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ABSTRACT This paper presents a modified bonobo optimizer (MBO) that integrates the Gaussian
local mutation, restart strategy, and random contraction strategy into the original bonobo optimizer
(BO). BO, inspired by the unique reproductive schemes and fission-fusion social behaviors of bonobos,
has previously demonstrated promising results in solving a range of optimization problems. With the
new modifications, MBO seeks to improve exploration and exploitation abilities, achieving enhanced
convergence speed and solution quality. The Gaussian local mutation aids in fine-tuning solutions by
introducing localized variations, the restart strategy provides a mechanism to escape potential local optima,
while the random contraction strategy ensures better global search capabilities. The enhanced MBO’s
performance is critically assessed on the 10 and 100-dimensional CEC 2017 and 10 and 20-dimensional
CEC 2022 benchmark suites, along with seven engineering optimization problems, including cantilever
beam design, industrial refrigeration system design, welded beam design, speed reducer design, pressure
vessel design, multi-product batch plant design, and three-bar truss design. The MBO algorithm exhibits
significant improvements in optimization performance, evidenced by highly significant p-values (as low
as 1.25E-11) in the Wilcoxon’s Signed Rank Test. Preliminary results indicate that the MBO exhibits a
marked improvement in both solution accuracy and robustness over its predecessor and other state-of-the-
art optimization algorithms such as original bonobo optimizer, sand cat swarm optimization, Chernobyl
disaster optimizer, driving training-based optimization, Harris hawk optimizer, Archimedes optimization
algorithm, smell agent optimizer, grasshopper optimization algorithm, particle swarm optimization, hybrid
sine cosine algorithmwith differential evolution, modified capuchin search algorithm, liver cancer algorithm,
and modified chameleon swarm algorithm. The algorithm’s robust performance can be attributed to its
accelerated convergence rate, stability across diverse functions, good exploration-exploitation behavior, and
adaptability to high-dimensional and complex solution spaces. The systematic enhancement of proposed
algorithm’s convergence capabilities positions it as a reliable and efficient tool for addressing challenging
engineering optimization problems.
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I. INTRODUCTION
A. BACKGROUND
Optimization-oriented challenges are pervasive in both our
daily activities and professional endeavors. The pursuit of
effective and efficient approaches to address such optimiza-
tion issues has emerged as a crucial focus of research [1].
Optimization involves the identification of the optimal or a
satisfactory approximate solution from a myriad of possi-
bilities, given specific conditions for a given problem [2].
As cutting-edge technologies advance, the prevalence and
complexity of optimization problems are growing across
diverse engineering domains. These encompass fields such
as image processing [3], renewable energy [4], artificial
intelligence [5], hydrologic and hydraulic modeling [6],
production scheduling [7], controller design [8], filter design
for system identification [9], aerospace [10], biomedicine
and biomedical applications [11], production design [12],
vehicle routing [13], vehicle cruise control [14], feature
selection [15], mechanical engineering [16], power system
engineering [17], fault diagnosis [18], among others. The
application of optimization yields substantial enhancements
in problem-solving efficiency, reduction of computational
burden, and cost savings.

B. RELATED WORKS
Optimization methods can broadly be categorized into math-
ematical methods and metaheuristic methods. Mathematical
methods involve the iterative pursuit of an optimal solution
based on a predefined mathematical model and initial condi-
tions. Various mathematical techniques, such as the Nelder-
Mead algorithm [19], gradient descent method [20], Hooke
and Jeeve algorithm [20], Lagrange multiplier method [21]
and Newton’s method [22], fall under this category. While
these methods are effective for simple problems with low-
dimensional solution spaces, practical applications often
involve large-scale, nonlinear, and multimodal complex
optimization challenges [23]. Mathematical methods rely on
gradient information and are sensitive to initial points [24],
making them less suitable for addressing complex issues
where finding the optimal solution is challenging and local
optima are easily encountered. Consequently, mathematical
methods face significant limitations in dealing with intricate
optimization problems.

Metaheuristic methods constitute an algorithmic frame-
work that transcends specific problems, drawing inspiration
from natural phenomena, biological behaviors, or mathemati-
cal principles [25], [26], [27], [28], [29]. Serving as an advan-
tageous alternative to mathematical methods, metaheuristic
approaches possess qualities such as randomness, straight-
forward implementation, and a black-box perspective, com-
pensating for the limitations associated with mathematical
algorithms. Recently, these methods have gained substantial

attention in scholarly works and are frequently utilized to
address diverse and intricate engineering challenges.

Within existing literature, three primary methodologies
guide the development of metaheuristic algorithms: the
creation of novel algorithms, the amalgamation of existing
algorithms, and the formulation of hyper heuristics. The
processes of introducing new optimization algorithms and
synthesizing pre-existing ones are not conflicting; instead,
they are mutually beneficial. On one hand, newly devised
optimization algorithms serve to address the deficiencies of
existing algorithms in specific domains or particular problem
instances, offering improved solutions for intricate real-
world problems. Many emerging optimization algorithms
incorporate strategies or operators with unique search
characteristics, presenting a diverse avenue for enhancing
the optimization performance of established algorithms. For
instance, cuckoo search [30], a relatively recent algorithm,
introduced a Levy flight strategy renowned for its effective
exploration characteristics. This strategy has been widely
integrated into various existing algorithms to enhance their
ability to navigate away from local optima [31]. Additionally,
numerous new algorithms are fused with established ones
to craft hybrid algorithms, capitalizing on the strengths of
each constituent algorithm to bolster overall optimization
performance.

C. MOTIVATION
As technology advances rapidly and new application require-
ments emerge, optimization algorithms are increasingly
finding application in novel domains such as smart cities [32],
smart water management [33], unmanned driving [34],
and the internet of things [35]. Concurrently, the rise
of key technologies like parallel computing and adaptive
computing is enhancing the efficiency and precision of
various algorithms, broadening the scope of application
for optimization algorithms. Despite this expansion, the
utilization of optimization algorithms in diverse fields
poses continual challenges and complexities. Many mod-
ern engineering problems, characterized by non-separable,
nonconvex, and extensive search spaces, present difficulties
leading to performance degradation or low convergence for
most optimizers [36]. Hence, there is a crucial need to
persist in exploring and researching algorithms that enhance
these applications, seeking effective optimization technology
through practical experimentation.

While numerous optimization algorithms already exist, the
imperative of developing new optimizers persists. The no free
lunch (NFL) theory [37] posits that no single optimizer can
universally excel in solving every optimization problem. This
is attributed to three primary reasons. Firstly, the inherent
stochastic nature of metaheuristic algorithms can lead to
disparities between the discovered optimal solution and the
true solution for a given problem, particularly when the
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solutions are unknown. Consequently, it is challenging to
ascertain the optimality of existing algorithms, necessitating
the development of new and more efficient optimization
algorithms to better tackle such issues and enhance solution
accuracy and algorithm efficiency. Secondly, many prac-
tical problems exhibit unique characteristics aligned with
the search behaviors of specific optimization algorithms,
stemming from the inspiration behind their development [38].
While an algorithm may excel in addressing a particular
problem due to its tailored search behavior, it may lack
robustness when applied to dissimilar problems. Moreover,
a new optimization algorithm can introduce distinctive values
that complement and extend beyond the capabilities of
existing ones. Additionally, the development of a new opti-
mization algorithm presents an opportunity for knowledge
sharing and contributes to addressing real-world challenges.
Typically, a novel optimization algorithm incorporates spe-
cific strategies or operators that can seamlessly enhance
the performance of existing methods [39]. Consequently,
the continuous need for new optimization algorithms lies
in their ability to explore diverse search strategies for
specific problems, providing valuable contributions to the
optimization community. These considerations constitute the
primary motivation behind the current study.

D. NOVELTY AND CONTRIBUTIONS
In light of the above discussion, this paper aims to
develop a new metaheuristic algorithm by improving the
performance of an existing one. In that sense, one of the
recently reported metaheuristic approach named bonobo
optimizer [40] is adopted. This optimizer emulates the social
behavior and reproductive strategies of bonobos to solve
optimization problems. A modified version of the bonobo
optimizer is proposed in this work which is prompted by the
realization that there are areas of potential improvement in
the original algorithm’s performance. The proposed version
incorporates four pivotal enhancements: a new exploration
mechanism, Gaussian local mutation, restart strategy, and
random contraction strategy. The exploration mechanism of
the snow ablation optimizer [41] is specifically chosen to
replace the exploration phase of the bonobo optimizer. This
is performed by considering the prowess of the snow ablation
optimizer’s exploration approach that adeptly harnesses
Brownian motion. The Gaussian mutation method ensures
a delicate equilibrium between exploration and exploitation
which decreases the risk of stagnation. The restart strategy is
used to detect a potential entrapment in a local optimum and
repositioning it by initiating from a new, randomly chosen
point in the solution landscape. The random contraction
strategy is used to shrink the search space around promising
regions, thus, directing the algorithm’s resources towards
more probable solution areas and makes the search process
more efficient.

