of the AFD. Additional
experiments and quantitative evaluations with examples of
complex systems are planned in the future.

APPENDIX A
DECOMPOSITION LEVELS AND ANNOTATIONS
See Tables 7–9.

APPENDIX B
PSEUDO CODES OF ALGORITHMS FOR GENERATION OF
UML DIAGRAMS
See Figures 15–21.

REFERENCES
[1] M. Ozkaya and F. Erata, ‘‘A survey on the practical use of UML for

different software architecture viewpoints,’’ Inf. Softw. Technol., vol. 121,
May 2020, Art. no. 106275, doi: 10.1016/j.infsof.2020.106275.

[2] M. Ozkaya, ‘‘The analysis of architectural languages for the needs of prac-
titioners,’’ Softw., Pract. Exper., vol. 48, no. 5, pp. 985–1018, Jan. 2018,
doi: 10.1002/spe.2561.

[3] A. Cicchetti, F. Ciccozzi, and A. Pierantonio, ‘‘Multi-view approaches
for software and system modelling: A systematic literature review,’’
Softw. Syst. Model., vol. 18, no. 6, pp. 3207–3233, Dec. 2019, doi:
10.1007/s10270-018-00713-w.

[4] D. Soni, R. L. Nord, and C. Hofmeister, ‘‘Software architecture in indus-
trial applications,’’ in Proc. 17th Int. Conf. Softw. Eng., Seattle,WA, United
States, Apr. 1995, pp. 196–196.

[5] P. B. Kruchten, ‘‘The 4+1 view model of architecture,’’ IEEE Softw.,
vol. 12, no. 6, pp. 42–50, Nov. 1995, doi: 10.1109/52.469759.

[6] IEEE Recommended Practice for Architectural Description for Software-
Intensive Systems, Standard 1471-2000, 2000.

[7] P. Clements, D. Garlan, L. Bass, J. Stafford, R. Nord, J. Ivers, and R. Little,
Documenting Software Architectures: Views and Beyond, 1st ed., Boston,
MA, USA: Addison-Wesley Professional, 2002.

[8] J. Garland and R. Anthony, Large-Scale Software Architecture: A Practical
Guide using UML, 1st ed., Hoboken, NJ, USA: Wiley, 2002.

[9] N. Rozanski, and E. Woods, Software Systems Architecture: Working With
Stakeholders Using Viewpoints and Perspectives, 1st ed., Upper Saddle
River, NJ, USA: Addison-Wesley 2005.

[10] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture:
Foundations, Theory, and Practice, 1st ed., Hoboken, NJ, USA: Wiley,
2009.

[11] Systems and Software Engineering—Architecture Description, Stan-
dard ISO/IEC/IEEE 42010:2011(E), 2011.

[12] G. Spanoudakis, and A. Zisman, ‘‘Inconsistency management in software
engineering: Survey and open research issues,’’ in Handbook of Software
Engineering and Knowledge Engineering, 1st ed. Singapore: World Scien-
tific, 2001, ch. 15, pp. 329–380.

[13] J. M. Wing, ‘‘Computational thinking,’’ Commun. ACM, vol. 49, no. 3,
pp. 33–35, Mar. 2006, doi: 10.1145/1118178.1118215.

[14] L. G. Williams and C. U. Smith, ‘‘Performance evaluation of software
architectures,’’ in Proc. 1st Int. Workshop Softw. Perform., Santa Fe, NM,
USA, Oct. 1998, pp. 164–177.

[15] E. Jagroep, J. M. van der Werf, S. Brinkkemper, L. Blom, and R. van Vliet,
‘‘Extending software architecture views with an energy consumption
perspective,’’ Computing, vol. 99, no. 6, pp. 553–573, Jun. 2017, doi:
10.1007/s00607-016-0502-0.

[16] N. Medvidovic and R. N. Taylor, ‘‘A classification and comparison frame-
work for software architecture description languages,’’ IEEE Trans. Softw.
Eng., vol. 26, no. 1, pp. 70–93, Jan. 2000, doi: 10.1109/32.825767.

[17] P. Lago, I. Malavolta, H. Muccini, P. Pelliccione, and A. Tang, ‘‘The road
ahead for architectural languages,’’ IEEE Softw., vol. 32, no. 1, pp. 98–105,
Jan. 2015, doi: 10.1109/MS.2014.28.

[18] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, ‘‘What
industry needs from architectural languages: A survey,’’ IEEE Trans. Softw.
Eng., vol. 39, no. 6, pp. 869–891, Jun. 2013, doi: 10.1109/TSE.2012.74.

[19] S. Tubić, M. Cvetanović, Z. Radivojević, and S. Stojanović, ‘‘Annotated
functional decomposition,’’ Comput. Appl. Eng. Educ., vol. 29, no. 5,
pp. 1390–1402, Mar. 2021, doi: 10.1002/cae.22394.

STEFAN TUBIĆ received the B.Sc. and M.Sc.
degrees in electrical and computer engineering
from the School of Electrical Engineering, Uni-
versity of Belgrade, Serbia, in 2014 and 2016,
respectively. He is currently working as a Teach-
ing Assistant with the University of Belgrade.
He teaches several courses on databases and
database software tools, information systems, and
computer networks. His research interests include
database and information systems, data analysis,
and artificial intelligence.

ZAHARIJE RADIVOJEVIĆ received the B.Sc.,
M.Sc., and Ph.D. degrees in electrical and com-
puter engineering from the School of Electrical
Engineering, University of Belgrade, Serbia,
in 2002, 2006, and 2012, respectively. He is cur-
rently working as an Associate Professor with
the University of Belgrade. He teaches several
courses on computer architecture and organiza-
tion, e-business infrastructure, and mobile device
programming. His research interests include com-

puter architecture and organization, concurrent and distributed program-
ming, data analysis, simulations, and reverse engineering.

SAŠA STOJANOVIĆ received the B.Sc. and
Ph.D. degrees in electrical and computer engi-
neering from the School of Electrical Engineer-
ing, University of Belgrade, Serbia, in 2006 and
2016, respectively. He is currently working as
an Assistant Professor with the University of
Belgrade. He teaches several courses on embedded
systems, system programming, andmobile devices
programming. His research interests include arti-
ficial intelligence, software similarity, and reverse
engineering.

MILOŠ CVETANOVIĆ received the B.Sc., M.Sc.,
and Ph.D. degrees in electrical and computer engi-
neering from the School of Electrical Engineering,
University of Belgrade, Serbia, in 2003, 2006,
and 2012, respectively. He is currently working
as an Associate Professor with the University of
Belgrade. He teaches several courses on databases
and database software tools, information systems,
and e-business infrastructure. His research inter-
ests include database and information systems,

artificial intelligence, big data, and reverse engineering.

127184 VOLUME 12, 2024

http://dx.doi.org/10.1016/j.infsof.2020.106275
http://dx.doi.org/10.1002/spe.2561
http://dx.doi.org/10.1007/s10270-018-00713-w
http://dx.doi.org/10.1109/52.469759
http://dx.doi.org/10.1145/1118178.1118215
http://dx.doi.org/10.1007/s00607-016-0502-0
http://dx.doi.org/10.1109/32.825767
http://dx.doi.org/10.1109/MS.2014.28
http://dx.doi.org/10.1109/TSE.2012.74
http://dx.doi.org/10.1002/cae.22394

