
Received 17 July 2024, accepted 2 September 2024, date of publication 9 September 2024, date of current version 20 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3456469

Contamination Detection From Highly Cluttered
Waste Scenes Using Computer Vision
DISHANT MEWADA 1,2, CATHAOIR AGNEW 1,2, EOIN M. GRUA 1,2,
CIARÁN EISING 1,2,3, (Senior Member, IEEE), PATRICK DENNY 1,4, (Member, IEEE),
MARK HEFFERNAN5, KEN TIERNEY5, PEPIJN VAN DE VEN 1,2,3,
AND ANTHONY SCANLAN 1,2,3
1Data-Driven Computer Engineering (D2iCE) Group, University of Limerick, Limerick, V94 T9PX Ireland
2Department of Electronic and Computer Engineering, University of Limerick, Limerick, V94 T9PX Ireland
3CONFIRM Centre for Smart Manufacturing, University of Limerick, Limerick, V94 T9PX Ireland
4Department of Computer Science and Information Systems, University of Limerick, Limerick, V94 NX93 Ireland
5Advanced Manufacturing Control Systems Group, Limerick, V94 56R2 Ireland

Corresponding author: Dishant Mewada (dishant.mewada@ul.ie)

This work was supported by the Science Foundation Ireland (SFI) under Grant 16/RC/3918 (CONFIRM Centre).

ABSTRACT As the global production ofwaste continues to rise, there is a growing demand formore effective
waste management strategies to handle this expanding problem. Recycling rates in the United States for
recyclable materials are below 35%, resulting in elevated levels of waste being sent to landfills. This situation
has alarming consequences, contributing to rising pollution in both soil and aquatic ecosystems, and is a
significant source of concern for environmental scientists and the general population alike. The presence of
contamination in recycling collection trucks is a root cause impacting recycling rates, leading to the rejection
of entire loads from recycling processing sites. This problem can be alleviated by automatically detecting
contamination in recyclable waste that is loaded into the collection truck hopper before compaction. In this
paper, we have used different state-of-the-art computer vision-based models such as Faster-RCNN, Cascade-
RCNN, Retinanet, YOLOv8 and Mask-RCNN to identify contamination within a densely cluttered waste
environment.We further investigate the viability of transfer learning, comparing it to the models trained from
scratch. The YOLOv8-x model attained a mean-average precision of 0.395 without using transfer learning,
whereas with the incorporation of transfer learning, its performance increased to 0.463.

INDEX TERMS Transfer learning, computer vision, waste management, instance segmentation, object
detection, supervised learning, neural network.

I. INTRODUCTION
In the United States, approximately 94 million tons (mea-
sured in U.S. short tons unless stated otherwise) of Municipal
Solid Waste (MSW) underwent recycling and composting
processes, resulting in a composting and recycling rate
of about 32.1%. In 2018, the United States generated an
immense 292.4 million tons of MSW, translating to an
average daily waste production of 4.9 pounds per person.
Out of the overall MSW produced, around 69 million tons
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underwent recycling, while 25 million tons were subjected to
composting [1].

The management of such a large volume of waste is
becoming a more critical issue as a result of the growing
global population and the increase in waste production.
Waste production is predicted to rise from its present level
of approximately 2.1 billion tonnes annually to 2.6 billion
tonnes by the year 2030 [26]. The rise in waste gener-
ation presents various difficulties, such as environmental
contamination, depletion of resources, and potential threats to
public health. To mitigate the damaging environmental con-
sequences of increased waste production, effective recycling
solutions are essential.
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Recycling contamination is a global issue. For many years,
China handled a huge portion of the world’s recycling.
However, starting with Operation Green Fence [13] in 2013,
the Chinese authorities aimed to significantly curb the
amount of contaminated waste that it imported. This was
made even more aggressive in 2017 when the Operation
Sword policy [49] was implemented by the Chinese author-
ities, directly banning the import of 24 material types, and
effectively banning even more through extremely stringent
contamination requirements. This sequence of steps to curtail
recycling imports into China has had a large effect on the
global waste trade [8].

Other countries are following suit, particularly Southeast
Asian countries, with contamination resulting in a refusal
to accept waste [28]. These developments have provided
significant impetus to better recyclable waste contamination
management at source. In general, contamination is identified
at processing plants through manual or automatic processes.
Automated processes face a distinctive challenge due to
the following factors: a significant amount of clutter, the
existence of objects that are both highly deformable and
translucent, and subtle distinctions between different object
classes [4].
Automating waste sorting requires machines with the

capability to visually identify and manage a wide range
of items. The complexity arises from the endless variety
of objects in terms of size, shape, color, brightness, and
conditions, such as objects being dirty, broken, crushed,
or overlapped [2]. These challenges make it difficult to
identify and separate waste types. As sorting centers receive
large volumes of waste from garbage trucks, it is currently not
possible to identify individual culprits for the contamination.
Whilst it is possible to establish that the waste load of a
given truck is contaminated, it is currently not possible to
establish from which individual source the contamination
originates.