In the realm of optimization algorithms, the contin-
uous pursuit of innovative methods to address complex

engineering challenges remains an ever-present goal. In this
context, the proposed modified version of bonobo optimizer
emerges as a promising contender. This study, therefore,
delves into its practical efficacy through a comprehensive
evaluation against benchmark functions and real-world engi-
neering optimization problems. Benchmarking algorithms
against established standards provides a rigorous foundation
for assessing their performance. Our investigation begins
with an in-depth analysis of the proposed algorithm’s capabil-
ities, benchmarking it against a diverse set of nature-inspired
algorithms renowned for their versatility and widespread
use. The evaluation includes prominent algorithms such as
the original bonobo optimizer (BO) [40], sand cat swarm
optimization [42], Chernobyl disaster optimizer [43], driving
training-based optimization [44], Harris hawk optimizer [45],
Archimedes optimization algorithm [46], smell agent opti-
mizer [47], grasshopper optimization algorithm [48], particle
swarm optimization [49], hybrid sine cosine algorithm
with differential evolution [50], modified capuchin search
algorithm [51], liver cancer algorithm [52], and modified
chameleon swarm algorithm [53].
The benchmarking process involves extensive experi-

mentation on the CEC 2017 and CEC 2022 test suites,
collection of optimization problems showcasing unimodal,
multimodal, hybrid, and composite functions. The results
garnered from the benchmarking phase underscore the
proposed algorithm’s notable performance across a spec-
trum of optimization landscapes. Particularly, it exhibits
remarkable efficiency in converging to optimal solutions
for unimodal functions, showcasing its competence in
navigating singular global optima. In the realm of multimodal
functions, characterized by multiple local and global optima,
MBO consistently outperforms its counterparts, demon-
strating robustness in dealing with diverse optimization
landscapes.

Building upon the benchmarking foundation, the study
advances to address seven real-world engineering opti-
mization problems. These challenges span cantilever beam
design, industrial refrigeration system design, welded beam
design, speed reducer design, pressure vessel design, multi-
product batch plant design, and three-bar truss design.
The meticulous evaluation involves comparing the proposed
algorithm against various optimization algorithms, consider-
ing metrics such as the minimum objective function value,
standard deviation, and rank. The standout performance
of the proposed algorithm in these engineering problems
is a testament to its adaptability and reliability in han-
dling intricate real-world scenarios. For instance, in the
cantilever beam design problem, where the goal is to
minimize the weight of a complex beam structure, the
proposed algorithm consistently outshines its competitors,
exhibiting not only the lowest minimum objective function
value but also a superior convergence rate. Similar trends
are observed in other engineering challenges, such as
industrial refrigeration system design, welded beam design,
and more.
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II. BONOBO OPTIMIZER
A. BACKGROUND
The bonobo optimizer (BO) is an algorithm inspired by
the unique social behavior and reproductive strategies
exhibited by bonobos (scientific name: Pan paniscus), part
of the Homininae subfamily, to which humans also belong.
This common ancestry makes bonobos the closest living
relatives to humans, sharing over 98% of their genetic
profile [54]. Discovered initially in 1929 at the Belgian
colonial museum [55], these creatures have continued to
spark intrigue due to their marked similarity to humans.
The divergence in the line of human ancestry and that of
the bonobo happened approximately eight million years ago,
with a later split between the common chimpanzee and
bonobo lineages. Bonobos and chimpanzees form fission-
fusion groups, characterized by a large community that splits
into smaller societies or subgroups, varying in size and male-
female ratio. These subgroups separate and then periodically
reassemble based on various activities [55]. These communi-
ties display a clear linear dominance hierarchy among both
male and female bonobos, determined by the individual’s
inclusive fitness values. A crucial differentiation between
bonobo and common chimpanzee societies lies in their power
dynamics: while bonobo societies are predominantly female
dominated, some literature alternately refers to females as
‘‘co-dominant’’ [56], ‘‘almost co-dominant,’’ or’’ of the
same rank as males’’ [57]. The individuals’ rank and
dominance determine their eligibility for access to resources
and participation in reproductive activities.

In these societies, male bonobos typically remain in their
natal community, while females migrate to new communities
during adolescence, striving to establish themselves there.
Four distinct mating strategies have been observed in
bonobo societies: promiscuous mating, restrictive mating,
consortship mating, and extra-group mating. The choice of
a particular mating strategy depends on various factors such
as the availability of food, male support, and the dominance
hierarchy. Thesemating strategies aim tomaximize reproduc-
tive success and maintain genetic diversity.

B. MATHEMATICAL MODEL
The BO emulates the social behavior and reproductive
strategies of bonobos to solve optimization problems [58].
Analogous to other metaheuristic approaches, the BO utilizes
a fixed population size and initializes the population ran-
domly. In the bonobo hierarchy, the alpha bonobo (bonobo)
holds the top rank and is selected as the optimum fitness
value achiever among the population. The alpha bonobo is
therefore considered the current best solution. After this,
BO’s parameters (not user-defined) are initialized with their
respective initial values. It should be noted that all the random
numbers used in this algorithm range from 0 to 1.

1) INITIALIZATION OF NON-USER-DEFINED PARAMETERS
The non-user-defined BO parameters such as probability of
phase (pp), positive phase count (ppc), negative phase count

(npc), probability of extra-group mating (pxgm), change in
phase (cp), temporary sub-group size factor (tsgsfactor),
and directional probability (pd) are initialized as ppc= 0;
npc = 0; cp = 0; pxgm = pxgminitial ; tsgsfactor =

tsgsfactor initial ; pp = 0.5; pd = 0.5. Here, tsgsfactor initial
and pxgminitial represent the initial values of tsgsfactor and
pxgm, respectively. Further details on these parameters are
explored in the following relevant sections.

2) POSITIVE PHASE AND NEGATIVE PHASE
The algorithm considers two phases or states: positive phase
(PP) and negative phase (NP). A PP signifies ideal living
conditions such as adequate food, successful mating, and
protection, leading to the noticeable improvement of fitness
in the best solution (alpha bonobo). Conversely, an NP is
marked by a significant absence of these conditions, with no
observable improvement in the current-best solution. As the
algorithm iterates, each phase is counted via parameters ppc
and npc for PP and NP, respectively. These parameters are
initially set to zero and incrementedwhen their corresponding
phase is active. When one phase count increments, the
other resets to zero. It should be noted that in a bonobo
community, the status of the alpha bonobo can change.
Therefore, a bonobo with higher potential could replace the
current alpha bonobo.

3) BONOBO SELECTION USING FISSION-FUSION SOCIAL
STRATEGY
Depending on the current phase (PP or NP), the algorithm
applies distinct update mechanisms (or mating schemes) to
generate offspring. Another bonobo, chosen based on bono-
bos’ fission-fusion social behavior, participates in mating.
In this behavior, bonobos from a larger community form
smaller, random-sized temporary sub-groups, which later
rejoin the main community. Inspired by this, the mating
bonobo is selected. The maximum size of a temporary sub-
group (tsgsmax) is determined based on the total population
size (N ) and computed as follows:

tsgsmax = max(2, ⌈tsgsfactor × N⌉) (1)

where tsgsfactor is the temporary sub-group size factor.
If (tsgsfactor×N ) results in a non-integer, it is rounded up
to the nearest integer. To generate a new offspring, the
ith bonobo is modified through an exchange of properties
with another bonobo (p-bonobo). A temporary subgroup is
selected randomly from the population excluding the ith

bonobo. From this subgroup, if the fittest bonobo has better
fitness than the ith bonobo, it is selected as the p-bonobo.
However, if the fittest bonobo has lower fitness, a p-bonobo is
randomly chosen from the subgroup. This selection process
is repeated every time a bonobo undergoes modification.

