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ABSTRACT The unexpectedly high number of deaths caused by inadequate medical care is, to date,
considered as a serious problem. Moreover, the ratio of elderly people who require continuous care is rising.
Therefore, a patient monitoring system (PMS) also known as remote patient monitoring (RPM) using the
latest Internet of Things (IoT) technology becomes a viable solution that can provide efficient healthcare
from a remote distance. PMS monitors timely physiological signals of a patient’s health and can reduce
the healthcare costs of treatment significantly. In PMS, different health and vital signs issues such as body
temperature, heart rate, sleep monitoring, fall detection, and blood pressure can be checked effectively in
real-time. To this end, this paper provides a clear vision of electronic healthcare assistance based on PMS
and explores the applications of IoT that allow efficient medical services in healthcare systems. In particular,
the objective of this paper is to provide a review of PMS, current research, and the challenges associated
with this area. Besides, the essential services that can be offered by PMS for monitoring human activities
are also discussed. Furthermore, the communication networks and protocols that are required to endure
efficient healthcare systems are explained. Finally, this paper discusses several research challenges and open
issues that can be investigated for further work. Overall, this paper offers valuable insights for both industry
professionals and academic researchers, exploring potential avenues for new research directions.

INDEX TERMS Edge computing, healthcare, IoT, microcontrollers, patient monitoring system (PMS),
remote diagnosis, remote monitoring, sensors, wearable devices.

I. INTRODUCTION

The Internet of Things (IoT) is utilized in many essential
fields and has become one of the most important technologies
worldwide. IoT is a revolutionary technology, which is
able to connect multiple devices, collect heterogeneous
information/data from multiple sources and devices, and
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transmit and process this information and data in real-
time. IoT is defined as a network of things, comprising
different physical things, encompassing embedded devices
integrated with various software and technologies [1],
[2]. IoT allows different types and sizes of things such
as cameras, vehicles, phones, home appliances, buildings,
industrial systems, and people to communicate with each
other and share information in real-time, hence, achieving
intelligent systems [3]. The primary function of IoT revolves
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around facilitating communication and data transmission via
the Internet, thereby enabling seamless connectivity and
interaction between these interconnected physical things.
In IoT, the term “Internet” denotes a worldwide network
comprising billions of computers and diverse electronic
devices. Through the Internet, users can access the desired
information and connect with other people from anywhere
and at any time through standard protocols. On the other hand,
the term “‘things” refers to any object that can be associated
with a particular connectivity. IoT is used to connect anything
and get the desired service [4]. Besides, the escalation in data
transmission and repository size has increased the demand
for big data transfer, so the IoT has become very essential
in data exchange. IoT represents a groundbreaking paradigm
in which objects possessing distinct identities can seamlessly
integrate into an interconnected information network to
provide intelligent services [5].

In recent years, there have been considerable advance-
ments in sensing technologies, wearable/implantable devices,
and wireless communication technologies. The develop-
ment of network technology and sensors such as laser
sensors, radar sensors, and camera devices, has allowed
a smart environment to be achieved with homogeneous
and heterogeneous devices. IoT networks leverage a range
of monitoring systems that harness the benefits of data
processing and analytics, utilizing the power of the Inter-
net to enable informed decision-making in real-time [6].
IoT networks have evolved in many applications such as
patient monitoring system (PMS) [7], [8], [9], intelligent
energy management [10], smart city [11], smart home
monitoring [12], [13], industrial application [14], vehicle
monitoring system [15]. The integration of IoT applications
and engineering technologies has demonstrated significant
value in the biomedical domain, enhancing the efficiency
of medical practitioners and optimizing treatment processes.
The convergence of IoT with medical devices has expedited
medical interventions, streamlined diagnostic procedures,
and improved the management of chronic illnesses. From
the technological perspective, IoT involves some popular
technologies such as wireless-body-area-networks (WBAN5)
to transfer the collected information from the devices to the
centralized cloud for analyzing and extracting meaningful
information for efficient decision-making.

The rapid growth of IoT devices brings innumerable
advantages. According to Statista, there will be more than
75 billion IoT-devices connected to the Internet by 2025,
resulting in an enormous data output [16]. Moreover, 1oT is
growing on an everyday basis with many potential innovative
technologies [17]. To this end, IoT is expected to have a
potential economic impact of $3-6 trillion, and the largest
fraction, $1-2.5 trillion, of this economic impact comes from
smart healthcare applications [18].

The projected global market size for IoT in healthcare
was valued at USD 180 billion in 2022 and is anticipated
to grow to approximately USD 962.21 billion by 2032,
reflecting a compound annual growth rate (CAGR) of 18.3%
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FIGURE 1. The estimated loT in healthcare market sizes, 2022 to 2032
(UsD Billion) [19].

from 2023 to 2032, as shown in FIGURE 1 [19]. The
predicted market share of VR/AR by 2021 is 54.6 billion
USD, up from 2.5 billion USD in 2016 [17]. Consequently,
the bandwidth consumption by this industry is also increased.
The connected devices in different healthcare institutes
and the utilization of IoT systems are considered the most
important parameters related to market growth.

Therefore, leveraging IoT within healthcare is highly
advantageous. IoT-driven healthcare minimizes human error
by networking all vital sign monitoring devices to a decision
support system, empowering physicians to deliver more
precise and timely diagnoses [20]. One of the most important
applications of IoT in the healthcare field is PMS [21],
[22]. The Internet of Medical Things (IoMT) represents
the convergence of medical devices with the Internet of
Things (IoT) [23]. IoMT leads the future of healthcare
systems, envisaging a scenario where every medical device
is interconnected and remotely monitored by healthcare
professionals via the Internet [24]. In the medical sector,
the importance of IoT technologies is highlighted by IoMT,
which is a collection of medical and fitness devices with
various applications that are connected to the systems of
healthcare through online computer networks. IoMT has
several advantages such as improving drug management,
decreasing healthcare costs, enhancing patient experience,
improving diagnosis and treatment, improving disease man-
agement and most effectively achieving efficient PMS for
chronic diseases [25]. This paradigm shift promises faster
and more cost-effective healthcare delivery as it continues
to evolve. Hence, PMS is considered a major part of IoT,
which is related specifically to the concept of the IoMT [21].
In general, the network of IoMT is dedicated to various
medical systems such as PMS, disease treatment, anomaly
detection, medical nursing and rehabilitation, remote and
telemedicine care, conditioning, and screening systems.
PMS combines different equipment that constantly monitors
patients’ health through warning systems of patient vital
signs based on the detecting and tracking of the changes
in their health condition [26]. The importance of PMS has
rapidly increased due to the highly contagious diseases
(such as COVID-19) and the increasing number of elderly
people who require constant care where the demographic
shift toward the aging population [27]. A PMS is useful for
all patients suffering from serious illnesses such as diabetes,
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cardiovascular disease, mental illness, cancer, hypertension,
and COVID-19 [28], [29]. In addition, there is a growing
incidence of factors that negatively impact the quality of
life, such as busy schedules, outbreaks of epidemic diseases,
and increasing pollution levels. Recent statistics indicate
that over 90% of the population is exposed to polluted
environments, exacerbating these challenges [30]. Therefore,
PMS appears as an important technology, which enables
the medical professionals to monitor the patient’s health
remotely and quickly in addition to revolving the healthcare
systems with lower costs and better patient outcomes. The
basic functionalities of PMS are signs detection, monitoring,
and tracking. The application of PMS allows specialists to
monitor and track patients remotely in a real-time manner
based on their convenience at home or office. Besides, PMS
allows to warn the caregivers of potential threats to patient
health, and hence to take quick action automatically. There
are various detection, monitoring, and tracking methods that
have been developed for PMS [31].

Generally, the applications of PMS have analogous
architecture, which consists of wearable sensors and micro-
controllers, wireless communication networks, and cloud
computing platforms. The work in [32] and [33] demon-
strated that PMS can be implanted in real-time with multi-tier
pervasive WBAN. There are many types of sensors that
are used to detect vital signs and physiological conditions
of the patient. Examples of these physiological parameters
are heart rate, body temperature, electrocardiogram (ECG),
electroglottography (EGG), electroencephalogram (EEG),
blood oxygen saturation level (SpO2), blood pressure,
electromyogram (EMG), electrooculogram (EOG), magne-
toencephalogram (MEG), breathing rate, mechanomyogram
(MMG), photoplethysmogram (PPG), respiration (RESP),
and electrodermal activity (EDA) [23], [34]. Sensors send
data to the microcontrollers, which then analyze the data
and determine the process based on the algorithmic design
implemented. For instance, if a temperature body sensor
detects a change in the body temperature, the sign will be
sent remotely to the specialist to sound an alarm and apply
a quick treatment to the patient by the specialist. Hence,
efficient communication systems that are able to carry out fast
detection to send this essential information in a reliable and
secure way are required.

To this end, wireless communication technology has
advanced significantly in recent years, which is considered
a crucial part of the development of automated and smart
healthcare tasks [35], [36], [37]. This advanced development
in such technologies allows PMS to provide fast detection
of patient conditions in real-time scenarios. Therefore, PMS
continues to serve as a cornerstone in driving the evolution
of autonomous healthcare services, particularly as wireless
communication technology advances. Its ubiquity ensures
widespread accessibility to healthcare while minimizing
costs and errors, thereby contributing significantly to the
advancement of medical care delivery. Moreover, through the
employing of efficient cloud computing for PMS, we can
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get coherent-optimized healthcare systems. Utilizing cloud
computing offers several advantages for healthcare systems.
These advantages include streamlined processing of health-
related issues, simplified management of various diseases,
and the capability to access real-time patient information
seamlessly and securely. Furthermore, cloud-based systems
enable synchronized data sharing across multiple platforms,
ensuring scalability to accommodate varying workloads
while addressing concerns regarding scalability and security.
Besides, employing cloud computing with robust algorithms
could ensure that critical information remains readily acces-
sible whenever needed, thereby enhancing the efficiency and
effectiveness of healthcare delivery. A medical server refers
to a remote computer situated within a healthcare institution,
tasked with real-time data monitoring and offering health
recommendations to patients. Physicians or a database handle
monitoring and post-processing. The medical server plays a
crucial role in remotely monitoring patients in telemedicine
settings, using a remote computer to collect and transmit
vital signs to a telemedicine server for analysis. Subsequently,
the medical server assists healthcare professionals by recom-
mending suitable healthcare services for patients remotely
based on the analyzed vital signs

A. MOTIVATION AND PAPER CONTRIBUTIONS

During epidemics and disease crises, such as the COVID-
19 pandemic, and for individuals managing chronic health
conditions like diabetes, as well as for the elderly population,
PMS can play a crucial role in addressing the shortcomings
of traditional healthcare models. PMS becomes crucial,
especially in regions with limited access to healthcare
facilities and medical professionals. PMS can facilitate the
efficient transmission of patient data to healthcare providers,
enabling timely interventions and necessary actions based
on real-time information. Given these critical needs and
the challenges faced by conventional healthcare systems,
there is a compelling necessity to comprehensively study
and understand PMS. Noting that, the appropriate PMS
architecture and necessary communication technologies were
not identified in the earlier review studies. This paper aims to
provide a literature review and an in-depth study of recent
trends in PMS based on IoT technologies, which are required
to achieve efficient healthcare services.

The contribution of this manuscript can be summarized as

follows:

o We provide a comprehensive review of the architecture
of PMS, discussing its essential technologies and
components. This review serves as a foundation for
understanding the complexities of PMS and its potential
applications in healthcare systems.

« We highlight the importance and urgency of adopting
PMS-based IoT in healthcare systems, emphasizing
its potential to revolutionize healthcare delivery and
improve patient outcomes. By adopting PMS-based IoT,
healthcare systems can become more efficient, effective,
and patient-centered.
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o We analyze various types of existing monitoring and
tracking methods in healthcare systems, providing a
thorough understanding of the current state-of-the-
art approaches. This analysis serves as a basis for
identifying areas of improvement and opportunities for
innovation.

« We present the relationship between different layers in
the architecture of PMS, providing a detailed under-
standing of how these layers interact and interoperate.
This understanding is essential for designing and
implementing effective PMS-based systems.

« We identify challenges and provide recommendations
for future work, benefiting both academic and industrial
sectors in remote healthcare applications. These chal-
lenges and recommendations serve as a roadmap for
future research and development in the field.

o Finally, this survey paper contributes to improving
healthcare delivery, disease surveillance, management,
and response strategies during public health emergen-
cies and routine care scenarios. By leveraging the
potential of PMS-based IoT, healthcare systems can
become more resilient, responsive, and effective in
addressing the needs of patients and communities.

B. PAPER ORGANIZATION

The structure of this manuscript is outlined as follows.
Section II presents the basic terminologies related to PMS
and provides introductory concepts of PMS in healthcare
systems. Section III provides a review of remote patient
monitoring systems and discusses the architecture used
for PMS based on IoT, which is essentially required to
achieve effective healthcare systems. Section IV provides a
thorough explanation of the sensors’ application in PMS.
Section V gives a detailed description of the communication
technologies required for PMS. Section VI highlights the
cloud computing and distribution technologies and their
applications in the PMS. Section VIII provides research
challenges and discusses the future research direction in PMS
based on IoT in healthcare systems. Finally, this paper is
concluded in Section IX. FIGURE 2 shows each section and
subsection in the paper.

Il. BASIC TERMINOLOGIES AND INTRODUCTORY
CONCEPTS OF PMS IN HEALTHCARE SYSTEMS

This section discusses the essential terminologies that are
commonly used in healthcare monitoring. In addition, the
basic concept of PMS systems is introduced.

A. SOME BASIC TERMINOLOGIES IN HEALTH CARING
DOMAIN

Over the last few years, the advancement in health tech-
nologies has demonstrated a considerable consequence on
our quality of life. In particular, the development of these
advanced technologies has a considerable impact on enhanc-
ing patient care and diagnostics, which helps in providing
better and quicker treatment. In conventional healthcare
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systems, doctors need to visit patients physically and required
the use of traditional tools for diagnosing their cases [38].
The traditional methods are considered to be cost-effective,
leading to delayed diagnosis, especially for remote distances,
which leads to serious consequences. Therefore, one of the
most important goals of advanced technologies is to build
smart and efficient healthcare models that are able to close
the gap between caregivers and patients to improve patients’
well being [39]. Specifically, with the advancements of
mobile technologies and smart medical devices and sensors,
health experts become able to make a great improvement
on healthcare systems. Furthermore, m-health and e-health,
supported by Information and Communication Technology
(ICT), enable the efficient delivery of healthcare services
to multiple patients, aiding in their health improvement.
Besides, the emergence of IoT presents even more advantages
by connecting diverse devices to the Internet, thereby
providing caregivers with real-time updates on patients’
conditions [7]. In the epicenter of advanced healthcare
technologies, PMS is considered in the advancement of a
medical stream. PMS has different types of equipment such
as microcontrollers and sensors, which are used to collect
the information of the patients and give the required process
using IoT. PMS is very helpful in remote monitoring patients,
especially in the conditions of elderly and chronically ill
patients and those who have chronic diseases such as heart
disease, diabetes, hypertension, and pressure. This remote
monitoring capability offered by PMS proves particularly
beneficial for ensuring timely intervention and personalized
care for elderly individuals and those managing chronic
conditions. By enabling continuous monitoring and early
detection of health issues, PMS plays a pivotal role in
improving the quality of life for patients, allowing healthcare
providers to intervene proactively and mitigate potential
complications. The following are some basic terminologies
that are used for PMS.