We addressed this problem within our project by imple-
menting a system that detects the recycling waste con-
tamination at the pickup. Each garbage truck is equipped
with a camera, which records video footage during pickup.
We extract suitable images from this footage that contain
the targeted contaminated items. These images are used
to train the models and later to detect the contami-
nation. By using this approach we can identify which
area is generating more contaminants in their recycling
wastes.

The main contribution of this study is the investigation of
the identification of recyclable waste contamination at the
source, during pick up, in an industrial real-world setting.
Identification of contaminants in collected bins is important
to allow the waste collection company or other parties
involved to engage with non-compliant businesses or indi-
viduals. Cutting-edge computer vision models, commonly
referred to as state-of-the-art (SOTA), are employed to detect
contaminants in recycled waste. One of the key advantages
of computer vision technology is its cost-effectiveness, as a

single camera can be installed on each truck in a fleet to
achieve desired outcomes.

The paper follows a structured approach, starting with a
review of previous studies in Section II. Section III talks
about the overview of sota models and backbones used in the
paper. Section IV delves into the details of the experimental
setup and methodology. Section V presents the findings
of the experiment, followed by an in-depth analysis and
discussion in Section VI. Finally, Section VII condenses the
key takeaways and conclusions extracted from the research.

II. RELATED WORK
In the past, numerous research projects have focused on using
neural networks andmachine learning for waste detection and
classification in images. Nevertheless, none of these studies
specifically address the challenge of detecting waste within
real-world cluttered environments.

A detailed comparison of related work is shown in Table 1,
which contains themethod used in the published experiments,
a description of the dataset, and the application field of the
research. We further focus on whether the dataset contains
a cluttered background and if the images were captured in a
real-world setting.

Yang and Thung worked on classifying recycling waste
using support vector machines (SVMs) [50]. Their dataset
consisted of 2,527 images and included six categories of
waste: glass, paper, cardboard, metal, plastic, and trash. Each
image is labeled with its corresponding category. It primarily
consists of photographs of various types of waste captured
against a white background. Each photo was taken with a
unique combination of exposure and lighting, focusing solely
on highlighting a single object. The authors have explored
the application of SVM and Convolutional Neural Network
(CNN) algorithms for efficiently classifying waste items into
six specific recycling categories. They adopted a modified
architecture inspired by AlexNet. In their experimentation,
the SVM outperformed the CNN, attaining a 63% accuracy.
In contrast, the CNN only managed to achieve a testing
accuracy of 27%.

Another major contribution in the field of litter detection
was made by Proença and Simões where 1500 images were
captured and labelled into 28 categories and named the TACO
dataset. They used aMask R-CNNmodel to detect waste such
as cigarettes, bottles, and plastic bags [38]. In the same year,
Panwar et al. compared one-stage and two-stage detectors for
detecting marine debris. They experimented with Trashnet
and manually annotated the TACO dataset. One drawback of
the combined dataset was its absence of objects set against
cluttered backgrounds [37].
Bobulski and Kubanek explored plastic waste classifica-

tion using approximately 100k images. They used a conveyor
belt, air jet, processing unit, and a camera in their proposed
system for plastic waste sorting [6]. They achieved 74%
accuracy in detecting plastic waste in 4 different categories.
The dataset lacked a real-world setting and a cluttered
background.
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In 2022, Bashkirova et al. worked on recycling waste
using object detection and instance segmentation. The images
were collected by rotating a conveyor belt and also placing
waste material on it, which was highly cluttered [4]. The
sole drawback of the dataset is its lack of resemblance to
a real-world scenario. This study aligns most closely with
our own research. They used different supervised methods to
detect 20 types of recycling waste from the images. While
their ZeroWaste dataset accurately reflects the cluttered
environment seen in a real-life setting, the controlled lighting
of this environment is less challenging for computer vision
models, which is still a limitation of this dataset. Real-world
applications may not have the means to implement consistent
lighting as used in the ZeroWaste dataset. Occlusions created
by shadows or artifacts such as snow, along with the intensity
of light varying by location, seasons, and the time of the
day, maybe influential factors for real-world scenarios that
may impact performance. The authors provided baseline
results for popular fully, semi-supervised, weakly supervised,
and transfer learning techniques and concluded that existing
SOTA detection and segmentation algorithms are incapable
of handling this complicated real-world setting effectively.