4) CREATION OF NEW BONOBO USING DIFFERENT MATING
STRATEGIES
The methodology for the creation of a new bonobo revolves
around two primary scenarios: positive and negative phases.
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In PP, the bonobo community is flourishing, characterized by
sufficient food re-sources, a safe living environment, an array
of genetic variations, and a high success rate of mating.
During the PP, the probability of implementing promiscuous
and restrictive mating strategies is substantially high. The
promiscuous mating strategy implies that an estrus female
is accessible to both the alpha bonobo and other lower rank
males. On the other hand, the restrictive mating strategy
allows only the alpha and higher-rank bonobos to mate.

The NP represents challenging times in the bonobo
community due to factors like scarcity of food, threat
from predators or intra-species conflict. During the NP, the
instances of consortship and extra-group mating increase.
In consortship mating, a bonobo couple separates from their
group, spends time together, and reenters their group after a
few days or weeks. Extra-group mating refers to the event
where a female bonobo mates with males from other groups.
Despite the higher probability of occurrence, extra-group
mating is relatively less frequent compared to consortship
mating.

These real-world behaviors are translated into a mathemat-
ical model, forming the core of the BO. The BO utilizes a
phase-probability (pp), initially set at 0.5. This value adjusts
at each iteration according to the current phase and phase
count. For a positive phase, pp varies from 0.5 to 1.0, and
for a negative phase, it ranges from 0 to 0.5.

Promiscuous and restrictive mating strategies: To deter-
mine themating strategy, a random number r between 0.0 and
1.0 is generated. If r falls within or equals pp, the generation
of a new bonobo happens via promiscuous or restrictive
mating, following the following definition.

new_bnbj = bnbij + r1 × scab× (αbonobo − bnbij)

+ (1−r1)×scsb× flag× (bnbij − bnbpj)

(2)

Here, αbonobo and new_bnbj represent the jth variables of the
alpha bonobo and offspring respectively. The bnbij and bnbpj
represent the jth variable of the ith and pth bonobo respectively.
The parameters scab and scsb are the sharing coefficients for
αbonobo and selected pth bonobo. The flag parameter can only
be either 1 or −1, depending on the fitness of ith and pth

bonobo.
Consortship and extra-group mating strategies: If r is

larger than pp, then the chosen strategy is either consortship
or extra-group mating. The decision between these two
strategies relies on another random number r2. If r2 is within
or equals the probability of extra-group mating (pxgm), a new
bonobo is created through extra-group mating strategy. The
generation of a new bonobo through extra-group mating
follows a series of equations depending on the comparison
between αbonobo and bonoboij and a third random number r3.

β1 = e
(
r32+r3−2/r3

)
(3)

β2 = e
(
−r32+2×r3−2/r3

)
(4)

The new bonobo is then created according to one of the
following equations:

new_bnbj = bnbij + β1 ×
(
Varmaxj − bnbij

)
,

if αbonobo ≥ bnbij and r3 ≤ pd (5)

new_bnbj = bnbij + β2 ×
(
bnbij − Varminj

)
,

if αbonobo ≥ bnbij and r3 >pd (6)

new_bnbj = bnbij + β1 ×
(
bnbij − Varminj

)
,

if αbonobo < bnbij and r3 ≤ pd (7)

new_bnbj = bnbij + β2 ×
(
Varmaxj − bnbij

)
,

if αbonobo < bnbij and r3 >pd (8)

When r2 is greater than pxgm, the consortshipmating strategy
comes into play, and the new bonobo is created using the
subsequent equation:

new_bnbj = bnbij + flag× e−r4 ×
(
bnbij − bnbpj

)
(9)

If flag is 1 or r5 ≤ pd , then new_bnbj is computed according
to the equation. Otherwise, new_bnbj = new_bnbpj.
Updating BOparameters: The parameters in the BOmodel,

namely pp, npc, ppc, cp, pd , pxgm, tsgsfactor , undergo
updates after each iteration. These updates are based on the
change in the fitness of αbonobo from one iteration to another.
The updated values of these parameters are then used in the
subsequent iteration. The update of parameters is performed
as:

• ppc = 0,
• npc = npc+ 1,
• cp = −min(0.5,npc× rcpp),
• pp = 0.5+cp, pd = 0.5,
• pxgm = min(0.5,pxgminitial + npc× rcpp2),
• tsgsfactor = max(0,tsgsfactor initial − npc× rcpp2).

III. PROPOSED ALGORITHM
The modified BO (MBO) is an improved version of the
standard BO, prompted by the realization that there are
areas of potential improvement in the original algorithm’s
performance. This new version incorporates four pivotal
enhancements: a new exploration mechanism, Gaussian local
mutation, restart strategy, and random contraction strategy.
The Gaussian local mutation infuses stochasticity into the
optimization process, emulating the natural variations found
in evolutionary algorithms. By leveraging a Gaussian distri-
bution, this mutation method ensures a delicate equilibrium
between exploration (probing new regions of the solution
space) and exploitation (honing in on previously discovered
promising solutions). Such a probabilistic approach makes
the search more dynamic, decreasing the risk of stagnation.
However, in metaheuristic optimization, there’s an inherent
danger of the search becoming trapped in local optima,
solutions that seem optimal in their vicinity but are inferior
when the entire search space is considered. To mitigate
this, the MBO employs the restart strategy. Upon detecting
a potential entrapment in a local optimum, the algorithm
strategically repositions its search, initiating from a new,
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randomly chosen point in the solution landscape. This
deliberate reset acts as a countermeasure to stagnation,
ensuring a thorough and expansive search while maintaining
the algorithm’s efficiency. Lastly, the random contraction
strategy is an innovative technique to shrink the search
space. By dynamically contracting the solution space around
promising regions, it ensures that the algorithm’s resources
are directed towards more probable solution areas, making
the search process more efficient. The flowchart in Figure 1
demonstrates the working principle of the proposed MBO.

A. EXPLORATION STAGE
The exploration stage is a pivotal component of optimization
algorithms, offering a broad view of the problem space.
This extensive survey of the solution space aims to discern
regions of interest which likely harbor the optimal solution.
Interestingly, in the snow ablation optimizer (SAO) [41], the
exploration process is emulated from the natural metamor-
phosis of snow or liquid water into steam. This steam, due to
its diffused and erratic movement, forms an apt analogy for
the stochastic traversal of the solution space. To illustrate this,
the SAO employs Brownian motion [59] as its exploration
paradigm. This motion, typified by the seemingly random
ambulation of particles in a fluid, epitomizes the quintessence
of a stochastic process.

In a significant update, the exploration mechanism of the
SAO has been chosen to replace the exploration phase of
the MBO. This decision is rooted in the prowess of the
SAO’s exploration approach that adeptly harnesses Brownian
motion. The standard expression for Brownian motion is
encapsulated as:

fBM (x; 0, 1) =
1

√
2π ij

× exp
(

−
x2

2

)
(10)

The exploration facet of SAO permits the search agents
to roam unconfined in the search expanse, dynamically
recalibrating their stances based on the algorithm’s trajectory.
This movement is mathematically expressed as:

Z (t+1)
i = Elite(t) + BM (t)

i ⊗

(
θ1 × (G(t)

− Z (t)
i ) + (1−θ1)

×(Z (t)
− Z (t)

i )
)

(11)

As previously outlined, each variable in the equation has its
designated implication. This strategy ensures an equilibrium
between scouting (exploration) and deep diving (exploita-
tion), fostering the algorithm’s exemplary competence.
Furthermore, this exploration phase capitalizes on the cream
of the current population (the elites) and promotes a wide
variance among the prospective solutions. Augmented by the
capricious nature of Brownian motion, the algorithm is well-
equipped to sidestep local optima, amplifying the calibre of
the eventual solution. Of particular note is the parameter
θ1, pivotal in directing movement towards either the current
best individual or the centroid position of leaders. This
suggests that the methodology amalgamates both singular

FIGURE 1. Flowchart of the MBO.

and communal learning paradigms, fully harnessing search
intel for a thorough and extensive survey of the solution
space.