« Conventional healthcare system: This refers to a tradi-
tional healthcare practices, where a doctor visits patients
with the required traditional tools, that are not essentially
related to information and communication technology
CT) [38].

o Medical emergency: This refers to the manual call to
the hospital in emergency situations. This call should
constitute some critical information such as the location,
the medical problem nature, and a valid available contact
until the ambulance arrives. Once the patient reaches the
hospital, the caregiver records the vital parameters such
as blood pressure, breath rate, heartbeat, etc., to proceed
with the required treatment.

o The Internet of Medical Things (IoMT), also known
as the Internet of Health Things (IoHT), represents
a significant advancement in healthcare, leveraging
IoT technologies to enhance patient care and health-
care services [8]. IoMT encompasses various medical
devices connected to the Internet, including wearable
sensors and implantable devices like smartwatches
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and smartphones, facilitating the analysis of patient o Telemedicine: This term is defined as an integrated
data [39], [40]. system that has bidirectional remote contact among
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patients and medical professionals. Telemedicine uti-
lizes the emergence of ICT to provide clinical healthcare
and to exchange health information in remote loca-
tions. This strategy is especially beneficial for remote
areas with limited access to healthcare services, as it
overcomes geographical barriers and enhances medical
care accessibility. Telemedicine is crucial for delivering
urgent care during emergencies, potentially saving lives
in critical scenarios. Additionally, telemedicine plays a
role in monitoring patients at home, facilitating quicker,
more efficient, and cost-effective patient mobilization
and rehabilitation [41].

Remote Patient Monitoring system (RPM): This term is
a standard for healthcare delivery that enables caregivers
to monitor patients remotely using smart body sensors
and build upon modern connectivity standards [8]. RPM
performs certain specific tests on the patient’s body,
which is essential in healthcare, especially for the elderly
and chronically ill. PMS term is similar to Remote
Health Monitoring System (RHMS), Mobile Health
Monitoring System (MHMS), and Wearable Health
Monitoring System (WHMS), each denoting similar
systems that serve similar purposes just with different
names across literature [22].

Sensors and wearable devices: This refers to technology-
enabled tools that are able to monitor physiologi-
cal parameters and activity levels for many patients,
facilitating continuous health monitoring and tracking
and personalized care interventions. Typically, sensors
receive their input signals from the physical surround-
ings and produce a response action based on the received
signals. After the vital signs or signals are received
by sensors, they transmit them wirelessly to the Body
Area Networks (BAN) control unit. By monitoring
vital signs like body temperature, blood pressure, body
temperature, serum cholesterol, glucose level, arterial
oxygen saturation, and breath rate, wearable sensors
provide enormous potential for the early detection of
diseases. Noting that wearable devices are typically
attached to the human body, or they are integrated into
elastic bands, textile fiber, or patient clothes. Wearable
devices are used to measure the physiological signals
of the patients and their activity. Moreover, wireless
medical sensors are used to transmit vital signs to a
remote server for diagnostic purposes.

Smart health system: This concept has been given
multiple definitions with different interpretations [39].
Smart health can be defined as an integration of
advanced technologies, data analytics, and digital
communication tools to optimize health management,
improve medical service, enhance patient outcomes, and
improve healthcare delivery.

Pervasive health: This concept aims to deliver healthcare
services to patients anytime and anywhere, as reducing
institutionalization being a tool to face healthcare costs
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FIGURE 3. A generic PMS system with BSN, local switch, PMS server, and
dashboard for PMS visualization with medical staff.

while increasing both the coverage and the quality of
healthcare [39]. Based on the given definition, the con-
cept of pervasiveness emphasizes the broader societal
impact of healthcare accessibility to all, rather than
solely focusing on technological elements. Pervasive
healthcare also encompasses the usage of pervasive
computing principles, such as IoT, to deliver medical
services directly to homes or anywhere. Additionally,
it involves remote data collection through mobile
devices and sensor networks, often resulting in large
volumes of data in diverse formats and with high
frequency.

« Vital patients’ signs: The human body contains different
health signs that reflect the critical health status and
can be effectively used to help in disease detection.
These signs are defined as the important indicators
that are used to monitor the condition of a patient by
allowing the specialized to know the body functions
and find if there is any delay in the patient’s recovery.
Checking these patient signs is one of the most common
interventions being practiced in healthcare settings. The
most common types of these signs are heart rate, body
temperature, ECG, EGG, EEG, SpO2, blood pressure,
EMG, EOG, MEG, breathing rate, MMG, PPG, RESP,
and EDA [23], [34].

Health monitoring based on IoT is considered as an
advanced platform to provide us with a remarkable ser-
vice in contemporary medicine. Recent advances in cloud
computing, mobile technologies, and wireless sensor net-
working give a great possibility for efficient remote patient
monitoring. FIGURE 3 demonstrates a generic PMS system
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with body-sensor-network (BSN), local switch, PMS server,
and dashboard for PMS visualization with medical staff.
The applications of 10T in the medical sector seem to be
endless, but the most promising ones are represented by
monitoring and tracking patient health using PMS. To this
end, PMS is able to perform various functions with an
aim to achieve different objectives, which can be listed as
follows:

« Affordability and automating healthcare: Affordability
in healthcare can be significantly enhanced by PMS
through measures such as reducing hospital readmis-
sions and administrative costs, ultimately lowering over-
all healthcare expenses. Additionally, PMS contributes
to automating healthcare processes, optimizing tasks
such as data collection, appointment scheduling, and
treatment reminders, thereby improving efficiency and
quality of care delivery.

o Improve work productivity and accuracy: Monitoring
patients through PMS will likely improve the accuracy
of the diagnosis and provide a fast decision in med-
ication management and productivity [42]. PMS has
the ability to simplify healthcare workflows and reduce
administrative burdens on healthcare professionals,
hence allowing them to focus more on patient care and
improve overall work productivity.

o Real-time patient tracking: The majority of PMS
provides portable, high reliability, and wireless low-cost
tracking of patient health metrics and activities, hence
facilitating prompt decision-making and interventions
based on current patient conditions. In the sophisticated
technologies of real-time patient location monitoring,
the location of the patients is tracked then an alarm is
raised based on specific incidents. Such activity should
be performed in real-time, and hence, effective rescue
and immediate operations should be guaranteed.

o Security of data access: PMS can offer the security and
reliability requirements for healthcare systems, which is
important to protect the data and prevent unauthorized
access by a secure communication framework. Besides,
PMS ensures the privacy and confidentiality of patient
information by using robust encryption and access con-
trol measures, safeguarding sensitive medical informa-
tion from unauthorized access, and following industry
standards and regulations. The main criteria for security
and privacy of a cloud-based healthcare approach are
authorization, non-repudiation, authentication, integrity,
and confidentiality.

o Speed up data management: in PMS, patient’s vital
parameters can be transmitted faster in real-time to
health professionals such as doctors, nurses, or lab-
oratories regardless of the geographic location of
patients. Therefore, the rapid availability of patient
information allows rapid data analysis and provides
predictive insights into the patient’s condition with
appropriate management and treatment. In addition,
PMS accelerates the processing and organization of
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FIGURE 4. The significant functions and applications of PMS in
healthcare systems.

patient data, allowing healthcare providers to access
critical information efficiently.

Remote monitoring and medical assistance: One of
the main objective of PMS is to allow healthcare
professionals to monitor patients’ vital signs remotely
in real-time, hence enabling timely intervention and
medical assistance, especially for those in remote or
inaccessible areas.

Prevention of disease spread: By enabling remote
monitoring and minimizing in-person interactions, PMS
helps prevent the spread of infectious diseases, espe-
cially during pandemics or outbreaks, by reducing the
need for patients to visit hospitals and doctors.
Reduction of care costs and patient expenses: PMS
can play an essential role in lowering healthcare
costs. This can be achieved by detecting health
issues in an early stage, proactive management, and
reduced hospitalizations, and hence, beneficial for both
providers and patients, resulting in decreased overall
expenses [43].

Patient self-management: PMS enables patients to
participate in their own healthcare by providing tools
and resources for self-monitoring and management of
their health conditions. By promoting self-management,
healthcare providers can enhance patient engagement,
improve health outcomes, and optimize the efficient use
of healthcare resources.

Boosts caregiver connectivity: PMS enhances commu-
nication and collaboration among caregivers, enabling
seamless coordination of patient care plans, sharing of
medical information, and providing support to patients
and their families.

The aforementioned functions and applications are illus-
trated in FIGURE 4.
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IIl. REMOTE PATIENT MONITORING SYSTEMS
ARCHITECTURE BASED ON loT

Currently, one of the most critical global challenges revolves
around ensuring that healthcare services are available,
accessible, and affordable for everyone. PMS is, in particular,
one of the most essential health systems that has a great effect
in health services by providing faster monitoring, diagnosis,
and treatment for people who need continuous and/or urgent
healthcare. PMS is a revolution in the digitalization of
healthcare, and it uses a combination of software and
hardware to provide a fast and effective decision-making
process. We aim to build a healthcare system that are
able to allow individuals to take an active role in the
management of their health conditions, which can effectively
improve patient engagement and enhance overall health
outcomes. This engagement impacts individuals and commu-
nities profoundly, influencing health outcomes and overall
well-being. Thus, by enabling people to actively engage
in their healthcare decisions and treatment plans, patient
self-management plays a critical role in tackling health
concerns. By fostering patient engagement and responsibility,
healthcare providers can enhance the effectiveness of care
delivery and the distribution of healthcare services, leading to
improved health outcomes and a more sustainable healthcare
system [44].

One of the main objectives of using IoT and remote health
monitoring is to transfer medical services from hospitals and
extend them to convenient homes. IoT comprises a network of
interconnected electrical and wireless devices that collaborate
to collect and share patient data for diagnostic and analytical
purposes, as well as for securely storing patient information.
This technology has revolutionized healthcare by allowing
real-time health monitoring, and personalized treatments
that could significantly improve patient healthcare [45].
Various sensors and devices can be used in PMS to collect
patient data. PMS-based IoT is an advancement in the
medical stream for monitoring patients’ conditions. For
instance, the movement of comma patients’ bodies should
be recognized and checked continuously using temperature
measuring devices, [oTs accelerometer (devices and sensors
for measuring body movement), and eye blinkers [22]. The
elderly and people with chronic illnesses can benefit from
these remote monitoring devices [46].

The design and implementation of PMS architectures aim
to optimize patient care by ensuring accurate data collection,
efficient data processing, and timely communication of
relevant information to healthcare providers. To this end,
several research works have considered the real-world
applications of PMS based on IoT in healthcare systems. For
example, the work in [47] provided a comprehensive survey
discussing edge computing solutions for IoT applications,
covering applications and highlighted the benefits of edge
computing over cloud computing in healthcare domains. The
work in [48] investigated the impact of IoT intervention in a
hospital unit and provided empirical evidence on the effects
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of smart technologies on patient safety particularly (patient
falls and hand hygiene compliance rate) and staff experiences.
The work in [49] considered the detection and monitoring
of cardiovascular autonomic neuropathy in diabetes patients.
The work in [50] provided an empirical investigation of how
wearable IoT devices would bring about a revolution in the
healthcare industry. The work in [51] developed a system
that tracks blood pressure using the Keep In Touch (KIT)
method and integrated closed-loop healthcare services. The
KIT device is connected to a JAVA-based mobile phone
via near-field communication, which operates on principles
of magnetic and inductive coupling, effective only at short
distances. Upon touching the KIT, data is transmitted to the
mobile phone. In the closed-loop system, this data is then
securely sent from the mobile phone to a designated website,
allowing for remote monitoring of the patient’s blood
pressure. The work in [52] proposed a method to monitor
a patient’s ECG waves from any location globally using
the IOIO-OTG Microcontroller. An Android application
was developed specifically for ECG monitoring, where the
IOIO-OTG microcontroller connects to the Android phone
via USB cable or Bluetooth. After data collection, the ECG
waves are transmitted to the Android app, which allows for
both monitoring and storage of the ECG data. The work
in [53] concentrated on monitoring body temperature using
a Raspberry Pi board within a cloud-based system. Their
approach involves using the Raspberry Pi to monitor body
temperature, with the data being transmitted through wireless
sensor networks (WSN) to a cloud-based platform, where it
can be accessed for temperature monitoring. The work in [54]
introduced a system for monitoring body temperature using
an LM35 temperature sensor connected to an Arduino Uno
board. A website in SQL database format was created and
linked to the Arduino Uno, enabling sensor output to be sent
directly to the website. Through this platform, users can log
in and monitor body temperature remotely. The work in [55]
explored the monitoring of ECG, respiration rate, heart rate,
and body temperature using a system where various sensors
are connected to a PIC16F887A microcontroller. After
gathering data from the sensors, the information is uploaded
manually. To facilitate monitoring, an application, and a
webpage were developed for health status tracking. The work
in [56] discussed a system that monitors temperature, blood
pressure, and heart rate of patients. In this setup, sensors
are connected to a microcontroller, which is also linked to
a GSM module. Once data is collected, an SMS is sent to
the doctor if any values are concerning. The work in [57]
described a method for monitoring ECG waves using an AT
Mega 16L microcontroller. The system employs a Zigbee
module to transfer ECG data to the nearest connected system
for further analysis. The work in [58] developed a system for
controlling and monitoring home appliances via an Android-
based smartphone. An Arduino Uno board is connected to
home appliances like lights and fans. An Android application
was created for this smart home system, enabling users
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to control and monitor appliances remotely from anywhere
in the world using the internet. The work in [59] focused
on monitoring body temperature and heart rate using a
C8051F020 microcontroller. Wearable sensors collect data,
which is then transmitted to the microcontroller. A Zigbee
module connected to the microcontroller transmits the data
to the nearest receiver.

Typically, PMS architectures consist of either three or four
layers, depending on the system design. These layers share
common concepts across different PMS implementations.
The PMS architecture refers to the organizational structure
that defines how the system operates and how different
IoT components interact with each other. This architecture
typically consists of multiple layers, each serving specific
functions and contributing to the overall operation of the
healthcare system. PMS architecture can be categorized into
different layers which are physical, logical, and application
layers. The physical layer includes a number of different
sensor nodes that are operating within a wireless network.
Then, the logical layer comes to processes the data collected
from the sensors in the physical layer. Finally, the logic
layer deals with media access control and mind-to-mind
communication. The application layer is responsible for
determining the decisions based on the data processed in
the logic layer. The work in [44] defined the PMS by
using a three-layer architecture, which involves BSN, wide-
area-network (WAN) and personal-sensor-networks (PANs).
Physiological parameter sensing is the responsibility of BSN,
while the final layer addresses the interrelated medical
services. PSNs, or personal surveillance networks, are made
to record and process contextual information about people
and their environment. Through personal service applications
that function as a gateway layer, PSNs are important in
facilitating integration between the first and third layers.
The work in [60] divided the architecture of the residential
environment in an e-healthcare system into four layers. In this
architecture, layer 1 refers to the BAN layer, which includes
different types of sensor nodes operating within wireless
networks. Layer 2 comes to have user interaction devices.
This layer works as an access-point layer to represent the user
interaction interface. The medical information is gathered
from layer 2 and transferred to layer 3 to prepare for the final
destination using home networking possibilities. The role of
Layer 3 is to filter and analyze the data collected, which
is automatically connected to the Internet. Finally, Layer
4 provides the required healthcare to the patient based on
delivered analyzed data. Another approach PMS architectures
is proposed in [61]. In this PMS architecture, four layers are
proposed which are: sensors, data acquisition, transmission,
and database layer. In the proposed architecture, the Wi-Fi
communication technique was used to connect the sensors to
the smartphones, while 5G technology was used to connect
smartphones to a cellular network, which in turn sent the data
to the database. Besides, machine learning (ML) algorithms
are proposed to classify the data for diagnostic purposes. The
first layer was used to connect sensors and interface them
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wirelessly to layer 2. Layer 2 is represented by the patient’s
smartphone. Using a mobile application, the collected data
is sent to the base station via the 5G network through
layer 3, which is the transmission layer. The final layer, which
is the database layer 4 was utilized as a processing unit
that stores, processes, and classifies the data using machine
learning (ML) algorithms. Furthermore, several works have
investigated different PMS architectures, see. e.g., [40], [62],
[63], [64], [65], [66], [67].