Kumsetty et al. presented a novel approach lever-
aging quantum transfer models for waste classification.
Researchers explored transfer learning techniques by utiliz-
ing pre-trained models on extensive datasets like ImageNet
and COCO [27]. They introduced TrashBox, a comprehen-
sive waste dataset encompassing 17,785 images categorized
into seven classes: cardboard, e-waste, glass, metal, medical
waste, paper, and plastic. However, this dataset lacked real-
world representation. Using a fine-tuned ResNet-101 model
resulted in an impressive accuracy of 98.47%.

Majchrowska et al. used a novel two-stage detection
methodology to detect household litter [33]. In stage 1, they
detected litter with an object detector. The detected region
is then cropped and used for the classification. The dataset
encompasses seven categories of waste: biodegradable, glass,
metals, plastics, non-recyclable, paper, and miscellaneous
items (construction and demolition debris, largewaste such as
tires, electronics, and appliances, batteries, paint, and varnish
containers, or expired medication), as well as unidentified
litter that is highly decomposed or difficult to distinguish.
They achieved 75% accuracy in classifying waste, which was
mainly found in the surrounding area of the household.

A. YOLO IN WASTE DETECTION
Fulton et al. investigated detecting debris (different plastic
materials) in marine environments [14]. The images captured
for the dataset were resembling the real-world setting of the
underwater environment but without cluttered backgrounds.
The project employed four network architectures chosen from
widely recognized and effective object detection networks.
These architectures encompassed YOLOv2, Tiny-YOLO,
SSD with MobileNet v2, and Faster RCNN with Inception
v2. Another similar work was undertaken by Hong et al.

where they used object detection and segmentation on their
Trashcan dataset which they created using 7,212 images [22].
The dataset included observations of waste, as well as a
diverse range of underwater plants and animals captured by
remotely operated vehicles (ROVs). The authors employed
Faster R-CNN with a ResNeXt-101-FPN backbone, as well
as Mask R-CNN with an X-101-FPN backbone.

In a recent research study on waste detection, Mao et al.
employed the YOLOv3 algorithm to identify six distinct
waste categories: plastic containers, bottles, metals, cartons,
paper containers, and glass. Their YOLOv3 model achieved
mAP@0.5 (mean average precision) [23] of 92.12%, based
on 3591 training images. Although the model achieved a
high mean average precision score, its performance may not
generalize well to real-world scenarios due to the limited
scope of its training data. The dataset used for training did
not include images with cluttered backgrounds or real-world
settings [34].

In the year 2023, Demetriou et al. utilized single-stage
and two-stage detection models for real-time object detection
tasks on the Construction and Demolition Waste (CDW)
dataset, which contains 6600 images with three categories:
brick, concrete, and tile [12]. Their assembly consisted of
an industrial camera overlooking the materials on a conveyor
belt and robotic manipulators for sorting waste material. They
used models such as Faster-RCNN, SSD and YOLO with
different backbones to detect the materials, with YOLOv7
achieving the highest mAP of 71.7%.

In the recent work Sarswat et al., the authors of
the paper investigated the performance of YOLOv5 and
YOLOv7 models for e-waste component detection using a
dataset comprising images of various e-waste classes such
as copper, PCB, steel, glass, and aluminum [43]. Their
study tested multiple models under different conditions,
focusing on variations in batch size, epochs, and input
image size. YOLOv7 showed optimal performance with
a prediction accuracy of approximately 94%, achieving
high F1 scores of 1.0 for copper, PCB, and plastic and
mAP values exceeding 0.96 for these classes. In contrast,
YOLOv5 demonstrated the highest precision of 0.98 for
PCB but generally performed less effectively compared to
YOLOv7. The research highlighted the superior detection
capabilities of YOLOv7 for complex e-waste classification
tasks.

The paper [36] explores the application of deep learning
techniques to enhance the efficiency of waste sorting
processes. The authors introduce theWaRP (Waste Recycling
Plant) dataset, which includes 28 categories of recyclable
waste, for training various models. The dataset contains
2452 training images and 522 test images. The authors
highlight the challenges posed by class imbalance in the
dataset. For classification tasks, models such as CNN,
LeNet-5, AlexNet, VGG16, MobileNet-v2, Inception-v3,
and DenseNet are employed to categorize waste items. For
detection tasks, the YOLOv8 model is used to identify waste
in complex and cluttered scenes.
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TABLE 1. Comparison of the related work: • Real-world setting: The data was collected in a real-world setting. –✓ Data collected from real-world
settings, in natural, non-simulated form, surrounding was not controlled by any means –X Simplified data • Densely Cluttered Environment: This implies
the data was collected in a densely cluttered scene, this may be multiple instances of the same object (e.g., multiple glass bottles) or multiple instances
of different objects with significant overlapping or occlusion apparent. –✓ Densely cluttered data collected –X Non-cluttered/plain background scenes.