B. GAUSSIAN LOCAL MUTATION
The Gaussian local mutation [60] operation introduces
some randomness into the algorithm, helping to explore the
solution space more thoroughly and reducing the possibility
of premature convergence. The importance of maintaining
diversity in the population for population-based optimization
algorithms cannot be overstated. Diversity helps prevent the
algorithm from falling into local optima and boosts the
algorithm’s ability to explore the problem’s search space.
The Gaussian mutation helps to achieve this by providing a
localized mutation, a form of diversification that allows the
algorithm to explore nearby solutions. The localizedmutation
is achieved mathematically as Xnew = XN + RG (XN − Xt).
Here, RG is a random number generated by a Gaussian
probability distribution with mean 0 and standard deviation
0.333. It is crucial to note that Gaussian mutation has proven
to be an effective operator in optimization algorithms due to
its balanced mix of exploration and exploitation [61]. The
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variable XN is determined according to the following rule:

XN =


Xbest2, if r1<0.5 and r2<0.5

Xbest3, if r1<0.5 and r2>0.5

Xbest,otherwise

(12)

The selection of the best, second-best, or third-best solution,
as defined in Eq. (12), depends on two randomly generated
numbers r1 and r2. This not only brings diversity into the
solution but also helps the search process to avoid premature
convergence. The motivation to include the second and third-
best solutions in the mutation process is to retain a certain
degree of diversity in the population. By considering not
just the global best but also the runner-ups, we ensure that
valuable information from other potential solutions is not lost.
By including the Gaussian local mutation in MBO, the aim
is to foster diversity and a more comprehensive search of
the solution space, thereby increasing the effectiveness of the
optimization process. The advantages of this strategy can be
summarized as offering an improved balance between explo-
ration and exploitation, reducing premature convergence, and
retaining a degree of diversity in the population.

C. RESTART STRATEGY
The restart strategy [62] is designed to circumvent the issue
of stagnation in the search process, which is commonly
encountered in many optimization algorithms. The primary
motive for introducing the restart strategy in MBO is to offer
an escape mechanism for search agents which have been
trapped in local optima, thereby enhancing the global search
capability of the BO. In this way, BO can cover a broader
solution space and ensure a more thorough search, improving
the likelihood of obtaining the global optimum solution. This
strategy becomes highly useful when an individual’s position
has not improved within a predefined limit. When stagnation
is detected, the restart strategy is activated and applied to
the stagnant individuals. The restart strategy generates a new
position for these individuals by re-initializing their locations
in the search space according to Eqs. (13) and (14).

X (t + 1) = lb+ rand · (ub− lb) (13)

X (t + 1) = (ub+ lb) − rand · X (t) (14)

Here, lb and ub are the lower and upper bound of the
problem, respectively. The random opposition-based learning
strategy incorporated within this restart strategy enhances the
exploration ability of the algorithm, ensuring a more detailed
examination of the solution space. The restart strategy
provides several advantages. Firstly, it prevents stagnation
and encourages continual exploration of the solution space,
thereby minimizing the chances of being trapped in local
optima. Secondly, it assists in maintaining the diversity of
solutions in the population, which is vital for the algorithm’s
robustness and adaptability. Lastly, by resetting individuals to
new, potentially better locations, it increases the algorithm’s
chance of discovering and converging to the global optimum.

D. RANDOM CONTRACTION STRATEGY
The random contraction strategy (RCS) [63] offers a
nuanced approach to optimization algorithms by dynamically
contracting the search space. This strategy is particularly
useful in handling the intricate balance between exploration,
where algorithms are scouting for new potential solutions,
and exploitation, where they are refining the current best
solutions. A primary challenge in optimization is the
propensity of algorithms to prematurely anchor to local
optima, especially in the context of multifaceted multi-
modal functions. Many algorithms, when confronted with
these scenarios, can become too ‘‘comfortable’’ with their
present best solutions. They may lack the diversity in their
approach to break free and explore beyond these local optima.
Incorporating the RCS, we have:

X (t + 1) = (2 · rand − 1) · X (t) (15)

Here, the 2·rand − 1 serves a dual purpose. On one hand,
it contracts the search domain, which inherently nudges the
algorithm to zero in on promising solution areas. On the other
hand, the randomness factor ensures that this contraction
is not deterministic or uniform, thereby infusing necessary
diversity into the search process. What makes RCS unique
and effective is its adaptability. Instead of maintaining a
static search space or using a predefined reduction sequence,
RCS recalibrates the space based on the current solution
coupled with a random factor. Such an approach ensures
that control parameters are uniformly spread within the
interval [−1, 1]. This implies that each searching agent has
a balanced chance to explore the solution domain between
[−X (t),X (t)] as iterations progress. With the element of
randomness via rand , the strategy makes sure that the
agents maintain their dynamism, crucial for dodging the
pitfalls of local optima. In essence, RCS introduces a
systematic yet adaptable means of contracting the search
arena. By doing so, it guides optimization algorithms to veer
towards promising regions without being overly deterministic
and thereby retains the versatility crucial for tackling complex
optimization landscapes.

IV. COMPLEXITY OF MBO
To calculate the time complexity of the MBO with a focus
on fitness evaluation time, population size, and the number
of iterations, we’ll consider each component’s complexity in
relation to these variables. Let’s denote n as population size, k
as number of iterations and f as time complexity of evaluating
the fitness function for one individual.

1. Initialization: This step involves initializing the popu-
lation, typically O(n).

2. SAO exploration phase: Assuming a linear complexity
with respect to the population size, this step is O(n).

3. Gaussian local mutation: Applying the mutation to
each individual is also O(n).
4. Fitness assessment: This is the most critical part

in terms of complexity. If the fitness evaluation for one
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individual has a complexity of f , then for the entire
population, it’s (O(n× f )).

5. Restart strategy and random contraction strategy:
These strategies involve operations on each individual,
assumed to be O(n).
6. Convergence check: Typically, O(n), as it involves

checking each individual in the population.
Considering these components, the complexity for one

iteration of the MBO algorithm can be broken down as
follows:

-Initialization, SAO exploration, Gaussian mutation,
restart strategy, random contraction strategy, and convergence
check: Each O(n).

- Fitness Assessment: (O(n× f )).
Since the algorithm runs for k iterations, the total time

complexity for all iterations can be expressed as: [O(k× (n+

n× f ))]. Simplifying this, we get: [O(k × n× (1 + f ))].
This expression represents the time complexity of the

MBO in terms of the population size n, the number of
iterations k , and the complexity of the fitness evaluation f .
It’s important to note that f can vary significantly depending
on the specific problem and the implementation of the fitness
function.

V. RESULTS
This section provides a comprehensive analysis of theMBO’s
performance, tested against a range of optimization problems,
particularly focusing on the CEC 2017 and CEC 2022 test
suites, and engineering problems, including cantilever beam
design, industrial refrigerator system design, welded beam
design, speed reducer design, pressure vessel design, multi-
product batch plant design and three-bar truss design.
Detailed results from each set of experiments are presented
and interpreted in the following relevant subsections.

A. EXPERIMENTAL SETUP
To rigorously assess the efficacy of the proposed MBO,
a meticulous experimental design was established. This
evaluation involved benchmarking theMBO against a diverse
set of nine cutting-edge nature-inspired algorithms, including
the original bonobo optimizer (BO) [40], sand cat swarm opti-
mization (SCSO) [42], Chernobyl disaster optimizer (CDO)
[43], driving training-based optimization (DTBO) [44],
Harris hawk optimizer (HHO) [45], Archimedes optimization
algorithm (AOA) [46], smell agent optimizer (SAO) [47],
grasshopper optimization algorithm (GOA) [48], particle
swarm optimization (PSO) [49], hybrid sine cosine algorithm
with differential evolution (SCADE) [50], modified capuchin
search algorithm (mCapSA) [51], liver cancer algorithm
(LCA) [52], and modified chameleon swarm algorithm
(mCSA) [53]. These algorithms were selected for their
widespread use and high variability in functionality, ensuring
a comprehensive comparison and facilitating an insightful
analysis of the MBO’s performance.

The benchmarking process comprised 30 independent runs
for each algorithm, capped at a maximum of 1000 iterations

per run. The population size was kept constant at 50 through-
out all experimental runs to maintain uniformity in the
experimental conditions. Such a setup aligns well with
the recent standards in metaheuristic literature, offering a
sufficient exploration of the solution space while avoiding
unnecessary strain on computational resources. The problem
domain for the experimental investigation was defined within
10 and 100-dimensional hyper-spaces for CEC 2017 along
with 10 and 20-dimensional hyper-spaces for CEC 2022.
The selection of such an expansive and continuous problem
space ensures a thorough and intensive evaluation of the
algorithms. It allows the algorithms to explore solutions with
wide-ranging magnitudes and orientations, which mimics
the complexity and diversity of real-world optimization
scenarios. The parameter settings for all the algorithms,
including the proposed MBO, were optimized following the
guidelines presented in their respective originally reported
default values. This was done to ensure the provision of an
ideal environment for each algorithm to exhibit its optimal
performance.