In this paper, we propose to use five 5 layers PMS
architecture. FIGURE 5 illustrates the proposed general
architecture for remote PMS, which is composed of a sensing
layer, wireless communication layer, edge/fog computing
layer, cloud computing layer, and application/action layer
that involves a user interface and medical server layer.
As shown in FIGURE 5, the data is obtained by different
types of sensors and wearable devices, then it is transmitted
using a short-range communication protocol to the nearest
gateway, such as a display, a smartphone, or a computer.
After that, the processed signal is transmitted to a remote
server that is used by the healthcare specialized person,
which is usually placed in a health institution. End users
are the one benefit from the PMS, which could be patients,
medical staff, hospitals, doctors, government organizations,
clinical research institutes, and manufacturing companies.
The general architecture of PMS can be summarised as
follows:

o Things layer (sensing layer): This layer is the lowest
level of the architecture where data is captured from
sensors and devices attached to the patient. Specifically,
this layer involves collecting of the patient’s vital signs
by using interoperable wearable medical devices, such
as wearable sensors, EMG, ECG, SpO2, heart rate
monitors, temperature sensors, ambient sensors, blood
pressure sensors, and many other sensors and devices.
The sensing layer collects real-time health-related data
from patients and transmits it wirelessly to the higher
layer.

« Communication/Networking layer: This layer acts as a
gateway layer where the data collected from sensors
and wearable devices is processed and aggregated
locally before being forwarded to a higher-level layer or
the cloud. This layer can manage device connectivity.
It might also facilitate the transmission of processed
data to higher-level systems or healthcare professionals.
This layer involves networking protocols to ensure that
healthcare data is transmitted securely and efficiently.
In particular, the communication and networking layer
often communicates with devices using short-range
wireless protocols like Bluetooth, Zigbee, and Wi-Fi.
Then, the data is forwarded to the cloud using Wi-Fi or
cellular networks.

o Edge/Fog computing: This layer serves as an inter-
mediate hub that can pre-process the data, and per-
form basic analytics. Edge computing can be used
to enable programmable decentralized networks, and
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FIGURE 5. The general multi-layer architecture of PMS in healthcare systems.

hence, facilitating effective processing and management « Application/action layer (medical server): The pro-

of data at the network’s edge rather than at the central-
ized cloud. This is particularly useful for delay-sensitive
applications such as PMS. Noting that fog computing
is an edge computing technology that brings cloud com-
puting closer to the locations where data is generated and
collected by extending its capabilities to the network’s
edge. Such distributed computing technique enables
the processing and analysis of data to be performed

cessed data is presented to healthcare providers or
integrated with electronic health records (EHR) systems.
This layer enables visualization, alerts, and decision
support tools for clinicians. This layer may involve self-
management, active assisted living (AAL), activities
behaviors, emergency detection, disease prevention,
and mobile health (m-Health) [68] or electronic health
(e-Health) [69].

closer to the data source, hence reducing latency,
conserving bandwidth, and improving overall system
efficiency.

e Cloud computing layer: IoT utilizes a distributed
platform to process and store data. Data can be obtained
from the communication/gateway layer. Alternatively,
data from sensors and wearable devices can be sent
directly to the cloud layer for processing, storage,
and analysis. Cloud-based platforms provide scalability,
flexibility, and accessibility, allowing for centralized
data management and advanced analytics. The devices
typically communicate with the cloud using WiFi, cellu-
lar networks, or other long-range wireless technologies.
In the cloud layer, the raw data is processed and
analyzed. Algorithms may be applied to detect patterns,
anomalies, or specific health parameters.

A complete review on the significant components used in
PMS architecture is provided in the following section. This
would reflect each point in architecture provided previously.

IV. SENSORS AND WEARABLE DEVICES IN HEALTHCARE
SYSTEM

This section discusses the application of sensors, which
is considered the most essential part in PMS healthcare
architecture. Then, a description of the wearable devices and
their use in PMS.

A. SENSORS FOR PMS

Typically, the first layer in PMS healthcare architecture
is represented by sensor nodes. Sensors are made to be
implanted beneath the skin (in-body), sewn into clothing
(wearable), or applied to the human body as tiny patches (on-
body) [60].
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In general, sensor is a device that receives signals and
responds to a stimulus. An electrical value is translated
from a nonelectrical value via a sensor [70]. A sensor is
defined as a computing device that can be installed on people,
animals, and objects. Sensors are ubiquitous, with applica-
tions spanning homes, offices, shopping centers, and auto-
mobiles, embodying a fundamental component of the modern
world. Sensors can sense, transmit, process information, and
perform different works such as motion detection, image
sensing, voice control, environment perception, physiological
signal monitoring, and gesture recognition.

In PMS, various sources are used for data acquisition
and gather information related to the patient, environment,
activities, and behaviors. Sensors are the most important
part in the PMS, which are used to collect information on
the patient’s condition. They are smaller in size, faster in
process and gathering information, and cost-efficient [66].
It is important to mention that sensors are considered as the
core element or fundamental component of any wearable
device [71]. Hence, it is essential to delve into the specifics
of sensors and explore their fundamental types.

In wearable technology, sensors play a pivotal role in
capturing various physiological and environmental data that
are essential for monitoring health parameters or activity
levels. Different types of sensors, such as accelerometers,
heart rate sensors, temperature sensors, and ECG sensors,
are integrated into wearable devices to collect specific data
points. Understanding the characteristics and capabilities of
these sensors is essential for optimizing the accuracy and
effectiveness of wearable devices in healthcare applications.
Studying sensor technology within wearables not only
enhances our comprehension of device functionality but also
guides decisions on device choice, data analysis, and the
creation of modern healthcare innovations. Hence, this review
paper provides an explanation of the different types of sensors
to provide researchers with the important information they
need.

The emergence of the first thermostat in 1883 is often
regarded as the inception of modern sensor technology.
Since then, sensors have evolved significantly, adopting
various principles and forms. Early sensors were relatively
straightforward, measuring specific quantities and generat-
ing mechanical, electrical, or optical signals in response.
However, over the past decade, the landscape of sensor
technology has been revolutionized by advancements such
as computing power, pervasive communication networks,
internet connectivity, mobile smart devices, and integration
with cloud computing. These developments have greatly
enhanced the capabilities of sensors, enabling sophisticated
applications in healthcare, wellness monitoring, and environ-
mental sensing [72]. The evolution of sensor technologies
into pervasive sensing environments poses fascinating not
merely through integration them into sensing networks but
through the way of adapted these technologies to operate in
diverse collective sensing applications. Network technologies
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allow sensors to be connected and integrated into home
infrastructure. Every sensor is performing one or more tasks
concurrently [73].

Sensors have several forms of properties of the input
signals and electrical output signals. They can detect any
small change in the sensed quantity of the input and produce
a change in the electrical output using their measuring
capabilities. It is important to distinguish between sensors
and transducers. The transducer converts any type of energy
into another, while the sensor converts any type of energy into
electrical energy. For example, a loudspeaker is a transducer
that receives the electrical signal and converts it into acoustic
waves. Sometimes, a Transducer can be used as an actuator in
different applications, which converts electrical signals into
nonelectrical energy (the opposite of a sensor). An electric
motor that transforms electrical energy into mechanical
action is an example of an actuator [74].

Sensors can be classified into different types and can be
made based on different aspects such as uses, applications,
and material, and based on their characteristics such as
accuracy, range, and cost. In general, the data generated by
sensors has also different formats. This format is classified as
numerical, categorical, graphics, and video. Therefore, PMS
can be categorised into two partitions. One partition called
vision-based approach and the other called sensor-based
approach, which is related to the formats and sensor types
as discussed in [73]. Different types of sensors with their
applications are presented in [72]. Besides, Table 1 presents
a comparison of the most common types of sensors [75],
[76], [77]. Noting that sensors such as sound, light, smoke,
color, and seismic sensors are typically employed in various
innovative ways to capture physiological data by monitoring
changes in the environment that correlate with specific bodily
functions. For example, sound sensors can be used to detect
breathing patterns or heartbeats by capturing the acoustic
signals generated by these activities [78]. On the other hand,
light sensors can measure changes in skin tone or detect
blood flow by monitoring variations in light absorption, often
used in pulse oximetry [79], [80], [81]. Smoke sensors,
though more commonly associated with detecting fire, can be
adapted to monitor respiratory functions by sensing changes
in air quality or exhaled gases, indicative of metabolic
processes [82]. Color sensors are instrumental in analyzing
changes in skin color, which can reveal information about
oxygenation levels or emotional states. Seismic sensors,
traditionally used for detecting vibrations, can be finely
tuned to monitor subtle movements such as those caused
by heartbeats or muscle contractions [83]. By leveraging
the sensitivity of these sensors, physiological data can be
gathered with high precision, allowing for continuous and
non-invasive monitoring of vital signs.

Sensors can be divided into passive and active. A method
of using passive and active sensors in road extraction is
presented in [84]. The passive-type sensor does not require
an additional energy source. It is able to generate an
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TABLE 1. Different types of sensors.

Sensors | Action Advantages Disadvantages
Tempe- Detect thermal parameters | * No need to use a reference tempera- | Error of self-heating from applied
rature and record signal temperature | ture. power and challenging to adjust.
sensor changes.  Large response time and easy display.
Position | Detect the position of an object. | * Accurate and predictable measure- | The target object’s metal kind deter-
sensor ment. mines the range.
* Higher switching rate and suscepti-
bility to noise.
Sound Detect the intensity of the sound | Real-time sound manipulation is sim- | Sound files require more memory
sensor and sound pressure waves. ple and doesn’t require cabling. size and have limited coverage area.
Light Transforms detected photons of | Requires lower power, available in dif- | Nonlinear characteristics, temper-
sensor light energy into electrons for | ferent shapes and Sizes., quick re- | ature sensitive, and vulnerable to
use in devices like photodiodes | sponse time, and low cost. surges and spikes.
and resistors.
Accelero-| Detects the acceleration of an | Good response at higher frequencies, | Sensitive to high frequency and re-
meter object, senses the acceleration | resists high temperature, and has a | quires external power.
of gravity, and calculates the ob- | small size.
ject’s direction.
Infrared | An infrared (IR) sensor con- | Operates with low power, strong noise | Requires line-of-sight Deployment
sensor sists of two packs. Transmitters | immunity, and detects presence or ab- | and has Limited range. Affected by
transmit the rays in the infrared | sence of light. environmental conditions.
spectrum and the receiver re-
ceives the IR spectrum range.
Pressure | Assign signals to the inputs | Low cost and high output signal level. | High hysteresis, sensitive to vibra-
sensor of control and display devices tions and movable contacts.
based on the measurement of
gas or liquid pressure.
Ultrasonic| Sensing and measuring the dis- | Greater sensing distance, resistance to | Sensitive to variation in the Tem-
sensor tance of a particular object. dust, rain, snow, and other environmen- | perature, cannot work in a vacuum
tal factors, and the ability to sense all | and sensing accuracy is affected by
elements in dark situations are its main | soft materials.
features.
Smoke Utilised to detect the existence | * Simple and low-cost technology. Requires air or oxygen to work, nar-
and gas and characteristics of various | * Wide measurement range. row or limited temperature range.
gases and transmit signals in the | * Increased dependability, sensitivity,
form of output signals to the | and resolution.
controller.
Humidity | Determine the amount of water | * Does not require much maintenance. | * Sensitive to dewing and Sub-
sensor present in the surroundings and | ¢ Flexibility to use. stances.
translate these findings into sig- | No aging effects. limited accuracy and measurement
nals suitable for input stimula- range.
tion.
Color Uses a receiver to pick up light | Simple to implement and easy to ad- | Sensing range affected by color and
Sensors reflected off the detecting item | just configurations without even repro- | reflectivity of target.
after light is emitted from a | gramming the sensor device.
transmitter.
Chemical | Transmits chemical information | Linear output, low power requirements | Narrow or limited temperature
sensors from a chemical reaction. and good resolution with excellent re- | Range with short or limited life
peatability and accuracy.
Seismic | Records and amplifies minute | Detects lateral and vertical variations in | Data processing is time-consuming
sensor motions of the earth in addition | velocity and produces detailed images | and equipment is expensive.
to measuring them. of the Subsurface.
Continued on next page
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TABLE 1. (Continued.) Different types of sensors.

Sensors

Action

Advantages

Disadvantages

Touch
sensor

Function as switches, and when
the sensor’s surface is con-
tacted, the circuit’s current be-
gins to flow, just like it would in
a closed circuit.

Touch interactions are natural and fa-
miliar to users accustomed to smart-
phones and touchscreens and elimi-
nates the need for protruding buttons.

Touchscreens are susceptible to ac-
cidental touch and more susceptible
to scratches and cracks.

Magnetic
sensor

A response by generating a pro-
portionate output to the pres-
ence or absence of a magnetic
field, including flux, strength,
and direction.

Contactless Operation with high-Speed
Response and high Resolution.

Limited to conductive materials and
higher cost.

Optical
Sensors

Quantifies biological or chem-
ical reactions, such as varia-
tions in colour, scattering, fluo-
rescence, and light absorbance.

Reasonably priced production, visual
estimation, simplicity in design, speedy
optimisation, and adaptability. elevated
sensitivity. corrosion-resistant and suit-
able for use in challenging conditions.

Dye biocompatibility in fluores-
cence and colorimetric sensors. Re-
quires bulky UV lamps or flu-
orescence spectrophotometers and
bulky size.

Proximity
Sensors

Used to find adjacent items
without coming into direct con-
tact with them.

It can detect both metallic and non-
metallic targets, It has good stability
with high speed provided. Low cost and
power consumption and useful and can
help with many security problems

They are affected by temperature
and humidity and difficulties in
designing with limited operating
range and expensive than inductive
and capacitive sensors.

Force
SEensors

Convert applied mechanical
forces such as compressive
and tensile forces-into

digital signals whose values
correspond to the applied force.

Accurately measure the magnitude and
direction of applied force and provide
real-time data on force variations, en-
abling adjustments in processes for op-
timal results.

High-precision force sensors can be
expensive and certain environmen-
tal factors like temperature fluctu-
ations might affect sensor perfor-
mance.

Flow
Sensors

Used to measure a fluid’s flow,
such as a liquid or gas, and send
the controller output signals.

Accurate and reliable data on the rate
of fluid movement through a pipe or
channe and come in various types suit-
able for measuring different fluids (lig-
uids and gases), flow rates (low to
high), and pipe sizes and can be inte-
grated with data acquisition systems.

The cost of flow sensors can vary
depending on the type, accuracy,
and features. High-precision or spe-
cialized sensors can be expensive
and may require periodic mainte-
nance or calibration to maintain ac-
curacy, especially in harsh environ-
ments or with continuous use.

Flaw
Sensors

Used to display irregularities on
surfaces or different underlying
materials in a variety of manu-
facturing processes.

e Allow for early detection of defects
before they become critical failures,
enabling preventative maintenance and
avoiding costly downtime or accidents.
e Flaw sensors are used in various
industries, including aerospace, auto-
motive, construction, and power gener-
ation.

e Analyzing sensor data and
interpreting results often requires
trained personnel with expertise.

* Depending on the sensor type,
there might be limitations on how
deep flaws can be detected within a
material

Electro-
chemical
sensor

Transform the redox reaction’s
impact on electrode surfaces
into electrically readable signals
that indicate variations in con-
ductivity, current, and potential.

Low waste fabrication and possibility
of large-scale production.

Requires external power sources
and requires amplification tech-
niques for highly sensitive signals.

Piezo-
electric
sensor

Investigated for energy-
harvesting solutions and
self-powered sensors in

biointegrated devices.

Broad sensing range, high-frequency
response, and simple construction.