III. METHODOLOGY
The purpose of the study is to apply and assess various state-
of-the-art computer vision models for automatically detect-
ing contamination in recyclable waste within real-world,

cluttered environments. By leveraging models like Faster-
RCNN, Cascade-RCNN, Retinanet, YOLOv8, and Mask-
RCNN and using a unique, annotated dataset (Contamination
Dataset) reflective of actual waste collection scenarios, our
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study seeks to improve the efficiency and accuracy of
contamination detection. The study particularly emphasizes
the use of transfer learning, demonstrating its advantage over
models trained from scratch.

In this section, we discuss the various methods employed
in our study, providing an overview of the state-of-the-art
(SOTA) computer vision models used with their respective
backbones. We further discuss various techniques used for
model training, such as transfer learning and training from
scratch.

A. OVERVIEW OF SOTA MODELS USED
1) FASTER R-CNN
Faster R-CNN [42], introduced in 2015, is a state-of-the-art
two-stage object detection framework which is an improve-
ment over earlier algorithms (R-CNN [17], SPPNet [18],
and Fast R-CNN [16]) that relied on the slow selective
search method to identify region proposals. Faster R-CNN
introduces a Region Proposal Network (RPN) to generate
region proposals directly from the image features calculated
by the CNN during the classification step. The RPN uses a
3×3 sliding window across CNN feature maps to generate
multiple region proposals with various shapes and sizes.
These proposals are passed to the RoI pooling layer, which
extracts fixed-size feature maps for each proposal. These
feature maps are then classified, and the bounding boxes are
predicted.

2) MASK R-CNN
Mask R-CNN [20] extends Faster R-CNN to address instance
segmentation, combining object detection and semantic
segmentation. Unlike Faster R-CNN, which outputs class
labels and bounding box offsets, Mask R-CNN adds an object
detection mask for each proposal. It uses the RoIAlign layer
to precisely map features to input positions, addressing mis-
alignment issues in RoI pooling. Mask R-CNN has achieved
state-of-the-art performance in instance segmentation.

3) CASCADE R-CNN
Cascade R-CNN [9] is an object detection framework
that improves performance by tackling overfitting and
inference-timemismatches at higher Intersections over Union
(IoU) thresholds. It uses a multi-stage approach, where each
detector in the sequence is trained with progressively higher
IoU thresholds, increasing selectivity against close false
positives. This sequential training, where each stage uses the
output of the previous stage, ensures a sufficient number of
positive samples and reduces overfitting. During inference,
the same cascade structure is used, aligning hypotheses
closely with the detector quality at each stage, resulting in
better detection performance.

4) RETINANET
RetinaNet [31] is a single-stage object detector similar to
SSD [32] and YOLO [41], but it achieves performance

comparable to two-stage detectors like Faster R-CNN.
It introduces a novel focal loss function that addresses class
imbalance during training by down-weighting well-classified
examples, thus focusing on harder examples. RetinaNet
consisted of a Feature Pyramid Network backbone, based
on ResNet50 or ResNet101, and two task-specific sub-
networks for classification and bounding box regression. The
classification subnetwork uses a series of convolutional layers
and applies focal loss, while the regression subnetwork has a
similar structure without shared parameters.