B. CEC 2017 TEST SUITE
This study utilized twenty-nine benchmark functions from
the CEC2017 test suite [64] to conduct the initial statistical
assessment. The benchmark functions serve as an effective
platform for evaluating the performance of algorithms,
as they present difficult challenges. The CEC2017 test
suite comprises unimodal (F17-01, F17-03) and multimodal
(F17-04 – F17-10) functions that effectively evaluate the
algorithms’ ability in both exploitation and exploration.
In addition to the aforementioned forms, the CEC2017
test suite also encompasses hybrid (F17-11 – F17-20) and
composition (F17-21 – F17-30) functions that pose greater
challenges for test functions. Further details regarding those
test functions can be found in [64].

1) STATISTICAL RESULTS
Table 1 displays the comparative statistical results obtained
from 10-dimensional CEC 2017 benchmark functions. The
statistical analysis of the CEC2017 test suite (dimension =

10) underscores the efficacy of theMBO algorithm compared
to other optimization techniques. In the F17-01 function,
MBO exhibited a relatively high performance with a
minimum value of 100.0324, ranking third overall, while
outperforming several algorithms such as CDO and AOA,
which had much higher minimum values of 7.30E+09 and
6.35E+08, respectively. For the F17-03 function, MBO
achieved the lowest minimum value of 300, tied with other
algorithms but with a notably lower standard deviation, indi-
cating high consistency and reliability. This trend continues
with the F17-04 function, where MBO again secured the
second rank with a minimum value of 400, demonstrating
superior performance over SCSO and CDO with minimum
values of 401.8615 and 530.3654, respectively. In the F17-
05 function, MBO outperformed other algorithms with a
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TABLE 1. Comparative statistical results on CEC2017 test suite (Dimension = 10).
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TABLE 1. (Continued.) Comparative statistical results on CEC2017 test suite (Dimension = 10).

minimum value of 502.9849 and maintained the highest rank.
Similarly, MBO exhibited a strong performance in the F17-
06 and F17-07 functions, where it ranked first and second,
respectively, showcasing its robustness and effectiveness. The
MBO algorithm also consistently performed well across var-
ious other functions, securing top ranks and maintaining low
standard deviations, which indicates stability in optimization
results.

Table 2 presents the comparative statistical results on
the CEC2017 test suite with a dimension of 100, high-
lighting the performance of multiple optimization algo-
rithms. Notably, the MBO algorithm exhibits significant
achievements across various metrics. For example, MBO
consistently ranks high in terms of minimum, maximum,
mean, and standard deviation values for most functions,
indicating robust performance and reliability. In particular,
MBO ranks 2nd in F17-01 and F17-04, demonstrating
its superior ability to find optimal solutions compared to
other algorithms. Additionally, MBO achieves the lowest
standard deviation in several instances, suggesting consis-
tent performance and minimal variation in results. These
achievements underscore the efficacy of MBO in handling
high-dimensional optimization problems, positioning it as a
highly competitive algorithm in the field of metaheuristic
optimization.

In Table 3, which considers a dimension of 10, MBO con-
sistently outperforms or shows comparable performance to
many other algorithms across various functions. Especially,

for functions like F17-01, F17-03, F17-05, and F17-
11, MBO achieves significantly better results compared
to most other methods, as indicated by very low p-
values (e.g., 1.16E-07, 1.55E-09, 0.001589, 0.000446)
in the Wilcoxon’s Signed Rank Test. This demonstrates
MBO’s robustness and effectiveness in finding optimal
solutions.

Table 4 considers a higher dimension of 100 and MBO
continues to demonstrate strong performance here, as well.
While some functions show less significant improvements
(e.g., F17-01 with p-value 0.529782), others like F17-03,
F17-04, and F17-25 still show MBO’s ability to compete
effectively with other methods. For instance, in function F17-
03, MBO significantly outperforms most other methods with
a very low p-value of 8.84E-07, demonstrating its robustness
across different dimensions.

2) CONVERGENCE AND BOXPLOT ANALYSIS
Figure 2 demonstrates the convergence curves of MBO
on functions from the CEC 2017 benchmark suit with a
dimension of 10. On the other hand, Figure 3 demonstrates a
boxplot analysis for 10-dimensional CEC 2017 test suite. The
illustrations verify the effectiveness of the MBO discussed
earlier. This is further supported by the convergence curves
in Figure 4 and boxplot analysis Figure 5 which present
the respective illustrations for 100-dimensional CEC 2017
test suite.
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TABLE 2. Comparative statistical results on CEC2017 test suite (Dimension = 100).
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TABLE 2. (Continued.) Comparative statistical results on CEC2017 test suite (Dimension = 100).

TABLE 3. Wilcoxon’s signed rank test on CEC 2017 test suite (Dimension = 10).

C. CEC 2022 TEST SUITE
Both the proposed method and other approaches were
subjected to additional testing on the CEC2022 test suite
with 10 and 20-dimensional search spaces. This suite has
12 distinct test functions, each of which can be categorized
as unimodal, multimodal, hybrid, or composition [65]. The
details can be found in [66].

1) STATISTICAL RESULTS
In Table 5 and Table 6, the performance of the MBO
algorithm on the CEC2022 test suite is evaluated and com-
pared with several other optimization algorithms. The MBO
algorithm consistently shows competitive performance across
the CEC2022 test suite, especially notable in minimizing the
objective function values. In Table 5 (dimension= 10), MBO
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TABLE 4. Wilcoxon’s signed rank test on CEC 2017 test suite (Dimension = 100).

achieves the minimum value (300) across many functions,
which is on par with or better than several other algorithms.
For instance, on F22-01, MBO ranks 2nd in minimum value
and 1st in mean value, indicating its strong performance
in finding the global optimum consistently. Moreover, the
standard deviation (Std) for MBO is often lower than
other methods, suggesting robustness and stability in its
solutions.

In Table 6 (dimension = 20), MBO continues to demon-
strate competitive performance, particularly in achieving
low minimum values across various functions. For example,
on F22-01, MBO achieves the minimum value of 300,
showing its ability to find the global optimum effectively. The
mean values for MBO are also competitive, demonstrating its
ability to achieve good solutions consistently across different
test functions

The Wilcoxon’s Signed Rank Test results underscore
the exceptional performance of the MBO algorithm across
the CEC 2022 test suite functions. In the 10-dimensional
tests, MBO exhibited remarkable superiority over numerous
state-of-the-art algorithms. Especially, on Function F22-
01, MBO achieved highly significant p-values of 2.53E-
10 against BO, 1.25E-11 against SCSO, CDO, DTBO,
AOA, and other algorithms, demonstrating its effectiveness
in producing superior solutions. Similarly, on Function
F22-05, MBO achieved p-values as low as 6.04E-10
against BO, highlighting its robust performance. These
results were consistent across various functions, reaffirming
MBO’s efficacy in optimizing complex problems. In higher
dimensions, such as 20, MBO continued to outperform
competitors, achieving significant p-values across functions
like F22-01 and F22-02. These findings underscore MBO
as a highly competitive algorithm for solving challenging
optimization tasks.

2) CONVERGENCE AND BOXPLOT ANALYSIS
Figure 6 demonstrates the convergence curves of MBO
on functions from the CEC 2022 benchmark suit with a
dimension of 10. On the other hand, Figure 7 demonstrates a
boxplot analysis for 10-dimensional CEC 2022 test suite. The
illustrations verify the effectiveness of the MBO discussed
earlier. This is further supported by the convergence curves
in Figure 8 and boxplot analysis Figure 9 which present the
respective illustrations for 20-dimensional CEC 2022 test
suite.

D. EXPLORATION—EXPLOITATION ANALYSIS
Figure 10 provides a clear explanation of the exploration-
exploitation dynamics demonstrated by MBO when dealing
with the CEC 2022 test suite. The displayed curves
demonstrate a sophisticated and harmonious exploration-
exploitation behavior exhibited by MBO on 10-dimensional
CEC 2022 functions. More precisely, the algorithm devotes
a significant portion of its time to exploring, especially in
the beginning of its operation. The intentional focus on
exploration during the initial stages enhances the algorithm’s
effectiveness in thoroughly navigating the solution space,
which may aid in identifying and converging towards the best
possible answers. This analysis of exploration-exploitation
provides vital insights into how the MBO algorithm strategi-
cally allocates computational efforts. It highlights the flexible
and effective approach of the algorithm in navigating difficult
optimization landscapes.

E. ENGINEERING PROBLEMS
As part of the performance evaluation of the proposed MBO,
seven different real-world engineering optimization problems
were also considered. The following subsections provide a
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FIGURE 2. Convergence curves of test functions from CEC2017 test suite (dimension = 10).
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FIGURE 2. (Continued.) Convergence curves of test functions from CEC2017 test suite (dimension = 10).

detailed description of the problems and demonstrate the
efficacy of the MBO comparatively.