Charge leakage and the only possi-
bility of dynamic sensitivity.

electric signal directly in response to an external stimulus.
Examples of passive sensors are thermal, infrared, electric,
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and chemical. On the other hand, an active sensor type
needs an external energy source for their response, (known
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as an excitation signal). Examples of active sensors are
thermistor sensors and resistive strain gauge sensors. The
work in [85] provided an extensive review of sensor
technologies and their transformative impact on our lives
across various fields. The author discussed how sensors are
able for detecting changes in the environment and collect-
ing signals, hence enabling a wide range of applications
spanning lifestyle, healthcare, fitness, and manufacturing.
Specifically, the paper highlighted sensor applications in
healthcare, where drug-delivering sensors can be used to
aid medication adherence by reminding individuals to take
medicine and providing doses at specific times, benefiting
older adults, athletes, and at-risk patients. Additionally, the
review outlined key industrial trends such as ultrasound,
radar, and optoelectronic solutions driving sensor innovation,
emphasizing their critical role in modern business operations
and everyday activities. The work in [86] explored the
diverse and rapidly evolving field of sensors driven by high
demand and continuous technological advancements. The
authors discussed the electrochemical sensors that is known
for their affordability and versatility in detecting various
analyses and are extensively employed across industries
like agriculture, food, oil, environment, and healthcare. The
review highlighted the appeal of electrochemical sensing
due to its versatile reporting signals (voltage, current, power
output, impedance) and low detection limits attributed to
Faradaic and non-Faradaic currents. Additionally, it discusses
recent advancements and applications of electrochemical
sensors, particularly emphasizing the role of nanomaterials.
The work in [87] presented a comprehensive review of
advancements in soft sensor design and implementation,
focusing on their critical roles in industrial process moni-
toring, control, and optimization. The author also discussed
how new theories, techniques, and information infrastructure
have improved soft sensor performance while also how to
address some related technical challenges. Furthermore, the
author discussed the most recent developments in the soft
sensor design, offering insights from a systems and control
perspective, to provide up-to-date information related to
this research. The work in [88] reviewed the integration
of artificial intelligence with health monitoring sensors to
improve healthcare capabilities, addressing some technical
challenges such as noise, data processing, and feedback
control. Besides, this paper explored advances in wearable
and implantable sensors for monitoring vital signs, soft
electronics for therapy, and volatile organic compound
detection. Furthermore, this paper discussed some recent
developments in artificial intelligence-enhanced human-
machine interfaces and self-sustainable sensor systems,
highlighting the potential for more intelligent and secure
healthcare services in future biomedical applications.

There are three classes of interconnected networks namely
as PSN, BSN, and multimedia devices. Such networks can
be deployed within living environments or integrated into
various household objects such as sofas, tables, beds, chairs,
or floors, all equipped with pressure sensors. By monitoring
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subjects within their environment and interactions with these
objects, PSNs offer valuable insights into the performance
levels of daily living activities. The data provided by PSNs
enables a deeper understanding of individual behavior and
facilitates the development of personalized solutions for
healthcare and lifestyle management [73]. Usually, the first
layer of PMS architecture is termed BSN. A BSN can be
defined as a wireless network obtained by deploying different
sensors in and around the human body [89], hence it is a
network of wearable sensors that are used for monitoring
patients [90]. Miniaturised wearable or implantable wireless
sensors have been employed in the introduction of the BSN
concept. Imperial College London proposes the BSN node,
a BSN hardware development platform, to support BSN
research and development. BSN nodes offer a flexible devel-
opment environment for ubiquitous healthcare applications
because of their low power consumption, compact size,
and flexible design. The sink node in a BSN gathers data
and sends it across the Internet for sharing. Social welfare,
emergency treatment systems, diagnosis services, and patient
direct care can all benefit from having a BSN [91]. Basically,
the identification of the sensor node is defined by a unique ID
for each device. For example, in a single BAN, two motion
sensors are used: one for tracking hand motion and the other
for tracking foot movement [92]. BSNs are moving towards
intelligence and multi-technology integration. Despite the
existing challenges associated with BSNs, their future holds
significant promise as they have the potential to deeply
transform human-machine interactions.

The widespread adoption of home appliances integrated
with sensors is paving the way for interactive healthcare
environments. These integrated appliances are electronic or
electrical gadgets that have several uses in the house. Devices
such as TV sets, speakers, phones, cameras, and microphones
create a platform for data sharing between people and
healthcare systems. These devices enhance user engagement
with health applications, serving as new sources of contextual
data and platforms for guidance and counseling. Multimedia
devices, such as cameras and microphones, are central to
these approaches, enabling visual and audio sensing for
monitoring daily activities [73]. Wireless sensors, including
smartphones, smart cameras, and devices like Raspberry
Pi with cameras, are instrumental in monitoring chronic
disease patients, comatose patients, and newborns for smart
caregiving and independent living in smart homes. These sen-
sors facilitate measurements such as respiratory and cardiac
rates using air quality sensors, integrated toilet seats with
ECG monitors, cardiac and respiratory monitors, and smart
beds equipped with sensor-enabled pillows and magnetic
switches. Vision-based methods extend further to include
posture recognition, human presence detection, movement
and fall monitoring, and tracking complex activities. While
multimedia-based approaches offer rich contextual insights,
they are challenged by computational demands and privacy
concerns. Data acquisition methods vary across sensors,
and the heterogeneous sensor set provides primarily raw,
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low-level data that is imperfect, uncertain, and of limited
meaning. Thus, further advancements are necessary to
develop higher-level approaches for delivering comprehen-
sive healthcare services. Besides, advanced signal processing
techniques such as those presented in [93], [94], [95], [96],
and [97] can be used to obtain efficient healthcare systems.

When it comes to creating and retrieving raw sen-
sor data-that is, information about the patient and their
surroundings-physical sensors are thought to be the most
often employed type of sensors [73]. The common types
of sensors used for the purpose of health sign activity
monitoring, which are generally attached to human body,
are provided as follows [98], [99]. Electrocardiogram (ECG)
sensor is used for heart rate monitor. Electromyography
(EMG) sensor is used to track muscle contraction. EEG
(electroencephalography) sensor is used for brain electrical
activity monitoring. Glucose sensor is used for measuring
and monitoring glucose levels in the body. Pulse oximeter
(SPO2) is used to measure oxygen saturation of blood. Body
temperature is used to track temperature sensor. Respiration
sensor is used for detecting and measuring respiratory
parameters such as breathing rate, volume, or patterns
to monitor respiratory function and provide insights into
respiratory health. Finally, motion sensors (accelerometers)
used to estimate user’s activity.

B. WEARABLE SENSOR DEVICES

Data acquisition plays a crucial role in PMS by utilizing
smart health devices, primarily wireless sensors and wearable
devices, which gather comprehensive patient data. Wearable
devices like digital watches, smart clothing, and fitness
tracker bands collect a diverse range of health information,
enabling continuous PMS and data collection for wearable
health monitoring systems) and general health monitoring
systems. Specialized devices like smart vests are used
for non-invasive physiological monitoring, including ECG,
galvanic skin response, body temperature, and blood pressure
assessment. Such data acquisition methods not only enhance
athlete performance and support disabled individuals but
also enable personalized healthcare interventions based on
real-time patient data.

Since Steve Mann, who is recognised as the father
of wearable computing, unveiled the first Linux-based
wristwatch at the 2000 IEEE International Solid-State
Circuits Conference, the number of wearables has increased
dramatically over the past ten years [100]. The first wearable
sensor was called Holter monitoring, which was developed
in the late 1940s and used in clinical settings in the 1960s.
It is a portable gadget that tracks the central nervous
system’s electrical activity continually. The field of wearable
sensors has advanced during the last ten years, having
begun to take shape in the first part of the 20th century.
Wearable devices have been introduced as key enabling of
IoT-based healthcare systems, which attracted much attention
due to their various functionalities. Besides, the wearable
devices become available in the market at an acceptable
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price [101]. Wearable devices have many advantages and
are becoming more and more popular because they make
life easier. Wearable devices have been used in different
applications such as environmental detection, physiological
signal monitoring, human activity recognition, and most
importantly healthcare monitoring. An example of wearable
devices are smartwatches, smart glasses, and fitness trackers.
Particularly, these devices integrate low-power sensors to
detect movement and other physiological signals. As a result,
research and commercialization are now focused on wearable
sensors as functional parts of wearable technologies [71].
With the recent advancements in [oT and artificial intelligent
technologies, wearable sensors have been developed and
employed widely in the scientific and industrial communities
and receiving significant attention in sophisticated scenarios
such as navigation systems, biomedical applications, Google
Glass, consumer goods and smart clothing. The combination
of IoT, augmented reality, and wearables can create new
paradigms that may potentially change the way people experi-
ence the world [102]. Proactive personal health management
involves monitoring patients outside of the hospital setting,
often using wearable sensor devices. This approach allows
individuals to actively track and manage their health status
remotely.

The wearable devices can be placed on-body biosensors,
which should unobtrusively measure significant physiologi-
cal signals like blood pressure, body movement, heart rate,
skin, and body temperature [60]. Wearables can be worn on
the body itself, concealed in clothing, or housed in semi-rigid
objects like headgear, gloves, insoles, and smart watches.
In PMS, wearable devices cover a wide and important
range of applications. The working and characteristics of
wearable devices in healthcare fields are mainly based on the
observation of physiological data from the user’s body [71].
These wearable devices in PMS are considered simple in
use, low-cost, independent devices targeting personal use
without the need for medical professionals. These properties
make wearables devices widely deployed, and in turn, has led
research attention at a much faster pace to this field [103].

Typically, wearable devices can be divided into three
groups according to the position of wearing: hand-worn,
limb-worn, and head-worn. Different considerations and
requirements of such devices should be taken into account
such as the cost, portability, usability, wearability, intel-
ligence, and performance. TThe development of wearable
sensors grew quickly as a result of the growing need for
telehealth and real-time health monitoring, with a compound
annual growth rate of 18.3% from 327.6 million in 2021 to
1,487 million in 2030 [29]. The statistics predict that by
2025, there will be multibillion wearable sensors, where
over 30% of them are considered as new types of sensors
that are just beginning to emerge [104]. There is a greater
exchange of data across medical equipment when wearables
are used. The ecosystem addresses these issues in wearables
interoperability & intelligence by including different points.
Standards developers, payers, providers, healthcare delivery
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FIGURE 6. Key features of wearable devices in PMS.

organisations, network service providers, and manufacturers
of IT and medical device hardware, firmware, software, and
services [105]. Nevertheless, there are a number of issues
with wearables and medical IoT connectivity and intelli-
gence, including the possibility of wearable and implantable
hacking.

In general, the two key challenges that face wearables
devices are security issues and power efficiency [40].
Practically, wearable monitoring equipment is very efficient
for patients enabling him/her to monitor his/her own health
status anywhere. Wearable medical technology is expected
to keep expanding, particularly in rural areas. Additionally,
the vast economic market helps to fuel the quick growth of
these gadgets [106]. Therefore, the commercially available
wearable devices and prototypes for medical IoT need to
be classified to distinguish the best devices for each patient
status that is monitored [103]. It is worth mentioning that
wearable sensors with other diagnostic platforms such as
point-of-care devices and lab-on-a-chip systems are inte-
grated with biosensors. In order to monitor the concentration
of different analytes in biological fluids including blood,
saliva, and urine, biosensors are widely employed in medical
diagnostics. Wearable biosensors, or devices with built-in
biosensors, can save healthcare expenditures [107]. Addi-
tionally, wearable biosensors are a useful tool for identifying
bacteria, spotting dangerous compounds in the environment,
and diagnosing ailments in people. The following are some
of the key features of wearable devices [108], [109], [110].
FIGURE 6 summarizes the key features of wearable devices
in PMS.

o Wearability: This characteristic is mostly dependent on

the size of the sensors, the power supply specifica-
tions, and the reduction of on-body hardware. Future
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developments could address the used hardware by
incorporating the parts into e-textiles. Textiles’ special
qualities of being lightweight, pliable, and comfortable
to wear make them ideal for wearable technology.

o Low cost for various applications: The cost-effectiveness
considering the initial investment, training, and main-
tenance will surely influence the integration of the
wearable devices into PMS.

« Usability: The functionality of these devices such as
data collection, transient information collection, and
user-friendly interface are required to satisfy the specific
clinical need and measure the important signs of the
patient.

« Power consumption and ease of fabrication: These are
major challenges in the design of wearable devices
as long-term maintenance-free operation is required.
Hence, advanced methods for low-power processors are
essential.

o Performance and reliability: Verification in real-life
scenarios provides essential information based on its
usefulness and reliability. Wearable devices should
demonstrate specific tolerances for patient activity in
the environment to contribute the reliability through
the identification of mistakes, avoiding misleading the
collected data.

Wearable device innovation is being propelled by advance-
ments in wireless communication, energy harvesting, and
sensor networks, in addition to the previously mentioned
factors. In [103], the commercial wearable existing products
were classified under three categories: 1) Accessories, 2)
E-Textiles, and 3) E-Patches. A summary of commercial
products and research prototypes are surveyed.

Medical sensors operating in PMS might have varying
principles depending on factors like photoelectric, hall, and
piezoelectric effects. The sensors attain the physiological
parameters of the patients and normally consist of sensitive
and conversion elements [106]. In the design of wearable
devices, the significant issue is based on the sensors
that are embedded within the wearable devices. Different
types of sensors are used for this purpose such as pulse
oximeter, EEG, breathing sensor, heart rate monitor or ECG,
respiration rate, movement sensor, EDA, SpO2, and blood
pressure [111], [112]. Besides, several historical examples
of wearable sensors are provided in [113]. Traditional
sensors measured the heart rate alone, where this sign is
considered the most important and almost all medical sensor
nodes support it, then the photoplethysmography appears to
measure the SpO2 besides the heart rate [114]. Chemical
and biological materials are integrated with optical systems,
microfluidics, electronics, and micro-machines to create
wearable technology-comfortable, wireless, battery-operated
systems that can provide data on a regular basis [115], [116].
The human body can serve as a transmission channel for
wearable devices, or they can connect with one another via
a particular transmission medium like Wi-Fi, BLE, Zigbee,
and other previously covered communication protocols. They
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are able to gather, sort, and store the subject’s long-term
physiological and activity data [117]. In essence, there are
two main strategies for implementing wearable technology:
using wireless technology and electronic textile solutions,
as covered in [92]. Several research works have investigated
wearable devices and their applications highlighting their
advanced technologies, significance, industrial communities,
materials, target analytes, and design issues, see, e.g., [114],
[117],[118],[119],[120], [121]. FIGURE 7 presents the most
common types of wearable devices.

V. DATA TRANSMISSION AND NETWORKING

A paradigm change has occurred in recent years that makes
it possible to virtualize and softwarize networks, or create
programmable decentralised networks [122]. By segmenting
the network into several communication layers, this can
be accomplished. These layers can help mitigate the delay
sensitivity of IoT applications by bridging the lengthy
propagation distance between the end-user and the cloud
centre. As was already indicated, patient data and their
physical activity can also be recorded using wearable
technology and fitness watches. At the beginning, wearables
and sensors are used to collect patient health data, and
connected devices exchange data with other devices while
transmitting healthcare information. IoT devices that are
worn inside the body gather medical data, including blood
pressure, glucose levels, pulse rate, ECG, and cholesterol.

It is occasionally possible to perform data preparation,
which entails removing noise and missing values. Thus,
removing noise from data cleaning results in a higher diag-
nosis process detection rate. The median studentized residual
approach, which thoroughly analyses the relationships within
the dataset, can be used to filter out undesirable data. This
method leads to improved detection rates in the diagnostic
process. Initially, missing data is addressed by replacing them
with median values across rows and columns. Subsequently,
data normalization is performed to scale values between
0 and 1, reducing complexity in the diagnostic process.
This normalization involves adjusting data using various
distribution techniques.

It is necessary to send the data that sensors capture from
the patient to the closest data collection or processing node.
Wireless Body Area Networks (WBANS) are one technology
that is helpful for moving data from the sensors to the nearest
processing node [123]. WBSNS will be discussed in the next
subsection.