5) YOLO
YOLO (You Only Look Once), is a series of real-time single-
stage object detection models that have evolved significantly
since its inception. YOLOv1, released in 2015, [41] treats
object detection as a regression problem, predicting class
probabilities and bounding boxes from entire images in a
single evaluation. This approach integrates the detection
pipeline into a single neural network, allowing for end-
to-end optimization directly on detection performance. The
network utilizes features from the entire image to predict
bounding boxes and their associated classes simultaneously,
enabling it to consider the global context of the image
and all contained objects for more accurate predictions.
YOLOv2 [39], introduced in 2017 as YOLO9000, brought
major improvements with batch normalization, fine-tuning
using larger images, and the use of anchor boxes, achieving
better recall and mAP through k-means clustering. YOLOv3
[40] further enhanced the model by implementing a logistic
classifier for multi-label classification, predicting objects at
three scales, and employing a more complex loss function,
resulting in robust detection performance. YOLOv4 [7]
utilizes techniques such as Spatial Pyramid Processing (SPP)
to extract features from the image at different resolutions
& scales and Cross Stage Partial connection (CSP) is
used to improve the model’s accuracy. YOLOv5 [24],
released in 2020, focuses on balancing inference speed and
accuracy, offering various model sizes and incorporating
CSPDarknet, PANet, and advanced training techniques.
YOLOv6 [29] distinguishes itself from previous versions by
employing a more lightweight and efficient neural network
architecture based on the EfficientNet-Lite family, enabling
faster performance with fewer computational resources.
It also enhances robustness and generalization through
data augmentation techniques such as rotation, scaling, and
flipping to input images during training. YOLOv7 [47],
one of the recent iterations, surpasses previous versions and
other models in speed and accuracy, utilizing architectural
innovations and compound scaling without relying on pre-
trained backbones. YOLOv8 [25] is a state-of-the-art model
that substantially improves object detection, classification,
and segmentation tasks. YOLOv8 introduces several key
enhancements, including an anchor-free detection system,
improved convolutional blocks, and mosaic augmentation
techniques applied during training. Additionally, the model
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incorporates a new C2f (Coordinates-To-Features) module
in its backbone to transform coordinate information into
feature representations efficiently, a decoupled head to
independently handle classification and regression tasks, and
a refined loss function with task alignment scores. We have
used the latest YOLOv8 model in our work. YOLOv8
offers several variants tailored for different applications and
computational requirements, such as YOLOv8-n (Nano),
YOLOv8-s (Small), YOLOv8-m (Medium), YOLOv8-l
(Large), YOLOv8-x (Extra Large). YOLOv9, launched in
February 2024 [48], incorporates the Programmable Gradient
Information (PGI) framework and the Generalized Efficient
Layer Aggregation Network (GELAN). These enhancements
resolve information bottlenecks in deep neural networks,
improve accuracy for lightweight architectures, and enhance
object detection performance, making the model efficient and
versatile for various devices, including those with limited
resources [3]. Released in the same year, YOLOv10 [45]
advances real-time object detection for uses like agricultural
monitoring and autonomous driving by eliminating the
need for non-maximum suppression (NMS) during post-
processing, thus enhancing inference speed. Its architectural
improvements reduce computational demands, and extensive
testing shows it improves latency and model size while
maintaining high detection accuracy, especially on the
COCO dataset. We have opted to use the YOLOv8 model
because YOLOv9 and YOLOv10 are still in the early
stages of widespread adoption and achieving implementation
stability.

B. OVERVIEW OF BACKBONES USED
Resnet: Introduced by [19] in 2015, the key innovation of
ResNet (Residual Network) is the use of residual connections,
which are shortcut paths that skip one or more layers. These
connections address the vanishing gradient problem, making
it possible to train networks with hundreds or even thousands
of layers. It is possible to construct complex neural network
models due to Resnet’s effective feature extraction and
enhanced gradient flow during training. ResNet backbones,
including ResNet-50, ResNet-101, and ResNet-152, are
extensively used in computer vision applications such as
image classification, object detection, and segmentation.
In this paper, we have utilized the ResNet backbone
containing 101 layers for the models Faster R-CNN, Cascade
R-CNN, Mask R-CNN, and Retinanet.

1) CSPDARKNET
CSPDarknet is a variant of the Darknet architecture, used
as the backbone for YOLOv4 [7]. It builds on DarkNet-
53 and employs a Cross-Stage Partial Network (CSPNet)
[46] strategy to split the feature map of the base layer into
two parts, which are then merged through a cross-stage
hierarchy. This split and merge approach enhances gradient
flow throughout the network. In this paper, we have used
YOLOv8, which uses a custom CSPDarknet53 backbone.

C. VARIOUS TECHNIQUES EMPLOYED FOR MODEL
TRAINING
1) TRAINING FROM SCRATCH
Training from scratch involves initializing the weights of
a neural network randomly and then training the network
on the target task from the beginning. This process can be
time-consuming and requires a large amount of labeled data
to achieve high performance because the models need to
learn all the features from the new data without any prior
knowledge [44].

2) TRANSFER LEARNING
Transfer learning, in contrast, involves using ‘‘knowledge
gained’’ while solving one problem and applying it to
a different but related problem. The goal is to utilize a
pre-trained model for a new task. This method begins with
a pre-initialized weight matrix obtained from training on a
source task, which helps the model to learn more efficiently
when applied to a new target task [44]. Using transfer
learning, pre-trained networks can be applied to smaller
datasets by simply fine-tuning the final fully connected layers
of the CNN [21].