1) CANTILEVER BEAM DESIGN
The first considered challenge for the performance evaluation
of MBO is related to the optimal design of a cantilever beam.
This problem constitutes a significant engineering challenge
that requires determining the optimal dimensions for the
components of a cantilever beam. The overarching objective
is to minimize the overall weight of the beam structure, while
simultaneously ensuring that specific structural and safety
constraints are fully met. A distinguishing characteristic of
this problem is the structural design of the cantilever beam.
It is composed of five hollow cells, each featuring a square
cross-section. These cells are each defined by a unique
variable, while maintaining a constant thickness. Thus, there

are five distinct parameters, namely, x1, x2, x3, x4 and x5,
that are subject to the optimization process. Themathematical
expression that governs this problem includes a cost function
that is to be minimized, and a set of constraints that must
be satisfied. A schematic diagram illustrating the structural
design of the cantilever beam, and providing a visual
representation of the problem, is presented in Figure 11.
The mathematical formulation of the problem is expressed
as minimization of:

f (x) = 0.0624 (x1 + x2 + x3 + x4 + x5) (16)

which is subjected to g (x) =
((
61

/
x31

)
+

(
37

/
x32

)
+

(
19

/
x33

)
+

(
7
/
x34

)
+

(
1
/
x35

)
− 1

)
and 0.01 ≤ xi ≤ 100 where

i = 1, 2, 3, 4, 5.
In endeavor to solve this optimization problem, a compre-

hensive and rigorous comparative analysis was performed.
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FIGURE 3. Boxplots of test functions from CEC2017 test suite (dimension = 10).

VOLUME 12, 2024 134963



M. Alabdulhafith et al.: MBO With Its Application in Solving Engineering Design Problems

FIGURE 3. (Continued.) Boxplots of test functions from CEC2017 test suite (dimension = 10).

This analysis encompassed evaluating the performance and
robustness of different optimization techniques, including
the original BO, SCSO, CDO, DTBO, HHO, AOA, SAO,
GOA, and PSO. The performance of each algorithm was
determined based on the optimal values they obtained.
The statistical results in Table 9 provide a comprehensive
overview of the performance of various optimization algo-
rithms for the cantilever beam design problem. Notably,
the MBO stands out with the lowest minimum objec-
tive function value, minimal standard deviation, and the
highest rank among all algorithms. These metrics collec-
tively indicate the consistency and superior performance
of MBO in finding optimal solutions. Additionally, the
best-found solution in Table 10 reaffirms MBO’s domi-
nance, as it achieved the lowest objective function value
compared to other optimizers. In contrast, while other

algorithms such as BO, SCSO, and PSO demonstrated
competitive results, MBO consistently outperforms them,
as evidenced by its top rank and superior best-found solution,
establishing its efficacy for the cantilever beam design
optimization task.

Figure 12(a) presents a graphical illustration of the
convergence curve of the MBO technique. This visual
representation provides an empirical basis for asserting
the superiority of the MBO technique. It is clear from
the figure that the MBO technique converges effectively
and efficiently towards the optimal solution, markedly
outperforming the other algorithms under consideration.
Further bolstering the superiority of the MBO technique,
Figure 12(b) exhibits a boxplot depicting the performance of
all considered algorithms. It is evident from this boxplot that
the MBO technique not only achieves optimal solutions more
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FIGURE 4. Convergence curves of test functions from CEC2017 test suite (dimension = 100).
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FIGURE 4. (Continued.) Convergence curves of test functions from CEC2017 test suite (dimension = 100).

frequently but also maintains a more consistent performance
with fewer variations in comparison to other optimization
algorithms. This level of consistency, characterized by a
smaller interquartile range, underscores the reliability and
robustness of the MBO technique, reinforcing its efficacy for
this class of optimization problems.

2) INDUSTRIAL REFRIGERATION SYSTEM DESIGN
The task of designing industrial refrigeration systems is
particularly complex and involves numerous design variables
and constraints. With an aim to minimize a nonlinear
objective function that embodies the integration of various
system components. A more detailed desecration of this
problem is discussed in [67].

The mathematical formulation of this industrial refrigera-
tion system design problem is described as the minimization

of (17).

f (x) = 63098.88x2x4x12 + 5441.5x22x12 + 115055.5x1.6642 x6
+ 6172.27x22x6 + 63098.88x1x3x11 + 5441.5x21x11
+ 115055.5x1.6641 x5 + 6172.27x21x5 + 140.53x1x11
+ 281.29x3x11 + 70.26x21 + 281.29x23
+ 14437x1.88128 x0.342412 x10x

−1
14 x

2
1x7x

−1
9

+ 20470.2x2.8937 x0.31611 x21x1x3 (17)

which is subjected to
• g1 (x) = 1.524x−1

7 −1 ≤ 0,
• g2 (x) = 1.524x−1

8 −1 ≤ 0,
• g3 (x) = 0.07789x1 − 2x−1

7 x9−1 ≤ 0,
• g4 (x) = 7.05305x−1

9 x21x10x
−1
8 x−1

2 x−1
14 −1 ≤ 0,

• g5 (x) = 0.0833x−1
13 x14−1 ≤ 0,
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FIGURE 5. Boxplots of test functions from CEC2017 test suite (dimension = 100).
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FIGURE 5. (Continued.) Boxplots of test functions from CEC2017 test suite (dimension = 100).

• g6 (x) = 47.136x0.3332 x12−1.333x8x2.119513
+ 62.08x2.119513 x−1

12 x
0.2
8 x−1

10 −1 ≤ 0,
• g7 (x) = 0.04771x1.88128 x0.342412 −1 ≤ 0,
• g8 (x) = 0.0488x1.8939 x0.31612 −1 ≤ 0,
• g9 (x) = 0.0099x1x

−1
3 −1 ≤ 0,

• g10 (x) = 0.0193x2x
−1
4 −1 ≤ 0,

• g11 (x) = 0.0298x1x
−1
5 −1 ≤ 0,

• g12 (x) = 0.056x2x
−1
6 −1 ≤ 0,

• g13 (x) = 2x−1
9 −1 ≤ 0,

• g14 (x) = 2x−1
10 −1 ≤ 0,

• g15 (x) = x12x
−1
11 −1 ≤ 0

with 0.01 ≤ xi ≤ 5 where i = 1, 2, 3, . . . , 14.
Table 11 presents statistical results for various optimization

algorithms applied to an industrial refrigeration system
problem. TheMBO again demonstrates notable performance,

ranking third overall. MBO achieves a low minimum
objective function value, indicating efficient convergence
to optimal solutions. It also exhibits a relatively low
standard deviation, highlighting the stability of its results.
In contrast, other algorithms such as DTBO and SAO show
higher variability and lower ranks. This suggests that MBO
provides competitive and consistent results compared to other
optimization methods.
Examining the best-found solutions in Table 12 further

supports MBO’s effectiveness for the refrigeration system
problem. MBO attains the lowest objective function value,
indicating its capability to find superior solutions. The
solutions generated by MBO are characterized by low
parameter values across various design variables, suggesting
an efficient configuration for the refrigeration system. While
some other algorithms exhibit competitive performance,
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TABLE 5. Comparative statistical results on CEC2022 test suite (Dimension = 10).

MBO stands out as a robust and effective optimizer for
this complex industrial optimization problem, reinforcing its
superiority based on both statistical metrics and best-found
solutions.

Furthermore, Figure 13 exemplifies the relatively
improved rate of convergence and robustness of the proposed
algorithm in minimizing the objective function and good
statistical box plot performance for this problem. This study,
therefore, validates the advantage of employing MBO in
industrial refrigeration system design, endorsing its robust
performance and enhanced solution accuracy.

3) WELDED BEAM DESIGN
The welded beam design problem is an essential task in
structural engineering, which requires finding the optimal
dimensions of a beam that can bear a specific load. The
primary objective is to minimize the fabrication costs, which
includes the material and labor costs. In tandem, it is also
critical to conform to the stress and deflection limitations
inherent in the design. Such requirements stem from the need
to maintain the structural integrity of the beam, avoiding
failures that can result from exceeding the allowable stress
or deflection limits.