A. WIRELESS BODY AREA NETWORKS (WBANs)

Various components work together in the IoT architecture to
enable different solutions for the end user. An IoT-enabled
network of linked devices that perceive critical data in
real-time makes up the PMS-based healthcare application.
In particular, PMS makes it possible to regulate end-user
applications through analytics, device connectivity, data
transfers, and real-time data collecting. WBANSs are among
the technologies that enable data flow from sensors and
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drive communication to the closest processing node in an
IoT architecture [124]. The most prominent application
area of WBAN is PMS [124]. Because WBANs measure
physiological activity in humans, which varies more peri-
odically, the application data streams show rather constant
rates [39]. The tiny, samrt wireless sensors that make up
BANs are in charge of collecting and relaying to carers
the vital indicators of a patient [125]. WBAN can be used
in transfer the information of the patients into a wide
communication ranges. It should be noted that the terms
WBAN, WBASN, and WBSN are used interchangeably in
the research based on the work context. AThese terms mean
the same type of networks which consist of sensor nodes
to check and monitor the human physiological conditions
of patients through their remotely accessed signals [126].
IEEE standards like IEEE 802.15.6 and IEEE 802.15.4j,
which are especially designed for medical WBANS, are used
by WBAN. WBANSs provide dependable communication,
speed, accuracy, and energy efficiency between sensors
and actuators placed inside, on top of, or next to the
human body. By leveraging different sensors to monitor
patient health vitals, WBANs can contribute to reducing
healthcare costs and enhancing the quality of care [123].
Broadband access networks (WBANSs) facilitate a range of
data rates, from ultra-wideband (15.6 Mbps) to narrowband
communication (75.9 Kbps). Wireless Local Area Networks
(WLANS), Zigbee, Bluetooth, mobile networks, Wireless
Personal Area Networks (WPANSs), and Wireless Sensor
Networks (WSNs) are among the other wireless technologies
with which they are compatible.Sensors that are dispersed
geographically are typically used in WSNs to observe, record,
and monitor environmental and physical variables. They
require an infrastructure made up of relatively small nodes,
which are the core components of WSN and are grouped in
groups ranging from a few tens to hundreds or thousands of
nodes. They are used to collectively transfer observed data
via the network to a central location. where one or more
sensing devices are installed on each node. The network
architecture is the second part of WSN. A vast region is
covered by a large number of sensor nodes that are then
networked together. There is communication between sensor
nodes and with a base station [127]. The development of
WSN was first motivated by military purposes such as
battlefield surveillance. WSNs are used in different fields
like industry and medical applications [127]. Note that
WSNs and Wireless Body Area Networks (WBANSs) share
similarities in wireless communication technology but differ
in their specific applications. WSNs are designed for broader
environmental monitoring and data collection, while WBANSs
focus on wearable sensors for health monitoring and medical
applications, often integrated into clothing or implanted
on the body. In healthcare, WBANs play a crucial role
in improving patients’ quality of life by enabling contin-
uous monitoring and personalized healthcare interventions.
Three categories can be used to describe WBAN: beyond-
WBAN communication, intra-WBAN communication, and
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(" Description: Main clothing items that also serve as wearables

Smart such as shirts, pants, and undergarments.
Products: Moto 360, Samsung Gear, Apple iWatch, Pebble Time.
& Research Prototypes: Smart-watch Life Saver, and Finger-

\_writing with Smart-watch
(Description: Shoes, socks, insoles, or gloves embedded with

Sensors.
FO(‘);{) ?:nd Products: Lechal, Sensoria, Fujitsu Gloves
Research Prototypes: Look Up, Gait Analysis Foot Worn, Foot-

\_worn Inertial Sensors
Sensor
patches

E-Tattoo /
E-Skin

E-Textiles

/Description: Sensor patches that can be adhered to the skin for
either fitness tracking or haptic applications.

Products: HealthPatch MD, Thyne, UPRIGHT

Research Prototypes: DuoSkin, Tattoo-Based Iontophoretic-
\_Biosensing System, Smart Tooth Patch

/

Description: Tattoos with flexible and stretchable electronic
circuit to realise sensing and wireless data transmission.
Products: Motorola e-tattoo, Wearable Interactive Stamp
Platform

a Description: Wrist-worn devices with a touchscreen display. N
Products: Apple iWatch, Samsung Gear S2, Moto 360, Pebble
Time.

Research Prototypes: Smart-watch Life Saver, Finger-writing
\_with Smart-watch. J

4 Description: Wrist-worn devices with fitness tracking\

Smart
watches

. capabilities or other functionalities, generally without a

2 touchscreen display.

§ 8 Products: UP by Jawbone, Fitbit Flex, Nymi Band.

© o Research Prototypes: Wrist-worn Bioimpedance Sensor, Wrist-
2 S p P

= % worn Smoking Gesture Detector.

S—

5 O

= (] Description: Spectacles or contact lenses with sensing, wireless\
|

communication, or other capabilities.

Products: Microsoft HoloLens, Recon Jet.

Research Prototypes: Google Glass, Google Contact Lens, Object
\_Modelling Eye-Wear, iShadow Mobile Gaze Tracker. Y,

Head-

Smart
eyewear
mounted
Devices Description: Bluetooth enabled headsets or ear plugs. Sensor-

Headsets & embedded hats and neck-wom devices are also found in research
Ear-buds products.
Products: Sony Xperia Ear, Apple AirPods, Bragi Dash Pro.
Smart
jewellery

Description: Jewellery designed with features such as health-
monitoring and handless-control.

Products: Smarty Ring, Kery, Bellabeat Leaf.

Research Prototypes: Typingring, Gesture Detection Ring .

/

Accessories

Description: Chest straps, belts, arm bands, or knee straps
equipped with sensors for health tracking or other
functionalities.

Products: MYO Armband, Zephyr Bioharness.

Research Prototypes: Pneumatic Armband, Body Beat.

FIGURE 7. lllustration of the the most common types of wearable devices (reproduced from [103]).

inter-WBAN communication [125]. WBANs can be either As stated in, a WBAN node is a standalone device with
wearable, i.e., used on the body surface of a human or communication capabilities that falls into one of three types
implantable, i.e., inserted inside the human body [128]. according to its capability, implementation, and network
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role [129]. In terms of functionality, nodes include personal
devices, sensors, and actuators. Personal devices gather data
from sensors, process it, and can communicate with other
devices or individuals through an external gateway or by
activating actuators. These personal devices are also referred
to as body gateways, sinks, or Body Control Units (BCUs) in
certain contexts. Sensors transfer data to the personal device
by capturing certain parameters from the human body either
internally or outside. Actuators interact with humans based
on sensor or personal device data; for example, a physician
might send medication instructions via a display actuator
after processing sensor data on a personal device. Nodes can
be further classified based on implementation into implant
nodes, body surface nodes, and external nodes. Based on
their network role, nodes are categorized as coordinators,
end nodes, or relays. Coordinator nodes act as gateways
connecting WBANs to the Internet, and other WBANS,
or serving as a central trust point. End nodes are typically
sensors without communication capabilities, while relay
nodes facilitate message forwarding between sensors and
gateways when they are distant. WBSN mainly collects a
large amount of real-time data and sends them to the cloud.
The cloud, in turn sends and/or saves them in a server and
then transmits them to the specialist to be analyzed based on
patient statues.

B. COMMUNICATION NETWORKS AND PROTOCOLS

As previously said, PMS is a popular healthcare tool that
helps physicians keep an eye on hospitalised patients,
elderly individuals receiving home care, and patients with
acute or chronic illnesses when they are in remote areas.
Wireless network technologies control data transfer and link
patient devices and sensors to distant sites. Communication
methods such Wi-Fi, Bluetooth, ZigBee, cellular networks
3G/4G/5G, NFC, and satellite are used to convey the patient’s
signals [130]. By using efficient and reliable wireless
networks, the data can be transmitted to several places like
the doctors, caregiver. In order to provide data analytics
and cloud-based services for biometric data gathered from
physical devices and sensors, PMS models may extend big
data processing to the cloud. Big data is essential because it
facilitates decision-making, data analysis, and the extraction
of valuable information [131]. Based on real-time data
from connected devices, continuous patient monitoring offers
real-time surveillance, feedback, and intervention of patient
parameters. The doctor can deal with emergencies cases
from a remote location by viewing the patient’s report. The
integration of intelligent communication technologies that
can link diagnostic equipment to distant places has been
the subject of some research projects. The appropriateness
of every communication technology is contingent upon
multiple criteria. These factors are range, data rate, and power
consumption [130], [132]. Additionally, the Federal Commu-
nications Commission (FCC), a government organisation in
charge of overseeing communication technologies in the US,
defines sets of standards and guides that can be followed for
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wireless spectrum, licensing of wireless devices, and ensuring
compliance with safety and interference regulations. In the
following, we discuss the communication protocols that can
be used for PMS.

o Wireless local area networks, or WiFi, are thought
to be the most widely utilised wireless technologies
in PMS. IEEE 802.11 standards, namely 802.11b-
11 Mbps, 802.11g-54 Mbps, 802.11a-54 Mbps, and
802.11n-300 Mbps, provide the foundation of WiFi
architecture [133]. WiFi technology allows the devices
to access the internet and communicate with each
other within a local area range. WiFi technology can
operate in bandwidths of 2.4 GHz, 3.5 GHz, and 5 GHz
unlicensed Industry, Scientific, and Medical (ISM)
frequency bands. WiFi technology is able to support
short-range communications with a coverage range of
up to 100m. WiFi technology also allows reliable,
secure, and high-speed data communications. A network
of 45 vital medical devices, including as infusion
pumps, defibrillators, lung ventilators, and anaesthesia
machines, have been equipped with WiFi technology,
demonstrating that WiFi can be utilised safely and
successfully for these devices’ communication [134].

« Based on IEEE 802.15.4, ZigBee is a wireless personal
area network technology. ZigBee is compatible with
low data rate networks, which usually require up to
250kbps, because its data rates are far lower than
those of other technologies. Long battery life of up to
several years is possible using ZigBee [33]. While its
power consumption is higher than Bluetooth’s, a typical
ZigBee transmission range can reach up to 100 metres
depending on power output and ambient factors [135].
This distance can be extended up to 1,600m with
ZigBee-Pro. Every Zigbee network consists of three
types of devices, which are coordinator, router, and end-
device [120]. Keys for 128-bit symmetric encryption
protect ZigBee networks. It features one channel in the
868MHz Europe band, ten in the 915MHz Australia
and US bands, and sixteen in the 2.4GHz ISM band.
Moreover, a mesh network architecture utilising ZigBee
wireless technology enables higher coverage range and
high-reliability communication.

« Bluetooth technology is a wireless personal area net-
work named after King Harald Bluetooth who unified
Denmark and Norway and embodies the concept
of connecting diverse devices wirelessly. Originally
developed by Ericsson in 1994, Bluetooth is based on
the IEEE 802.15.1 standard, which is widely used for
linking IoT devices, smartphones, and other mobile
devices. Bluetooth operates in the 2.4-2.4835 GHz [136]
unlicensed ISM band using frequency-hopping spread
spectrum (FHSS) and provides a data rate of up to
721 kbps [137]. Bluetooth allows a lower transmission
coverage with a coverage distance of up to 100m.
Bluetooth is typically used for portable personal devices
and to connect between medical devices, sensors, and
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smartphones or tablets used by healthcare providers.
Bluetooth-enabled devices can transmit vital signs, such
as heart rate, blood pressure, and oxygen saturation,
directly to monitoring systems, enabling real-time
data collection and analysis. Furthermore, Bluetooth is
optimised for use in loud situations, covering both the
MAC layer and physical access.

Z-Wave is a low-power and cost-effective wireless
communication technology suitable for short-range
applications, particularly in residential and light com-
mercial settings [138]. With a data rate of up to
40 kbps and a coverage distance of about 30m, Z-Wave
supports mesh networking, making it suitable for use
in PMS. In Australia and North America, Z-Wave
uses the 900MHz unlicensed radio frequency range
for its operations, providing extended coverage and
lower power consumption compared to higher frequency
bands like 2.4GHz [139]. Z-Wave immunity to Wi-Fi
interference ensures reliable communication alongside
other wireless devices, offering a standardized and
stable control medium for smart home automation and
potentially for WBANSs in healthcare applications [126].
Its ability to penetrate walls and solid objects makes
Z-Wave a compelling choice for deploying sensors
and monitoring devices within healthcare environments,
supporting efficient and seamless patient monitoring
capabilities.

IPv6 over low-power Wireless Personal Area Networks
is referred to as 6LoWPAN. This networking technology
makes it possible for IPv6 packets to travel via short
link-layer frames, as those outlined in IEEE 802.15.4,
with efficiency. Initially, IEEE 802.15.4 low-power
wireless networks operating in the 2.4 GHz range were
intended to be supported by 6LoWPAN. Currently,
6LoWPAN is being deployed over low-power RF at sub-
1 GHz, among other networking media. Strong AES-
128 link layer security as outlined in IEEE 802.15.4 is
leveraged by 6LoWPAN. Because of these features, the
technology is perfect for a variety of sectors, including
smart metering, residential illumination, street light
monitoring and control, home automation using sensors
and actuators, and general Internet of things applications
involving Internet-connected devices. Depending on the
benefits of IEEE 802.15.4, which include support for
a vast mesh network topology, reliable communication,
and extremely low power consumption, 2.4 GHz and
sub-1 GHz bands are typically employed. Depending
on the frequency, the 802.15.4 standard offers data
speeds ranging from 20 to 250 kbps. 6LoWPAN works
well over short distances, up to 100 metres. 6LOWPAN
allows sensors and local devices to be connected
to IP networks in healthcare systems, enabling the
connectivity of several sensors [140], [141].

EnOcean is an energy-harvesting wireless sensor
technology that finds applications across diverse
sectors including building automation, transportation,
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environmental monitoring, and health monitoring.
It operates without batteries by harnessing energy
from ambient sources like light, motion, or pressure,
converting them into electrical energy for use in wireless
communication. EnOcean devices are designed to be
ultra-low power, utilizing micro energy converters and
efficient electronics to enable wireless connectivity
among sensors, switches, controllers, and gateways.
This technology, ratified as an international wire-
less standard (ISO/IEC 14543-3-10), offers signifi-
cant advantages in terms of energy efficiency and
maintenance-free operation. EnOcean can contribute
to the PMS by enabling wireless and battery-less
sensors and switches for building, home, or industrial
automation applications [60]. EnOcean technology
allows a long communication range of up to 300m
and low-power consumption, and hence, makes this
technology suitable for deploying sensors in various
healthcare settings without the need for frequent battery
replacements, thus reducing operational costs and
simplifying maintenance tasks [142]. EnOcean devices
operate at the following transmission frequencies:
902 MHz, 928.35 MHz, 868.3 MHz, and 315 MHz.
EnOcean is capable of up to 125 kbps of data rate.

The bi-directional radio frequency identification sys-
tem known as radio-frequency identification (RFID)
technology comprises of a tag and reader that can
be interfaced with personal computers or handheld
computers [143], [144]. RFID automatically recognises
and tracks tags affixed to items or people using
electromagnetic waves. The tag is made up of two
parts: an antenna that allows the chip to use radio
waves to connect with the tag reader and a chip that
stores the object’s unique identity. By using the tag’s
reflected radio waves, the tag reader creates a radio
frequency field that allows objects to be identified [130].
RFID makes it easier to follow a patient’s movements
in real time within a medical facility. RFID adheres
to the EPC (electronic product code) standard. RFID
is compatible with Wi-Fi and ZigBee, among other
technologies. RFID can detect objects within a range
of 10 cm to 200 m and operates across a broad range
of frequency bands, from 120 kHz to 10 GHz. RFID
can help improve inventory control by monitoring the
location and use of medical equipment and supplies.
RFID technology can deliver up to 4 Mbps of data rate.
Because RFID technology enables asset management
and patient monitoring capabilities, it is essential to
healthcare systems.