IV. EXPERIMENTAL SETUP
In this section, we provide an overview of our experimental
setup. In the Contamination Dataset section, we detail
the positioning of the camera & its calibration, dataset
distribution, and the distinctive real-world characteristics
of our dataset. In the ‘‘Training Configuration’’ section,
we outline the system specifications, the rationale for model
selection, the implementation & training processes, and
various hyper-parameters applied during training.

A. CONTAMINATION DATASET
This study relied on proprietary data (Contamination dataset)
collected from a camera fitted with a 1/2.9-inch 2-megapixel
CMOS color image sensor, capturing frames at a rate of
ten frames per second and with an electronic shutter speed
of 1/30s. The sensor was able to operate in a range of
temperatures, from -20◦C to 70◦C .
Fig. 2 shows the position of the camera inside the truck,

while Fig. 3 illustrates the front view of the camera. Video
records were compiled from collection drives spanning
various regions in the US and EU. Contamination-containing
frames were carefully chosen from the video and labeled
for use in developing the models. All the images were at
a resolution of 704 × 480 pixels with no post-processing
and modifications. Fig. 1 illustrates a typical instance of an
annotated image sourced from the Contamination dataset.

The number of images and object classes in each dataset
is summarized in Table 2. Table 3 presents a quantitative
breakdown of the proportion of Small, Medium, and Large
in each class for the training, validation, and testing datasets.
COCO’s standard definitions of object size [23] are used for
this categorization.
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FIGURE 1. Annotation example for the contamination dataset.

FIGURE 2. Position of the camera inside the garbage truck.

White plastic and black plastic are the classes that contain
the major instances found in the dataset, with 7,579 and 1,916
instances, respectively. A train/test/val split of 55.7% (1999
images) / 14.6% (522 images) / 29.8% (1068 images) is used.

TABLE 2. Dataset distribution.

The uniqueness of the Contamination dataset is charac-
terized by its real-world attributes. Since the images are
sourced from both commercial and residential settings, the
training data accurately represents the operational conditions
necessary for a robust computer vision system designed

FIGURE 3. A frontal perspective of the camera positioned within the
truck.

to detect contamination. The dataset’s real-world setting
introduces several challenges, such as a cluttered background,
diverse object distances, and fluctuating lighting and weather
conditions. These variations can impact the distribution of
pixels and potentially hinder a model’s performance. The
interplay of these factors poses a significant hurdle for
computer vision applications.

B. TRAINING CONFIGURATION
We employed the MMdetection toolkit (version 2.28.2) [10]
as well as MMYOLO toolkit (version 0.6.0) [11] in conjunc-
tion with CUDA 11.8 [35] to train a comprehensive range
of cutting-edge object detection and instance segmentation
models. Weights & Biases (WandB) [5] tool is used to track
the model results and real-time performance of the models.
The experiments were executed on a specialized workstation
powered by four NVIDIA A100-SXM4-40GB GPUs.
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FIGURE 4. Example Images from the Contamination Datasets.

TABLE 3. Breakdown of the dataset.

The experiments utilized MMdetection toolkit for training
Faster-RCNN [42], RetinaNet [31], Cascade-RCNN [9] and
MMYOLO toolkit for training YOLOv8-x [25] for object
detection task, while Mask-RCNN [20] was employed for
instance segmentation.

Models were first trained on the COCO dataset [30], and
the model weights were used for transfer learning on the
Contamination dataset. Faster-RCNN, RetinaNet, Cascade-
RCNN, and Mask-RCNN were trained with ResNet-101
backbone [19] while YOLOv8-x was trained with the
backbone CSPDarknet [7].
In our study, we selected the models Faster R-CNN,

Cascade R-CNN, RetinaNet, Mask R-CNN, and YOLOv8-
X. These models were chosen for their similarity in the
number of parameters, which ensures a more equitable
comparison of their performance metrics. The table 4 shows

the number of parameters used by different models used in
the experimentation.

TABLE 4. Number of parameters comparison.

For models Faster-RCNN, RetinaNet, Cascade-RCNN,
andMask-RCNN, imageswere processed in batches of 2. The
training process employed the following parameters for the
models:

• Number of epochs: 24
• Optimizer: Stochastic Gradient Descent (SGD)
• Learning rate: 0.02
• Momentum: 0.9
• Weight decay: 0.0001
Furthermore, for these models, a learning rate scheduler

was incorporated, leading to a 10-fold reduction in the
learning rate at epochs 16 and 22.

For the YOLOv8-xmodel, following parameters were used
in MMYOLO toolkit:

• Number of epochs: 500 with early stopping
• Batch size: 16
• Optimizer: SGD
• Learning rate: 0.005
• Momentum: 0.9
• Weight decay: 0.0005
For comparison, we trained models on the Contamination

dataset with and without using COCO for pre-trained
weights, as shown in the Tables 7, 8, 9, and 10.