This problem is formulated as an optimization issue involv-
ing four design variables, presented as x = [x1, x2, x3, x4],
where x1 denotes the thickness of the weld, x2 the length of
the weld, x3 the depth of the beam, and x4 the width of the
beam. These parameters are essential components of the
beam structure, influencing not only the fabrication cost
but also the overall performance and reliability of the final
design. The objective function, f (x), is a mathematical
representation of the fabrication cost that depends on the
aforementioned design variables. The constraint functions,
gi (x), signify the stress and deflection limits, ensuring that
the final design does not compromise the beam’s structural
integrity. A pictorial representation of the welded beam
design problem is shown in Figure 14.

Themathematical formulation of the problem is articulated
as minimization of

f (x) = 1.10471x21x2 + 0.04811x3x4 (14.0+x2) (18)

which is subjected to
• g1 (x) = τ (x) − τmax (x) ≤ 0,
• g2 (x) = σ (x) − σmax (x) ≤ 0,
• g3 (x) = δ (x) − δmax (x) ≤ 0,
• g4 (x) = x1 − x4 ≤ 0,
• g5 (x) = P− Pc (x) ≤ 0,
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TABLE 6. Comparative statistical results on CEC2022 test suite (Dimension = 20).

TABLE 7. Wilcoxon’s signed rank test on CEC 2022 test suite (Dimension = 10).

TABLE 8. Wilcoxon’s signed rank test on CEC 2022 test suite (Dimension = 20).
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FIGURE 6. Convergence curves of test functions from CEC2022 test suite (Dimension = 10).

• g6 (x) = 0.125−x1 ≤ 0
• g7 (x)=1.10471x21x2 + 0.04811x3x4 (14.0+x2)

−5.0 ≤ 0

with 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10 and
0.1 ≤x4 ≤ 2.

Tables 13 and 14 present a detailed statistical analysis
of the experimental results, including the optimal values
identified by various optimization algorithms for this design
problem. These tables also list the corresponding values of the
design variables at the optimal solution. Upon analyzing these
results, it becomes unequivocally clear that theMBO exhibits
an enhanced ability in seeking out the optimal solution. This
superior ability is evidenced in terms of the minimal objective
function value and the quality of the solution, which adheres
to all problem constraints.

The convergence plot, demonstrated in Figure 15(a),
further substantiates the superior capability of MBO. This
graphical illustration reveals the path followed by the
different algorithms in their quest for the optimal solution.
It shows that MBO manages to converge towards the optimal
function value more rapidly, indicating a more efficient
optimization process.

Such expeditious convergence is a testament to the robust-
ness ofMBO in dealing with complex optimization problems,
as well as its inherent ability to bypass local optima, which
often hinders the performance of conventional optimization
algorithms. Further evidence of MBO’s reliability and robust
performance can be drawn from the boxplot in Figure 15(b).
This boxplot illustrates the result distribution over multiple
runs of the optimization problem, providing an insight
into the algorithm’s stability across multiple optimization
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FIGURE 7. Boxplots of test functions from CEC2022 test suite (Dimension = 10).

scenarios. The tight result distribution for MBO, as seen from
the boxplot, emphasizes its ability to consistently find optimal
or near-optimal solutions.

4) SPEED REDUCER DESIGN
The design optimization of speed reducers has garnered
substantial attention in the mechanical engineering sphere
due to its critical role in modulating the speed of machines.
The primary objective of this optimization is to minimize the
weight of the speed reducer while ensuring compliance with
the various constraints imposed by its integral components.
Seven design variables play a pivotal role in this weight
computation: the face width of the gear (x1), teeth module
(x2), number of pinion teeth (x3), length of the first shaft
between bearings (x4), length of the second shaft between
bearings (x5), and the diameters of the first (x6) and

second (x7) shafts. A schematic overview of this problem is
elucidated in Figure 16.
The mathematical formulation of the problem can be

articulated as given in (19).

f (x) = 0.7854x1x22
(
3.3333x23 + 14.9334x3−43.0934

)
−1.508x1

(
x26 + x27

)
+ 7.4777

(
x36 + x37

)
+ 0.7854

(
x4x26 + x5x27

)
(19)

which is subjected to
• g1 (x) =

(
27

/
x1x22x3

)
−1 ≤ 0,

• g2 (x) =
(
397.5

/
x1x22x3

)
−1 ≤ 0,

• g3 (x) =
(
1.93x34

/
x2x3x46

)
−1 ≤ 0,

• g4 (x) =
(
1.93x35

/
x2x3x47

)
−1 ≤ 0,

• g5 (x) =
(
1
/
110x36

) √(
745x4

/
x2x3

)2
+ 16.9×106
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FIGURE 8. Convergence curves of test functions from CEC2022 test suite (Dimension = 20).

−1 ≤ 0,

• g6 (x) =
(
1
/
85x37

) √(
745x4

/
x2x3

)2
+ 157.5×106

−1 ≤ 0,
• g7 (x) =

(
x2x3

/
40

)
−1 ≤ 0,

• g8 (x) =
(
5x22

/
x1

)
−1 ≤ 0,

• g9 (x) =
(
x1

/
12x2

)
−1 ≤ 0,

• g10 (x) =
(
(1.5x6 + 1.9)

/
x4

)
−1 ≤ 0,

• g11 (x) =
(
(1.1x7 + 1.9)

/
x5

)
−1 ≤ 0

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 2.6 ≤ x1 ≤ 3.6, 17 ≤

x3 ≤ 28, 7.3 ≤ x4 ≤ 7.8, 7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9
and 5 ≤ x7 ≤ 5.5.
Tables 15 and 16 provide an extensive statistical analysis

of our experimental findings, showcasing the optimal values
achieved through various optimization algorithms for this
particular design challenge. These tables also furnish the

associated design variable values at these optimal solutions.
Upon thorough examination of these outcomes, it becomes
undeniably evident that the MBO stands out for its
exceptional capacity to pinpoint the optimal solution. This
heightened proficiency is evident through its ability to attain
the lowest objective function value while simultaneously
ensuring that all problem constraints are met with a high level
of solution quality.
Examining the convergence patterns illustrated in

Figure 17(a) provides a clear insight into MBO’s proficiency.
The convergence curve of MBO distinctly displays a sharper
descent, indicating its capability to rapidly hone in on the
most optimal solution. This rapid convergence is not just
an indicator of speed but is a testament to the algorithm’s
efficiency. In real-world applications, especially in design
optimization contexts, such efficiency translates to significant
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FIGURE 9. Boxplots of test functions from CEC2022 test suite (Dimension = 20).

cost and time savings, making MBO particularly suited for
speed reducer design challenges. Meanwhile, an algorithm’s
consistency and reliability over multiple runs play an
equally pivotal role, especially when considering the inherent
variability in optimization problems. This dimension of
MBO’s performance is elucidated in Figure 17(b). The
box plot therein graphically demonstrates how MBO’s
results cluster tightly around optimal values, with minimal
spread or outliers. In academic parlance, such a tight result
distribution is emblematic of an algorithm’s robustness. The
MBO, in comparison to other algorithms, manifests minimal
variability, a crucial characteristic when considering real-
world applications. Such consistency implies that the MBO
can be depended upon to produce reliable and reproducible
results, a trait that is indispensable in practical design
optimization contexts.

5) PRESSURE VESSEL DESIGN
The conceptualization and design of a pressure vessel
constitutes an intricate engineering task. This task necessi-
tates the optimization of several design variables to meet
the desired performance and safety standards. The design
problem at hand contemplates four variables: the shell’s
thickness (x1), the thickness of the vessel’s head (x2), the
vessel’s inner radius (x3), and the vessel’s length (x4). The
optimization problem’s primary objective is to minimize
the total cost associated with the pressure vessel’s design,
ensuring compliance with required specifications. Figure 18
schematically depicts this design challenge.

The Problem is mathematically formulated as:

f (x)=0.6224x1x3x4+1.778x2x23 + 3.166x21x
2
3 + 19.84x1x3

(20)
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FIGURE 10. Demonstration of exploration-exploitation capability through 10-dimensional CEC 2022 test suite.

which is subjected to
• g1 (x) = −x1 + 0.0193x3 ≤ 0,
• g2 (x) = −x2 + 0.0095x3 ≤ 0,
• g3 (x) = −πx23x4 −

(
4πx33

/
3
)
+ 129600 ≤ 0,

• g4 (x) = x4−240 ≤ 0
with 0.0625 ≤x1, x2 ≤ 99 × 0.0625, 10 ≤x3, x4 ≤ 200.
The evaluation of the performance of theMBOwas carried

out with respect to the problem of designing pressure vessels.
The results were compared with those obtained using other
established optimization algorithms. It was discovered that
the MBO demonstrated a performance that was similar to
other algorithms. This conclusion was drawn based on the
value of the objective function. As demonstrated in Table 17,
themost favorable values achieved by the different algorithms
are listed, together with the associated values of the design
variables. The performance of the MBO is emphasized
further in Table 18.