ONE-NET is an open-source wireless networking stan-
dard designed specifically for low-power and low-cost
control networks, such as those used in sensor applica-
tions, home automation, security, and monitoring. Since
ONE-NET is not dependent on any particular hardware,
it can be built with a variety of commercially available
microcontrollers and radio transceivers from companies
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including Silicon Labs, Freescale, and Texas Instru-
ments. ONE-NET uses Wideband FSK modulation and
operates in frequencies including 433 MHz, 868 MHz,
915 MHz, and 2400 MHz. It can support data rates
ranging from 38.4 kb/s to 230 kb/s. With ranges of
up to 100 metres indoors and 500 metres outdoors,
its adaptable network topologies-peer-to-peer, star, and
multi-hop-enable effective connectivity and communi-
cation coverage across indoor and outdoor situations.
Because of its exceptional low power consumption,
this technology can be used in battery-operated gadgets
that have a five-year battery life when using AA
or AAA Alkaline batteries. Furthermore, ONE-NET
integrates strong security protocols, using the expanded
tiny encryption algorithm to protect confidentiality and
integrity of data in wireless networks [145]. ONE-NET
can provide dependable and affordable wireless con-
nectivity for sensors and devices in patient monitoring
systems. It provides scalability, energy efficiency, and
secure data transmission, improving the capacity for
remote patient monitoring in healthcare settings.

Long Range Wide Area Network (LoRaWAN) is a
wireless communication technology well-suited for
healthcare systems, particularly in patient monitoring
applications. LoORaWAN enables long-range, low-power
communication between sensors and gateways, making
it ideal for collecting data from remote or distributed
patient monitoring devices [146]. LoRaWAN technol-
ogy supports secure and reliable transmission of vital
signs and health data, such as heart rate, blood pressure,
oxygen saturation, and body temperature, from patients
to healthcare providers or central monitoring stations.
LoRaWAN is considered as a robust and scalable
transmission technique, which allows for the deploy-
ment of sensor nodes in various healthcare settings,
including hospitals, nursing homes, and even patients’
homes, ensuring continuous and real-time monitoring
without the need for frequent battery replacements.
By exploiting LoRaWAN technology, healthcare sys-
tems can enhance patient care by enabling proactive
interventions, timely alerts for critical conditions, and
overall improved patient care systems through remote
monitoring and management.

Devices can communicate with one another across a
few centimetres’ distance thanks to near field commu-
nication (NFC), a short-range wireless communication
technique [147]. The foundation of NFC is Radio
Frequency Identification (RFID) technology, which
uses electromagnetic fields to wirelessly transfer data
between devices when they are positioned in close
proximity to one another. NFC allows for seamless and
secure communication between devices in close prox-
imity, making it suitable for healthcare scenarios where
quick data exchange and authentication are crucial.
Numerous uses are made possible by NFC technology,
including contactless payments, access control, and
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device-to-device data sharing [148]. NFC makes it
simple to pair medical devices with smartphones or
tablets in PMS, giving medical professionals effective
access to real-time patient data.

Medical Implant Communication Service (MICS) is a
specialized wireless communication standard designed
for medical implants and devices used in healthcare
systems, particularly in patient monitoring applica-
tions. MICS operates in the frequency range of 402-
405 MHz and enables reliable, low-power communi-
cation between medical implants and external devices
such as wearable monitors or bedside receivers. MICS
ensures secure and efficient communication, allowing
healthcare providers to remotely monitor patients’ vital
signs and device status without the need for invasive
procedures or physical connections. Sensor signals can
be collected using the MICS band, and data can then be
sent to a distant station. This process enables multiple
patients to have long-range monitoring at the same
time [149].

Ultra-Wideband (UWB), also known as IEEE 802.15.3a,
is a low-power, high-precision wireless communication
technology that uses a broad spectrum of frequencies
to send data over short distances (about 10 metres)
with minimal power consumption. UWB is used in
real-time applications in RF-sensitive applications, such
as hospitals, and is also used for precise positioning,
asset tracking, and short-range data transmission. UWB
has been wildly used for healthcare systems with short-
distance communication [150], [151], [152], [153].
UWB can achieve a data rate from 20 Mbps up to
1.3 Gbps. UWB is suitable for the physical layer of high
data rate PANSs.

IEEE 802.15.6 is standard that is designed for
WBANS, has become widely adopted across medical
and non-medical wearable devices for communication.
This wireless communication standard enables direct
sensor-to-device communication, alleviating the need
for intermediate relaying or routing devices, which
enhances efficiency and reduces complexity in data
acquisition processes [154]. With aid of a variety of
data rates, low power consumption, and the ability
to connect up to 256 wireless devices within a
single WBAN, IEEE 802.15.6 effectively meets the
communication requirements of wearable devices. With
its ability to operate in the Narrow Band, Ultra-Wide
Band, and 2.3 GHz to 2.4 GHz frequency bands, this
standard supports a wide range of WBAN applications.
IEEE 802.15.6 remains highly appealing for wearable
and body-worn medical devices, particularly due
to its suitability for short-range, low-power, and
cost-effective communication services both within and
around the human body. This wireless communication
standard may allow a significant advancement in
facilitating reliable and efficient communication for
PMS.
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« Sensium is an innovative low-power on-body technol-
ogy designed for continuous patient health monitor-
ing [155]. Sensium can wirelessly transmit vital sign
information to smartphones, mobile phones, laptops,
or PCs, allowing seamless communication with med-
ical entities such as doctors or paramedical staff for
timely intervention. Sensium sensors operate efficiently
by activating only during designated time slots to
transmit data, conserving energy through periods of
inactivity [126]. This technology has gained widespread
adoption as a leading patient health monitoring system,
exemplified by its practical application in PMS during
the COVID-19 pandemic. The use of Sensium patches,
as depicted in the accompanying image, highlights the
significance of wearable WBAN devices for remote
patient monitoring, underscoring their role in facilitating
effective healthcare delivery outside traditional clinical
settings [156]. Sensium represents a promising solution
for PMS, offering real-time data transmission and
enabling proactive healthcare interventions based on
continuous monitoring of vital signs.

« RuBee is a wireless protocol considered as an alternative
to RFID, utilizing long wave magnetic signals instead
of traditional radio frequency signals to transmit and
receive data within local networks [60]. RuBee is a low-
frequency (131 kHz) device that offers notable power
efficiency advantages. It can run on a single lithium but-
ton cell battery for up to fifteen years. RuBee is designed
based on standard of IEEE 1902.1, emphasizes high
security and robustness in harsh environments, offering
advantages over RFID in terms of signal reliability and
penetration through materials like steel and liquid [60].
Despite its lower data rate compared to technologies
like WiFi, Bluetooth, and ZigBee, RuBee’s unique
characteristics make it well-suited for applications
requiring long-lasting, secure, and interference-resistant
wireless communication. RuBee represents a robust and
reliable technology for specific use cases, particularly
in challenging environments where traditional wireless
technologies may struggle to perform effectively [157],
[158].

o Cellular networks offer a direct and promising avenue
for smart wearable WBAN devices to connect without
the need for additional bridging mechanisms. While pre-
vious network technologies were more oriented toward
human communication, they encountered significant
challenges when applied to wearable WBAN devices,
particularly as applications evolve from basic vital sign
monitoring to advanced virtual or augmented reality
experiences [159]. These advanced applications demand
high data rates in the gigabits per second (Gbps)
range, a feat currently supported only by technolo-
gies like 802.11ac with a 1Gbps data rate. Cellular
networks may involve 2G-Global System for Mobile
communication (GSM), Code Division Multiple Access
(CDMA), 3G-Universal Mobile Telecommunications
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FIGURE 8. The most common types of communication protocols that are
used for PMS in healthcare systems.

System (UMTS), CDMA2000, 4G-Long Term Evo-
lution (LTE-A), and 5G. Due to the imperative of
low energy consumption, cellular wireless technology
has not yet seen widespread adoption in wearable
WBAN devices. However, there is optimism for the
future development of cellular technologies that are
more suitable for wearable and body-worn WBAN
applications, potentially enabling a broader range of
advanced healthcare and entertainment experiences on
wearable devices. Such cellular networks enable voice
and data communication over long distances. Satellite
communication could also be used to provide coverage
in remote areas or to extend the reach of cellular
networks.

FIGURE 8 summarizes the most common communication
protocols, which can be used for PMS. Table 2 demonstrates
the key features of the most common types of communication
protocols.

VI. CLOUD COMPUTING AND DISTRIBUTED COMPUTING
Connecting a multitude of physical objects, such as humans,
animals, smartphones, and PCs equipped with sensors, and
linking them to the Internet generates vast amounts of data
known as “big data.” Such a big data scale necessitates smart
and efficient storage, processing, and retrieval mechanisms.
However, traditional hardware and software tools often strug-
gle to handle such immense data volumes within acceptable
time slots. In order to accomplish this, the US National
Institute of Standards and Technology (NIST) invented cloud
computing, which offers a shared programmable network
of networks, servers, storage, applications, and services that
can be accessed on demand. A longer explanation of cloud
computing can be found in the next subsection.

A. CLOUD COMPUTING

A revolutionary concept known as ‘“cloud computing”
makes it possible to lease computing resources in real time,
such as processing power, storage, and networking, without
requiring upfront commitments from customers [123], [160].
With cloud services, people can reliably and economi-
cally use and maintain resources from a distance [161].
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TABLE 2. Summary of the key features of the most common types of communication protocols.

Cp Standard Data rate Spectrum Data Topology Benefits Cost
range
RFID ISO 18000 6¢ 424 kbps 135 kHz >50 cm Point  to- | Non-line-of-sight, High
EPC 13.56 MHz >50 cm point Tags | Faster rates, durability,
Class 1 Gen2 866-960 >3 m and Reader | improved tracking,
MHz >1.5m enhanced security, and
2.4 Ghz versatility
NFC ISO 14443 100 kbps - | 2.45 GHz <10 cm point-to- Simple and Secure, Short | High
ECMA-340 10 Mbps point Range, Versatility
NFC  Forum
Specifications
ZigBee IEEE 802.15.4 40 - 250 868/915 MHz | 10-20 m Mesh, star, | Low power and low cost, | Low
Kbps 2.45 GHz and cluster | reliability, scalability
tree
Bluetooth | IEEE 802.15.1 1-24 2.4 GHz 8-10 m Piconet Convenience Low
Mbps
UWB IEEE 802.15.4z | 50 Mbps Wide range 30 m Point-to- High data rates, low | High
point and | power consumption,
multi-point | low  latency,  Strong
Resistance to
Interference, and Secure
communication
WiFi IEEE 802.11 | 1 Mbps - 5-60 GHz 20-100 m | Star and | Speed, flexibility High
a/b/c/d/g/n 6.75 Gbps point-to-
point

For healthcare applications based on IoT, which involves
numerous embedded devices like sensors and actuators
generating big data, cloud computing emerges as an ideal
solution for storing and processing this data efficiently. Cloud
computing offers a robust platform for storing, managing,
and analyzing vast volumes of healthcare data produced by
IoT devices [162], [163], [164]. Cloud infrastructure offers
the scalability and computational power needed to manage
and analyze big data generated by IoT devices, facilitating
complex computations to extract actionable insights [165].
Cloud computing utilizes computing resources, networking
capabilities, storage, and other essential elements critical for
operational efficiency without requiring substantial capital
investments. This technology provides rapid elasticity, self-
healing, self-configuration, and ubiquitous access, offering
significant benefits. Cloud services offer the illusion of
infinite computing resources on demand, delivering various
services such as Infrastructure as a Service (IaaS), Platform
as a Service (PaaS), Database-as-a-Service (DBaaS) and
Software as a Service (SaaS). Both public and private clouds
can be efficiently used where the public is accessible to the
general public and private clouds are dedicated to single
organizations, while hybrid solutions integrate both models.
Cloud computing in the healthcare sector presents compelling
opportunities to contain integration costs, optimize resources,
simplify processes, and enhance service quality [166], [167],
[168]. Cloud computing serves as a foundational technology
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for the IoT, enabling efficient processing and analysis of vast
amounts of sensor-generated data within the IoT architecture.
With the use of cloud based technologies, healthcare systems
can address the challenges posed by increasing digital
data, improve service outcomes for patients, and streamline
health information management. The adoption of cloud
computing in healthcare, often referred to as Healthcare as
a Service (HaaS) [169], is considered to revolutionize health
information technology, benefiting healthcare research and
service delivery.

Cloud computing offers a valuable infrastructure for
storing and managing patient medical data efficiently,
especially given the volume of data generated per patient,
which can overwhelm traditional storage systems. The use
of cloud-based solutions helps address the challenges of han-
dling large-scale healthcare data by leveraging technologies
like big data analytics to extract valuable insights and present
information in a more accessible format for healthcare
professionals [131]. This approach not only improves data
management and accessibility but also supports advanced
analytics, facilitating more informed decision-making and
enhancing patient care. By utilizing cloud-based infras-
tructure, healthcare providers can efficiently manage and
analyze vast amounts of patient data, ultimately leading
to improved patient monitoring and personalized treatment
strategies. The cloud also act as on on-demand service
that is very cost-efficient solution to medical services [22].
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Cloud computing offers virtually limitless storage and
computing resources in data centers, empowering healthcare
stakeholders to derive valuable insights from analyzed and
stored data. Physicians can remotely monitor patient health
status using data collected from various sensors stored
in the cloud, enabling timely interventions and treatment
recommendations. Despite its advantages, cloud computing
introduces latency challenges due to data transmission over
the internet for analysis and retrieval, which may not be suit-
able for emergency healthcare services. To address latency
issues, distributed computing such as fog/edge computing
is emerging as complementary solutions in IoT healthcare
applications, optimizing data processing and response times
at the network edge. The work in [170] presented a net
architecture for resource preservation that combines cloud
and edge computing, with an emphasis on maximising
important performance metrics like average patient waiting
time, length of stay for patients, and resource utilisation
rate. This framework emphasizes high reliability, efficiency,
and security in healthcare systems. By leveraging cloud and
edge computing capabilities, the proposed framework aims
to model and optimize critical metrics to enhance overall
system performance and patient outcomes. The integration
of cloud and edge computing allows for efficient resource
utilization, improved patient management, and enhanced
security measures, contributing to the development of more
reliable and effective healthcare systems. Through their work,
Oueida et al. highlight the potential of cloud-edge integration
in addressing key challenges and optimizing healthcare
operations, paving the way for advanced frameworks that
prioritize performance, reliability, and security in healthcare
environments. In the following subsection, we will discuss
fog computing and mobile edge computing (MEC).

B. DISTRIBUTED COMPUTING

Traditional cloud-centric architectures provide a number of
issues that call for distributed computing paradigms like
fog computing and MEC, especially in the context of
healthcare applications. Using centralised cloud resources
grows more and more wasteful as the amount of data
produced by IoT sensors and devices keeps growing.
In particular, conventional cloud architectures may struggle
to meet the latency requirements of real-time healthcare
applications, where rapid data processing and response
times are essential for PMS. Furthermore, the geographic
distribution of healthcare services and the expansion of IoT
devices raise the demand for enabling distributed computing
solutions that can bring computation and data storage closer
to the point of data generation. Fog computing and MEC
offer decentralized approaches that enable faster data pro-
cessing, reduced latency, improved scalability, and enhanced
privacy and security for healthcare applications [39]. These
distributed computing models facilitate efficient utilization
of resources, optimize network bandwidth, and support
seamless integration with existing healthcare infrastructure,
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ultimately enhancing the performance and reliability of
healthcare systems.