V. RESULTS
A test set containing 1,068 images was used for inference.
For our experiments, we have primarily focused on COCO’s
main evaluation metric, mAP0.50:0.05:0.95 [23].
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TABLE 5. Object Detection Results on COCO dataset (From Scratch).

TABLE 6. Instance Segmentation Results on COCO dataset (From Scratch).

TABLE 7. Object Detection Results on Contamination dataset (Transfer
Learning).

TABLE 8. Instance Segmentation Results on Contamination dataset
(Transfer Learning).

TABLE 9. Object Detection Results on Contamination dataset (From
Scratch).

A. STATE-OF-THE-ART RESULTS
Detection models were first trained from scratch on the
COCO dataset so that the respective trained model weights
could be used for transfer learning on the Contamination
dataset. Tables 5 and 6 show the object detection and instance
segmentation results for the models trained on the COCO
dataset.

Further, in tables 7 and 8, results for the models trained
using transfer learning are shown. In this case, the model
weights trained on the COCO dataset are utilized for transfer
learning on the Contamination dataset.

In tables 9 and 10, results for the models trained on the
Contamination dataset with randomly initialized weights are
shown.

B. EXPLORATORY ANALYSIS OF INFERENCE RESULTS
Transfer learning shows an improvement in mAP compared
to the model trained from scratch on the Contamination

TABLE 10. Instance Segmentation Results on Contamination dataset
(From Scratch).

TABLE 11. Overall mAP increase using transfer learning.

FIGURE 5. Normalized Confusion Matrix (Model: YOLOv8-x using transfer
learning).

dataset. Table 11 shows the overall mAP difference after
applying transfer learning compared to the models trained
with randomly initialized weights.

By examining the model’s predictions for a sample of
images from the Contamination dataset (Fig. 6), we can gain
valuable insights into its performance. By analyzing both its
successes and failures, we can better understand its strengths
and weaknesses. For a more comprehensive assessment,
we can also review the confusion matrix for the entire test
dataset (Fig. 5). To account for false positives and false
negatives associated with the targeted classes, MMDetection
utilizes an additional background category in its confusion
matrix. MMDetection’s confusion matrix includes a separate
class for background objects to track false positives and
negatives related to the classes of interest. The confusion
matrix calculation does not account for accurately identifying
the background class, as it is not considered one of the classes
of interest.

From the confusion matrix in Fig. 5, we observe that the
model performs best with Black Plastic (71%), White Plastic
(65%), and Polystyrene (62%), although some misclassifica-
tion into Background still occurs. Clear Plastic (13%) and
Blue Bag (40%) show significant misclassification with other
categories, particularly Background andWhite Plastic, due to
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FIGURE 6. Inference results on the Contamination test dataset (model: Retinanet). In examples (a), (b) there are correct identification even when the
objects were in different environments with varying backgrounds and lighting conditions. In examples (c), (d) there are incorrect predictions of the blue
bag as black plastic. In example (e) there is multiple detection of polystyrene. In example (f) there is missing detection for the blue bag.

similar visual features, resulting in lower accuracy for these
classes.

VI. DISCUSSION
The proprietary Contamination dataset has allowed explo-
ration of the feasibility of recycling waste contamination
detection at the source. Since the data were gathered from
a real-world commercial and domestic collection route, they
accurately represent the necessary real-world conditions for
detecting contaminants from recyclable materials, as the
images represent a variety of light and weather conditions
and a densely cluttered background. The transfer learning
score displayed in Tables 7 and 8 outperforms the model
trained from scratch (Tables 9 and 10) in terms of mAP.
While the acceptable tolerance rate may vary depending on
the specific use case, these results demonstrate the potential
for integrating computer vision as a contamination detection
tool.

Table 11 shows a trend of better performance for each
model trained using COCO pre-trained weights. The transfer
learning yields better results than the models trained from
scratch on the Contamination dataset. This demonstrates the
effectiveness of pre-training with the COCO dataset for this
application, which only has 1999 images in the training
dataset. The YOLOv8-x model outperformed other models
with 0.463 mAP. The mAP score for the YOLOv8-x model
increased from 0.395 to 0.463, whereas Retinanet had the
highest increase in mAP when using pre-training with COCO
versus training from scratch.