Figure 19(a) displays the convergence plot, which clearly
shows the efficiency of the MBO in converging effectively
towards the a near optimal solution. The consistency of
the MBO’s performance across multiple iterations of the

FIGURE 11. Schematic diagram of a cantilever beam design problem.

pressure vessel design problem is highlighted in the boxplot
represented in Figure 19(b), as well.
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TABLE 9. Statistical results on cantilever beam design problem.

TABLE 10. Best found solution for each optimizer on optimal design of cantilever beam.

FIGURE 12. Convergence curve (a) and box plot analysis (a) of cantilever beam design problem.

TABLE 11. Results on industrial refrigeration system problem.

TABLE 12. Best found solution for each optimizer on optimal design of industrial refrigeration system.
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FIGURE 13. Convergence curve (a) and box plot analysis (b) of industrial refrigeration system problem.

TABLE 13. Results on welded beam problem.

TABLE 14. Best found solution for each optimizer on optimal design of optimal design of welded beam.

6) MULTI-PRODUCT BATCH PLANT DESIGN
The multi-product batch plant design problem initiates with
the announcement of a customer’s order, which signifies
a single product type. Each customer’s order corresponds
to a distinct product, with the batch size remaining con-
stant throughout the manufacturing process. Every order is
assigned specific release and due dates. Each manufacturing
stage possesses its unique processing units, which are exclu-
sively operational at that stage. The optimization problem
aims to minimize the make-span while accounting for other
constraints such as the sequence of unit assignment orders,
due and release dates, and storage considerations. The details
regarding the problem formulation of this design can be found
in [68].

In an evaluation comparing the MBO algorithm with other
methods, the MBO outperforms most of its competitors in
minimizing the make-span and complying with constraints.
The comparison is based on the mean and standard devia-
tion statistical measures. Detailed results are illustrated in
Tables 19 and 20. Figure 20 reveals the convergence behavior

FIGURE 14. Schematic diagram of welded beam design problem.

and box plot analysis of the MBO and its competitors, with
theMBO demonstrating a robust and efficient convergence to
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FIGURE 15. Convergence curve (a) and box plot analysis (b) of welded beam design problem.

TABLE 15. Results on speed reducer problem.

TABLE 16. Best found solution for each optimizer on optimal design of speed reducer.

FIGURE 16. Schematic diagram of speed reducer design problem.

the optimal solution. The results underline the proficiency of
the MBO in addressing the multi-product batch plant design
problem, underscoring its potential in complex engineering
design optimization challenges.

7) THREE-BAR TRUSS DESIGN
This engineering optimization problem depends on two
design variables: the cross-sectional areas of bars 1 and 3
(x1) and bar 2 (x2). The main goal of this optimization task
is to minimize the total weight of the truss structure. This
design process is also subject to manufacturing constraints,
including stress, deflection, and buckling limits. The three-
bar truss design problem can be mathematically formalized
as minimization of:

f (x) =

(
2
√
2 x1 + x2

)
· l (21)

which is subjected to
• R1 (x) =

(√
2 x1 + x2

) /(√
2 x2

(
(1 + 2x1x2)

/
P
))

−σ ≤ 0,
• R2 (x) = (x2)

/ (√
2 x1

(
(1 + 2x1x2)

/
P
))

−σ ≤ 0,

• R3 (x) =

(
(x2)

/ (√
2 x2 + x1

)) (
1
/
P
)
−σ ≤ 0.
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FIGURE 17. Convergence curve (a) and box plot analysis (b) of speed reducer design problem.

TABLE 17. Results on pressure vessel problem.

TABLE 18. Best found solution for each optimizer on optimal design of pressure vessel.

FIGURE 18. Schematic diagram of pressure vessel design problem.

Here, x = [x1,x2] represent the design variables and are
bounded as 0 ≤x1,x2 ≤ 1, l = 100cm, P = 2KN/cm2 and
σ = 2KN/cm2.

Evaluation of the performance of the MBO was conducted
against other notable algorithms in tackling the three-bar truss
design problem. As per Table 21, the results indicate the
MBO produced competitive results. The results show MBO
was ranked second marginally behind HHO. Furthermore,
Table 22 displays the promising variable values obtained by
the MBO.

The comparative results in Table 22 underline the
significance of the outcomes achieved by the MBO.
Figure 21, on the other hand, illustrates the convergence
behaviors of all the algorithms together with box plot
analysis. Apart from SAO, which demonstrated prema-
ture convergence, all algorithms, including the MBO,
exhibit similar convergence behavior towards the optimal
solution. This set of results underscores the applica-
bility and potency of the MBO in resolving complex
optimization challenges in engineering design, illus-
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FIGURE 19. Convergence curve (a) and box plot analysis (b) of pressure vessel design problem.

TABLE 19. Results on multi-product batch plant design problem.

TABLE 20. Best found solution for each optimizer on optimal design of multi-product batch plant.

FIGURE 20. Convergence curve (a) and box plot analysis (b) of multi-product batch plant problem.
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TABLE 21. Results on three-bar truss design problem.

FIGURE 21. Convergence curve (b) and box plot analysis (c) of three bar truss design problem.

TABLE 22. Best found solution for each optimizer on optimal design of
three-bar truss problem.

trating its potential for robust and reliable real-world
implementations.

VI. CONCLUSION AND FUTURE WORKS
This study introduced a modified version of the bonobo
optimizer, incorporating a new exploration stage, Gaussian
local mutation, a restart strategy, and a random contraction
strategy to enhance exploration and exploitation capabilities.
Inspired by the unique social and reproductive behaviors
of bonobos, the original bonobo optimizer had already
demonstrated promise in solving optimization problems. The
improvements made in MBO aimed at addressing specific
challenges and further elevating its performance. The eval-
uation of MBO commenced with a rigorous benchmarking
process using the CEC 2017 (10 and 100-dimensional) and
CEC 2022 (10 and 20-dimensional) test suites, comparing its
performance against established nature-inspired algorithms.
The results indicated that MBO showcased remarkable
efficiency. For instance, in the 10-dimensional CEC 2022 test

suite, MBO achieved highly significant p-values of 2.53E-
10 against BO, 1.25E-11 against SCSO, CDO, DTBO,
AOA, and other algorithms on Function F22-01. Simi-
larly, in higher dimensions, such as 20, MBO continued
to outperform competitors, achieving significant p-values
across functions like F22-01 and F22-02. The algorithm’s
robust performance can be attributed to its accelerated
convergence rate, stability across diverse functions, good
exploration-exploitation behavior, and adaptability to high-
dimensional and complex solution spaces. Building upon this
benchmarking foundation, MBO was then applied to seven
real-world engineering optimization problems, spanning
diverse domains such as structural design, refrigeration
system design, and mechanical engineering. Across these
challenges, MBO consistently outperformed its counterparts,
exhibiting superior convergence rates and solution quality.
The contributions of this work extend beyond showcasing
MBO’s proficiency in optimization tasks. The deliberate
improvement strategy, involving accelerated convergence,
stability across diverse functions, and adaptability to high-
dimensional spaces, positionsMBO as a reliable and efficient
tool for addressing challenging engineering optimization
problems. The study not only demonstrates the algorithm’s
enhanced performance but also provides insights into the
systematic improvements that contributed to its success.

While the MBO has exhibited notable improvements
in this study, there are avenues for further exploration
and enhancement. Continued refinement of the algorithm
parameters and strategies could lead to even better per-
formance in specific problem domains. Fine-tuning could
involve a systematic exploration of parameter spaces and their
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impacts on convergence and solution quality. Investigating
the potential benefits of hybridizing MBO with other
optimization algorithms could result in a more versatile and
powerful optimization tool. Combining strengths from dif-
ferent algorithms might enhance overall performance across
a broader range of problems. Incorporating mechanisms for
dynamic adaptation of algorithm parameters during runtime
could improve MBO’s adaptability to evolving problem
landscapes. Dynamic adaptation strategies could enhance
the algorithm’s ability to navigate changing optimization
scenarios. Exploring methods to parallelize MBO and
enhance its scalability can be crucial for handling larger and
more complex optimization problems. Leveraging parallel
computing resources could further boost the algorithm’s
efficiency. In conclusion, while MBO has shown promising
results, ongoing research and development efforts can refine
its capabilities and extend its applicability to a broader
spectrum of optimization challenges.
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