Fog computing has recently been proposed by Cisco [171],
[172]. Fog computing, sometimes referred to as cloudlet or
edge computing, serves as a link between smart devices and
extensive cloud computing and storage services. [130]. Fog
computing can be implemented in gateways or edge devices,
allowing for real-time data processing, local decision-
making, and faster response times. By processing data nearer
the site of data production within the network edge, fog
computing expands on the idea of cloud computing. This
local processing approach reduces data traffic, distance,
and latency, which is crucial in latency-sensitive healthcare
applications. At the network edge, data is initially gathered
through an IoT network and then processed locally using
edge devices. Once local processing is complete, the data is
forwarded to the cloud for further computational operations
and memory storage. Fog computing can utilize various
communication protocols such as Wi-Fi, Zigbee, Bluetooth,
and many other communication protocols. By enabling
customisable decentralised networks, fog computing can
help to manage and process data at the network’s edge
more effectively. For delay-sensitive applications like PMS,
where real-time data processing and minimal latency are
essential for efficient operation, fog computing is very
helpful. Healthcare systems rely heavily on fog comput-
ing because it provides substantial benefits for real-time
data processing [173], [174], [175]. Data processing may
now be done close to sensors thanks to fog computing,
which frees it from the cloud. Fog computing specifically
makes use of sensors, network gateways, or local nodes
to store and perform initial data processing. This would
enable doctors and other clinicians to deliver emergency
medical care and would allow for a significant reduction in
latency.

Data storage within fog nodes allows for data replication or
segregation, and security features ensure data confidentiality,
integrity, and privacy. Fog computing defines the function-
ality of edge computing and makes processing, storage, and
networking between end devices and cloud data centres
easier. It operates at the perception and networking layers
of the Internet of Things architecture. Fog nodes empower
end-user devices to collaborate in tasks involving storage,
management, and network communication, reducing latency
by executing these tasks near or at the end user’s location.
Similar to the cloud, a fog server can store various content
types, including health data, videos, audio, and local informa-
tion like maps and nearby restaurant availability [176]. This
architecture, depicted in typical fog computing diagrams,
is well-suited for IoT applications, where the proliferation of
communication-capable objects and smart devices demands
efficient processing at the network’s edge. Fog computing
enables higher service rates, and better Quality of Service
(QoS), and reduces the burden on the cloud, making it an ideal
solution for IT convergence scenarios [176].
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Fog computing offers several distinctive features that
enhance its utility within IoT systems. Positioned between
smart objects and cloud data centers, fog resources signifi-
cantly improve delay performance by reducing the distance
data must travel. This architecture is characterized by
the deployment of numerous “micro” centers closer to
end-users, leveraging their cost-effectiveness compared to
expansive cloud data centers. As IoT systems scale with
increasing end-users, fog computing allows for seamless
scalability through the deployment of additional micro fog
centers, a feat not feasible with traditional cloud data centers
due to cost constraints. Fog computing also ensures resilient
and replicated services, supporting a dense array of devices
with mobility. With its proximity to end-users, fog resources
facilitate real-time interactive services and enable on-the-
fly data analysis by aggregating and processing data before
forwarding it to cloud data centers for further refinement,
demonstrating interoperability with various cloud providers
and offering enhanced performance for critical applications.
This decentralized approach to computing optimizes effi-
ciency and responsiveness within IoT ecosystems.

A fog node provides network-wide monitoring, prepro-
cessing, storage, and security features. While preprocessing
entails fundamental data analysis required for emergency
healthcare services, monitoring capabilities allow the node to
track resources and services. To optimize computation and
energy usage without compromising functionality, models
are developed specifically for edge-dependent healthcare
sectors. The fog computing approach is an effective technique
that integrates agile computing into PMS. This approach
involves distributing computations between the cloud and
edge devices using a hierarchical structure, leveraging
the advantages of both edge and cloud environments for
healthcare data analysis from IoT devices [177]. Healthcare
applications that require quick response times can be
implemented with the help of edge computing integration,
and cloud computing offers plenty of processing and memory
capacity. Fog computing and the cloud work together to
improve performance in the healthcare industry.

The necessary tasks associated with edge computing can
be completed using a virtualized software-based platform
that leverages software-defined networks (SDN) and network
functions virtualization (NFV) to provide a flexible, scalable,
and effective network architecture [178], [179], [180]. With
NFV, a single-edge computing server can offer computing
services to several mobile devices. This is accomplished
by building various virtual computers with the capacity to
perform numerous activities at once. Furthermore, network
function virtualization (NFV) has promise for managing
computer services and improving the scalability, flexibility,
and dependability of network services [179].

Mobile edge computing (MEC) is considered a key
technology in the 5G network and is defined as an
essential form of edge computing, which operates at the
edge of cellular networks, enabling rapid processing of
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large datasets upon reception [181], [182]. MEC involves
decentralizing service-specific processing, computing, and
data storage from the centralized cloud core network to
edge network nodes situated near data sources and end-
users [172], [183]. Pushing mobile computing, network
control, and storage to the network edges (base stations
and access points, for example) is the primary function
of MEC. This allows resource-constrained mobile devices
to run computation-intensive and latency-critical applica-
tions [122]. By hosting compute-intensive apps, handling
massive amounts of data before transferring it to the cloud,
delivering cloud computing capabilities inside the radio
access network (RAN) near mobile users, and providing
context-aware services, MEC can maximise the use of mobile
resources [184]. MEC has shown to have enormous potential
for improving healthcare systems’ performance, allowing
mobile PMS in those systems. The MEC can provide a
number of higher-level functions in these systems, including
embedded data mining, local storage, real-time local data
processing, and data transfer control [185].

By leveraging a network of servers, MEC can offload
intensive computation tasks, contributing to ultra-reliable
low-latency communication (URLLC), and traffic optimiza-
tion [122], [183]. Implementing MEC in PMS promises
significant benefits, including increased network capacity,
efficient handling of delay-sensitive tasks, and offloading of
network-intensive computations to reduce energy consump-
tion and prolong battery life in the devices [186]. MEC
plays a vital role in enhancing network capabilities, opti-
mizing services, managing energy and resources efficiently,
and reducing the burden on backhaul infrastructure [182].
By providing real-time data processing and analytics at the
network edge, MEC integration with PMS may increase
overall efficiency in healthcare applications by reducing
latency and enabling faster response times.

MEC represents a significant advancement in addressing
the challenges associated with managing remote devices,
particularly concerning security, reliability, latency, and
energy efficiency issues in healthcare systems. Recent
research on EdgeCare presented in [187], emphasizes
the importance of security in mobile healthcare systems.
With strong security features integrated, EdgeCare offers a
safe and effective data management solution that handles
medical data and enables data trading at edge servers.
Similarly, The work in [170] proposed BodyEdge, which
introduces innovative body healthcare architectures featuring
tiny mobile client modules and edge gateways. The proposed
architectures enable the collection and local processing of
data from various scenarios, focusing on improving latency
and reliability performance within healthcare applications.
Additionally, the work in [188] has implemented accurate and
lightweight classification mechanisms using edge computing
to detect seizures at the network edge based on vital sign
information. The research findings demonstrate substantial
performance improvements over conventional non-MEC
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remote monitoring systems, achieving high classification
accuracy for seizures, extending battery life, and signifi-
cantly reducing transmission delays. Through initiatives like
EdgeCare and BodyEdge, MEC demonstrates its potential
to revolutionize data management and processing, offering
secure, efficient, and reliable solutions at the network edge.
These advancements highlight the transformative impact of
MEC in enabling real-time data processing, reducing latency,
and improving overall system responsiveness. As researchers
continue to explore the potential of MEC, incorporating
security considerations and innovative architectures, the field
is poised to advance further, addressing critical challenges
in remote device management and facilitating the develop-
ment of advanced applications with enhanced performance
and reliability.

The MEC network can dynamically handle various ser-
vices thanks to SDN. Additionally, it could separate the
control and data planes [189], [190]. For an edge computing
network, SDN can offer a logically centralised control
platform [191]. By using such a centralised control platform,
the network’s scalability problem could be addressed, optimal
resource allocation could be achieved, overhead could be
decreased, dependability could be increased, and most
crucially, latency could be decreased.

VII. APPLICATION LAYER AND PMS BENEFITS

The application/action layer in PMS serves as the central
hub, typically represented by the medical server. Currently,
most IoT services have application and user interfaces.
This layer plays a pivotal role in processing and presenting
data generated by IoT devices to healthcare providers
or integrating it seamlessly into electronic health records
(EHR) systems. This layer provides data control services.
It can mostly be affected by the type of data traveling
through the IoT network [133]. Within this layer, various
functionalities are enabled to support visualization, alerts,
and decision-making tools for clinicians. Moreover, the
application layer extends beyond mere data presentation,
incorporating advanced features like self-management, active
assisted living (AAL), behavioral analysis, big data analytics,
emergency detection, disease prevention strategies, and
mobile health (m-Health) initiatives [68]. These aspects
collectively enhance the system’s capability to provide
efficient healthcare services.

Through the application layer, clinicians gain access to
intuitive interfaces that facilitate real-time visualization of
patient data and enable timely intervention when abnormal-
ities or critical events are detected. This layer also fosters
proactive healthcare management through the implemen-
tation of self-management tools, empowering patients to
monitor and manage their conditions effectively. Addition-
ally, the integration of big data analytics within this layer
enables deep insights into patient trends and population
health, facilitating targeted interventions and personalized
care strategies. Furthermore, the integration of emergency
detection and disease prevention mechanisms underscores the
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proactive nature of modern patient monitoring systems, aim-
ing to mitigate risks and enhance overall patient outcomes.
This convergence of technologies underpins the evolution of
electronic health (e-Health) and m-Health paradigms [69],
reshaping the landscape of healthcare delivery towards more
connected, data-driven, and patient-centric models.

The essential task of PMS is to monitor patients in
different places such as home, office, hospital, battlefield,
and other places. Using PMS can prevent transmissible and
infectious diseases, keep the patient’s life safer, and provide
quick diagnostics and treatment in addition to other health
assistance tools. In addition, the economic cost, morbidity,
and mortality associated with human beings have been
reduced using remote PMS, which appears as a promising
solution and can succeed on a large scale. Furthermore,
one key area where PMS proves invaluable is in hospital
environments. In such environments monitoring patient’s
vital signs can improve patient safety and enable early
detection of deteriorating conditions. In intensive care units
(ICUs), PMS plays a crucial role in providing real-time data
to healthcare providers, facilitating prompt interventions,
and improving patient outcomes. Beyond hospitals, PMS
extends its utility to home care settings, allowing patients
with chronic illnesses or post-surgery recovery needs to
be monitored remotely. This remote monitoring capability
promotes patient independence while providing clinicians
with vital data for timely interventions. Moreover, PMS
aids in the management of elderly patients, ensuring their
well-being by tracking vital signs and detecting emergencies.
Nurses can benefit significantly from PMS to monitor
patients remotely, allowing for proactive interventions and
reducing the need for frequent clinic visits. This approach not
only improves patient comfort but also optimizes healthcare
resource utilization. In emergency situations, PMS enables
real-time monitoring of critical patient data, providing crucial
information to emergency medical personnel before arrival
at the hospital. This capability enhances triage and treatment
decisions, potentially saving lives. Additionally, PMS plays
a vital role in ensuring the security and integrity of medical
data. By employing robust data encryption and secure
transmission protocols, PMS can allow safe sensitive health
information against unauthorized access or breaches. This
aspect is critical in maintaining patient confidentiality and
compliance with data protection regulations. Furthermore,
PMS supports seamless integration with EHRs, enabling
healthcare providers to access comprehensive patient histo-
ries and monitor trends over time. This accessibility enhances
clinical decision-making and fosters continuity of care across
different healthcare settings, ultimately improving healthcare
systems.

PMS plays a vital role in ambient assisted living (AAL)
environments by enabling continuous remote monitoring of
individuals with chronic illnesses or disabilities. In AAL
settings, PMS empowers individuals to live independently
while providing caregivers and healthcare professionals with
real-time data on vital signs and activities. This proactive
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monitoring allows for early detection of health issues
or emergencies, enhancing overall safety and well-being
within the home environment. PMS in AAL environments
facilitates personalized care plans based on individual
health trends and alerts caregivers to potential concerns
promptly. By integrating with smart home systems and
wearable devices, PMS supports seamless data collection
and analysis, contributing to improved health outcomes
and quality of life for individuals. Applications for AAL
track and assess a range of fundamental daily tasks, such
eating, and cleaning. They give the subject suitable assistance
involving carers and permit the subject to live independently.
Fall detection and movement monitoring systems identify
ambulatory behaviours such as unintentional falls, static
postures, dynamic activities, and location tracking. Real-time
applications are used by physiological PMS to monitor and
diagnose vital signs in dependent and chronically unwell
people, including those with diabetes, hypertension, and
cardiovascular disorders [73].

VIIl. RELATED CHALLENGES AND FUTURE RESEARCH
DIRECTIONS IN PMS BASED ON loT IN HEALTHCARE
SYSTEMS

Despite the numerous benefits offered by PMS, which were
discussed above, there remain several significant challenges
that need to be addressed. One key challenge is related to data
confidentially, as PMS deals with sensitive medical infor-
mation that must be protected. Ensuring the confidentiality,
integrity, and availability of patient data in PMS is crucial
but can be complex due to evolving cybersecurity threats.
Several works have been proposed to address this issue in the
healthcare domain and PMS networks, see, e.g., [192], [193],
[194].

Noting that the interoperability is considered as critical
challenge in integrating new IoT-based PMSs with existing
healthcare infrastructures, as healthcare facilities often use
a variety of monitoring devices that may not seamlessly
communicate with each other. As IoT devices generate vast
amounts of real-time health data, seamless communication
and data exchange between these devices and traditional
health systems become essential. However, the lack of stan-
dardized protocols and varying data formats across different
platforms create significant barriers. Ensuring that IoT-based
PMSs can effectively communicate with EHRs and other
legacy systems requires overcoming these interoperability
issues, which is vital for obtaining an efficient healthcare
system.

Furthermore, the implementation of PMS systems in
healthcare presents several significant challenges that must
be carefully investigated in future to ensure the successful
implementation of PMS in healthcare system. The issues
of informed consent and ethical considerations need to
considered. To this end, patients must be thoroughly informed
about how their health data will be collected, used, and
protected, emphasizing the importance of maintaining their
autonomy and privacy. This transparency is crucial to build
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trust between patients and healthcare providers. In addition,
integrating PMS systems into existing healthcare workflows
requires substantial changes in how hospital staff operate.
This transition often demands extensive training and adap-
tation. The challenge is to seamlessly incorporate PMS
technologies without disrupting the delivery of care. Further
investigation in this regard is needed. Moreover, the financial
aspects cannot be overlooked; the high initial costs associated
with implementing PMS systems, coupled with the uncertain
landscape of insurance reimbursement, can be significant
challenges for healthcare institutions considering adoption.
These financial hurdles, along with the need for clear
reimbursement policies, add another layer of complexity to
the widespread integration of PMS technologies. Healthcare
regulators and policymakers need to create clear, consistent
reimbursement frameworks for PMS technologies. This
includes establishing guidelines that recognize the value
of remote monitoring and IoT-based healthcare services,
ensuring that these services are reimbursed similarly to
traditional in-person care. Besides, educating healthcare
providers, patients, and policymakers about the benefits
and cost-effectiveness of PMS technologies is essential.
Advocacy efforts can help build support for the adoption of
these technologies and for the development of reimbursement
models that ensure sustainability.

Additionally, scalability and cost-effectiveness pose chal-
lenges, particularly for smaller healthcare providers who may
struggle to implement and maintain sophisticated PMS solu-
tions. Overcoming these challenges requires concerted efforts
in technology development, standardization, and ongoing
research works. Moreover, the major components of PMS
must be selected carefully. Examples of these components are
the types of sensors, processing methods, contact methods,
and communication networks. In addition, in large-scale
PMS, there is a large amount of data collected from the
sensors. In summary, the advancement in wearable devices,
which aim to achieve low-cost computing, big storage
devices, low power consumption, and the development in
communications technologies are paving the way for a
low-cost, applicable, and effective PMS. In the following,
we provide some of the related challenges in PMS-based IoT
in healthcare systems.