The dataset has some deficiencies that can be addressed
by collecting more data in the future. For instance, there are
fewer instances of small area objects present in the dataset
(Table 2), which is likely the reason why the mAP for large
and medium area bounding boxes is higher compared to the
smaller area ones. Increasing small-area objects can yield
better overall mAP results. The Contamination dataset has
more instances of white plastic and black plastic compared
to the other categories - clear plastic, polystyrene, and blue
bag (Table 2). Annotating more examples of object classes
with fewer instances will improve the robustness of the model
and, in turn, increase the mAP of the model. Augmentation
strategies like copy-paste [15] could also be applied to the
dataset to improve class imbalance problems. Despite some
limitations associated with the dataset, it also offers several
advantages. The primary benefit lies in the fact that the
images were captured in a realistic setting, replicating the
cluttered backgrounds and varying lighting conditions com-
monly encountered in actual real-world system deployments.

While there are advantages to adopting an autonomous
system for detecting contamination at collection, there are
some drawbacks to developing such a system. As can be seen
in the Fig. 6, in some scenarios, the model detects incorrect
objects, multiple objects and misses desired objects due to
the highly cluttered background in the dataset. There is an
initial expense involved in implementing the computer vision
application. As mentioned, the recycling collection truck
would need to have a camera attached to it. Furthermore,
images would need to be gathered, stored, and annotated,
which requires time and associated human annotation costs
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need to be taken into account. Utilizing a high-quality camera
to capture images with increased detail and clarity could
improve the mAP score. The model’s performance has been
assessed within the confines of commercial and domestic
collection routes. Its applicability to other collection routes
and environments remains uncertain.

VII. CONCLUSION
In this paper, we have created and utilized the unique
Contamination dataset to examine the mAP performance of
state-of-the-art algorithms (Faster-RCNN, Cascade-RCNN,
Retinanet, and Mask-RCNN with ResNet-101 backbone
as well as YOLOv8-x) for object detection and instance
segmentation in the context of detecting contamination from
recycling waste in commercial waste collection settings. The
dataset was generated from video recordings captured during
collection routes and was annotated for both object detection
and instance segmentation tasks. This work demonstrates
the effectiveness of modern computer vision techniques to
provide an automated solution to contamination detection
at the source. The results showed that employing transfer
learning is an effective approach for identifying contamina-
tion from recyclable waste in highly cluttered environments,
with 0.463 mAP achieved using the YOLOv8-x model with
the CSPDarknet backbone. To the best of the authors’
knowledge, there are no other viable and autonomous
solutions for detecting contamination in real-world settings
with dense clutter, as shown in Table 1.

A. NOVELTY
The novelty of the Contamination dataset is underscored
by its real-world, in-the-wild characteristics, which distin-
guishes it from more controlled datasets. It contains data that
closely mirrors the operational environments crucial for a
computer vision system aimed at detecting contamination in
waste materials. The dataset stands out due to the inherent
challenges it presents, such as highly overlapping objects,
varying object distances, and fluctuating lighting and weather
conditions. These real-world variables can alter pixel value
distributions, potentially degrading model performance, and
collectively create a highly complex challenge for developing
effective computer vision methods.

Our work significantly advances the application of com-
puter vision in the waste and recycling sector by addressing
the unique challenges of real-world data. Unlike previous
studies [43] that primarily utilized controlled datasets,
our dataset encompasses a diverse range of environmental
conditions, varying object distances, and high object over-
lap. Similarly, [36] focused on detecting waste materials
where the dataset was unbalanced and was tailored to the
conditions of recycling plant conveyor belts, limiting the
generalizability of their models. By incorporating images
from both commercial and residential collection routes, our
dataset provides a more comprehensive representation of
operational environments. This allows us to train models that
are better equipped to handle the complexities of real-world

contamination detection. Although direct comparison of
mean Average Precision (mAP) values is not feasible due to
the differing nature of datasets, our approach demonstrates
the potential for improved robustness and adaptability
in practical applications, thereby contributing a valuable
perspective to the existing body of knowledge in the field.

B. FUTURE WORK
For future work, the dataset can be improved: object classes
with fewer instances can be annotated to tackle the problem of
class imbalance, and increasing the number of labeled images
will improve the performance and robustness of the model.
Moreover, higher-resolution images could yield better results
in detecting smaller objects. Further data augmentation
strategies can be applied to overcome the problem of small
and medium-sized objects not being detected.

The automation of contamination detection offers sub-
stantial advantages to the waste recycling industry. Firstly,
it can enhance workplace safety by minimizing potential
employee exposure to hazardous waste by reducing manual
handling and inspecting the contamination in recycling
waste material. It can also be used to identify individuals
contaminating waste at the source, allowing intervention to
change customer behavior. This can, in turn, reduce the
amount of contaminated recyclable waste that has to be
disposed of in landfills rather than recycled. Ultimately,
automating contamination detection will lead to cost savings
in the overall waste recycling process.
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