« Data and resource management: The IoT-based health-
care systems consist of numerous interconnected
devices that generate massive amounts of data, which
must be assimilated, stored, and analyzed in order to
be analyzed effectively. IoT devices and sensors will
generate different types of data; for instance, medical
devices generate image data, whereas other devices
generate video data. This gives rise to well-known
big data issues. High processing power and large data
storage capacity are needed to handle this healthcare
data. Therefore, PMS based on IoT with healthcare
systems will require advanced data-processing mecha-
nisms due to the varying performance requirements for
devices and applications. Besides, advanced algorithms
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for processing the data in edge computing or cloud
computing might be helpful in addressing the big data
issue. Therefore, further research is needed to investigate
data management issues in PMS. Sensor nodes are
constrained in terms of store capacity and processing
power. Therefore, efficiently managing the resources in
PMS PMS-based IoT healthcare systems is essential.
Further research regarding the resource management of
PMS is required.

Security and privacy: Due to the critical sensitivity
of the data processed in the PMS, it is essential
to secure and maintain constant connectivity between
medical devices. In addition, patient privacy and security
concerns are becoming increasingly important as the
number of IoT devices in healthcare systems grows
at an exponential rate. In order to handle the plethora
of medical assets employed throughout the healthcare
system, a number of operational and interoperability
difficulties must also be addressed. One such challenge
is the integration of varied technologies within the IoT
ecosystem. Note that measurement data are gathered
from various instruments, sensors, and devices and sent
via gateways to an Internet-connected server housing
databases. Hence, ensuring reliable communication is
essential. Furthermore, security requirements for PMS
include availability, confidentiality, integrity, access
control, and authentication. These requirements are
essential for the medical data shared within hospital
networks. Furthermore, as the quantity of IoT devices
in healthcare systems increases at an exponential rate,
issues about patient privacy and security are becoming
more and more significant. Many operational and
interoperability challenges need to be resolved in order
to manage the abundance of medical assets used across
the healthcare system. The IoT ecosystem presents
several challenges, one of which is the integration of
diverse technologies. Furthermore, the use of wireless
technology in healthcare systems without taking security
precautions leaves users open to privacy problems.
To this end, healthcare providers should consider
privacy. Traditional security methods based on existing
cryptography solutions face challenges when applied
to IoT-based healthcare applications due to resource
limitations, specific IoT architecture requirements, and
the high-security standards demanded. Physical security,
authentication, network security, computer security,
and storage security are all included in data security.
The utilization of traditional cryptographic approaches
becomes impractical within IoT-based healthcare appli-
cations. Additionally, IoT gateways often prioritize
basic functions over critical security measures like
authorization and authentication, highlighting further
complexities in ensuring robust security within these
systems. We need to design a PMS model that guarantees
that only authorized individuals have an access to a
patient’s medical data. In brief, maintaining security and
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privacy are essential for PMS, encompassing numerous
elements and procedures such as data gathering, com-
munication, sensor and device use. Therefore, to protect
sensitive data generated by devices and personal infor-
mation, advanced technologies are needed. To solve the
security and privacy concerns in PMS, more research
is required to examine the application of ML and Al
approaches.

Managing heterogeneity in data: Numerous data can
be generated by health applications. These data are
obtained from a range of heterogeneous sources.
Heterogeneity in PMS is mostly encountered in two
forms: sensor heterogeneity and data heterogeneity.
Multimodal sensors are used to gather data, and they are
diverse in terms of organization, format, and meaning.
Consequently, datasets are challenging to distribute
and reuse since there aren’t any official summaries.
Despite the efforts has been dedicated to create sensors
when describing semantics with data models, it is
necessary to standardize the modeling of sensor data
to reflect heterogeneous sources of data. Therefore,
advanced technologies are required to handle such data
heterogeneity. The best possible way to address the
data heterogeneity is to make use of advanced artificial
intelligence algorithms. Consequently, more study is
needed to determine how artificial intelligence and
machine learning approaches might be used to manage
the variability of PMS data.

Data integration: Data from multiple sources must be
integrated. Scales, social networks, imaging systems,
blood pressure monitors, glucose metres, heart rate
monitors, fitness equipment, blood oxygen monitors,
and many more internet sites are some examples of
these sources [195]. Valid and significant results cannot
be obtained from the collection of data from diverse
sources unless the syntax, structure, and meaning of
the sentences are correctly understood. An accurate
comprehension can create intelligent applications or a
blending procedure. Creating efficient data integration
and analytics platforms for clinical decision-making
can consolidate disparate data sources into compre-
hensive and unbiased analyses, offering rapid and
insightful solutions that are not achievable through
manual processes. Developing such systems for clinical
decision support can convert static and offline data-
driven guidelines, which are constantly evolving, into
dynamic and interactive algorithms accessible online
for immediate execution. Integrating patient medical
reports into these systems can facilitate the creation of
point-of-care decision-making tools. These analytical
tools can enhance healthcare response capabilities by
enabling epidemic surveillance, geospatial analysis,
cluster outbreak reporting, and the development of
accurate therapeutic algorithms to address global health
challenges, such as pandemics [196]. A heterogeneous
network contains a range of sensors with different
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sensing techniques or communication spans. Devices
from various vendors will be present in a network,
and communication between those devices must be
guaranteed. Furthermore, interoperability is necessary
to ensure that a system can connect to another network
that performs different functions. To process the data and
make decisions, the data structure must be consistent.
Further research investigations to address the aforemen-
tioned challenges are required.

Context-awareness: Applications, interfaces, and ser-
vices tailored to the user’s situation and its changing
needs are presented in a relevant, appropriate, and
personalised manner by a health context-awareness
system. A thorough understanding of a subject’s sur-
roundings enables the system to ascertain the subject’s
actual help needs on the fly. In PMS, obtaining
a high-level coherent abstraction of contextual data
requires accurate interpretation of data and events. Apart
from traditional monitoring methods, it is important
to reliably identify emergency scenarios and declines
in health. The two main obstacles to the creation of
context-aware medical apps are, generally speaking,
data acquisition (the amount of information gathered)
and data analysis methodologies, which include present-
ing context-relevant services and information. Context-
awareness interpretation and data representation are
critical components that impact a health surveillance
system’s effectiveness. Rapid intervention is made
easier by accurate emergency situation identification,
which raises the standard of healthcare. Although many
current systems fall short of achieving a high degree
of contextual awareness, gathering comprehensive and
all-encompassing contextual data continues to be a
crucial unresolved issue that required further focus.
A context-sensitive monitoring system’s design must
take behavioural, physiological, and environmental
factors into account when observing, interpreting,
and analysing patient situations. All pertinent context
factors, which primarily include place, time, objects,
position, frequency, and human activity, must also be
considered by the system. System performance is also
influenced by historical data, which must be considered.
This includes health data (such as diagnoses, illnesses,
and treatments), daily behaviour and past changes,
and environmental variables (such as humidity and
temperature). However, the same context data needs
to be accessible across several distribution components
that employ various network protocols. This allows
different carers to access the contextual data that they
require from the infrastructure via the network that
is available, which can frequently change in a large
setting.

Power consumption: Another significant challenge that
faces sensors in general, particularly in BSN, is energy
consumption. The sensors’ short battery life may have
an adverse effect on the PMS. For monitored subjects,
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battery replacement and charging in the majority of
BAN systems currently in use are inefficient and time-
consuming, particularly in architectures with multiple
sensors. Any communication device’s battery life is
typically influenced by its duty cycle, transmission
range, and communication channel usage. Sensor nodes
can periodically turn On/Off their radio interface with
a centrally assigned time slot using the widely used
to save energy. Besides, advanced energy harvesting
and wireless charging techniques for PMS need to
be investigated. Furthermore, low power consumption
can also be achieved by applying smart processing
algorithms. Consequently, further real-world research is
needed to determine how well energy is transferred and
harvested in PMS. Additionally, the circuit complexity
of the devices may be raised to enable efficient energy
harvesting design in PMS. To fully realise the benefits of
energy harvesting in PMS, this can also be seen as one
of the technological difficulties that need to be resolved.
Scalability: The healthcare system’s scalability is still a
problem today. Billions of IoT devices on the network
will generate vast amounts of health data. In a similar
vein, the amount of data that must be handled and
preserved will increase rapidly. This will present a
massive data challenge for the healthcare industry.
A scalable system is needed to store and analyse this data
from IoT devices in order to solve this problem. On the
future, data collected from linked IoT devices will need
to be stored on the cloud using big data analytics and
effective edge computing approaches. Plans for therapy
will be improved with the use of this data. In this aspect,
more research is necessary. It is imperative that big data
analytics be integrated with Internet of Things-based
healthcare solutions. Modern medical telematics and
informatics have emerged as a result of this convergence,
bringing about developments that are highly helpful
for PMS sufferers, such as disease diagnosis, remote
real-time health monitoring, preventive measures, and
medical emergency warning systems. Consequently,
further research on big data analytics in the context of
healthcare is needed.

Safety issue: Particularly when carers are absent,
PMS should keep offering care services like accident
detection and emergency assistance. In a variety of
situations, PMS must guarantee the security of partic-
ipants and carers, including participants with mental
illnesses. Simple presence sensors to sophisticated video
surveillance systems with real-time alerts and the ability
to detect and identify patterns of movement are just a few
of the tools that PMS may rely on. Therefore, especially
in healthcare facilities, biometric sensors can be utilised
to identify aggressive and stressed behaviours. We think
that other crucial aspects that must be taken into account
are the safety, acceptability, and usability of PMS. Thus,
effective video surveillance systems for PMS must be
created.
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« Data processing: Big data is the massive amount of data
generated by a large number of connected IoT devices.
Millions of consumer devices have interconnected
sensors and actuators that interact, collect, and transmit
data. Every gadget generates or detects vast amounts
of data that need additional processing. Making sure
that these various data types are handled appropriately
and effectively will be the main challenge, especially
with a limited amount of time, processing power, and
computational resources available. It was estimated that
by 2020, the amount of data stored would have increased
from 80,000 petabytes in 2000 to 35 zettabytes. Due to
various data structures, only 20% of these are examined
using conventional methods; the remaining 80% are not
used in decision-making. It is anticipated that as 6G is
evaluated, the amount of data will grow even more. With
the aid of artificial intelligence, data-driven techniques
can be created to manage big data from numerous IoT
devices. Further research investigation is needed.
Device design issue: The healthcare sector makes use
of PMS-based IoT devices, which have tiny sensors,
minimal processing power, little storage, and short
battery lives. The internet is connected to IoT devices.
Wearable technology requires network connectivity in
order to offer carers access to health information.
Developing IoT devices with more processing power,
storage capacity, long battery life, and security that
comply with mobility standards remains a research
problem to this day. In this area, more research and
investigation are needed.

Monitoring accuracy: Because performing different
everyday activities requires a high level of skill, mon-
itoring and evaluating human subjects-especially the
elderly-is a challenging endeavour. Subject to subject,
the behaviour is arbitrary and varies. The majority
of recent research on activity monitoring focuses on
short-term, relatively easy tasks that are completed
in a lab setting. In the actual world, however, it is
evident that managing complicated and long-term tasks
in terms of gathering and evaluating pertinent data
is more challenging. Activities that involve several
subactions can also be completed in various ways and
in different sequences. In intelligent homes, long-term
monitoring is helpful in identifying actual behavioural
patterns. Data related to single-user actions are gathered
and processed in an intelligent environment in current
research experiments. In actuality, though, several topics
can share one space and be completed concurrently
with daily tasks. Moreover, the majority of research
in this area focuses on activity recognition rather than
evaluating the accuracy with which participants carry
out these tasks. These issues indicate that the precision
and reliability of the outcomes are still somewhat
disconnected from the unpredictable and enigmatic real
world of human behaviour. We think that further work
has to be done to enhance the planning and creation
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of monitoring systems for senior citizens in intelligent
settings. The right sensors must be chosen with care
in such systems and solutions in order to collect rich
and pertinent data for one or more topics. For the
system to successfully comprehend complicated and
constantly evolving human behaviour, it must choose
the most suitable approaches and strategies. To make
sure that these systems are effective in terms of analysis,
accuracy, and adaptability to the suggested monitoring,
extensive testing is required.

Trustworthiness: Because healthcare providers utilise
data to inform decisions about patient care, data must
be thorough, accurate, and consistent in order for it
to be considered trustworthy. Specifically, the data
produced by sensors and wearable technology is used
by carers to inform their decisions and treatment
plans. On the other hand, data corruption might
result from unapproved exposure and disclosure, which
can cause the loss of personal data. Furthermore,
malware or viruses could contaminate or corrupt the
medical data during transmission. Investigating the
dependability of trust management on PMS requires
making use of blockchain technology’s features, which
include integrity, immutability, and trustworthiness.
The possible catastrophic repercussions of medical
device trustworthiness necessitate prompt and effective
resolution of any problems [197]. Traditionally, general-
purpose and embedded computer systems have used
information security and fault tolerance techniques like
cryptography and redundancy. However, because of
their significant size and power limitations, they cannot
be utilised to many wearable and implantable medical
devices [197]. Therefore, creating effective and reliable
security methods to ensure trustworthiness is one of
the major issues that need to be considered in future
research.

Data transmission delay: A common issue in PMS
development is deciding how to transfer sensor data
to back-end servers for processing and analysis. Data
transmissions in networking are divided into four
categories: multicast, broadcast, unicast, and anycast.
Multicast or broadcast schemes are frequently used by
existing PMS to improve data transmission efficiency
and reliability. Both schemes send packets to several
recipients at once. As a result, a high volume of
network traffic and transmission delay result from
frequent transmissions. With the least amount of traffic
overhead, the unicast scheme delivers packets to a
single recipient; however, additional steps must be
taken to locate a backup receiver in the event of
a transmission failure. Anycast communication is a
brand-new routing protocol the point at which data
packets are sent to the closest recipient. This scheme is
more dependable than broadcast and multicast and has
less traffic overhead. Unicast is used to discover new
receivers. But anycast raises the devices’ complexity
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FIGURE 9. The research challenges related to PMS in healthcare systems.

and network routing utilized by the plan. This challenge
raises some more general issues. Hence, analyzing the
transmission technologies, as well as the quantity of data
sent, standard packet size, and transmission frequencies,
need to be considered. Therefore, developing new PMS
models that take into account the data transmission issue
is of interest.

« Availability and reliability: Providing timely access to
pertinent health data is another essential challenge for
PMS. The dependability of data distribution may have
an impact on the accessibility of health information.
Numerous factors can affect the reliability of data
on wireless networks in health infrastructures. These
variables include routing protocols, device or network
faults, power availability, network coverage, and device
range. Further investigation in this regard is required.

The research challenges presented in this paper can be

summarized in FIGURE 9.

IX. CONCLUSION

This paper presented a comprehensive review of PMS
in healthcare systems. To this end, an in-depth study of
recent trends and the current state-of-the-art research in
PMS based on IoT technologies, which are essentially
needed to achieve efficient healthcare services, was provided.
In particular, this paper provided the effective architecture of
PMS and the essential communication technologies that are
required for developing a realistic PMS. Moreover, this paper
emphasizes the importance and necessity of implementing
IoT-based PMS in healthcare systems and discusses different
types of current monitoring and tracking systems. The
communication networks and protocols that are required to
endure efficient healthcare systems were explored. Besides,
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the key fundamental benefit of PMS has been described.
In addition, this report outlined a number of unresolved
research issues and suggested fresh lines of inquiry for
further investigation. This can benefit both academic and
industrial sectors in remote healthcare applications. This
paper is essential for understanding the PMS that can be
used for enhancing medical services, health management,
and response strategies during public health emergencies and
routine care scenarios. This paper offered a comprehensive
understanding of PMS, which is crucial for business and
scholarly academics alike.
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