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ABSTRACT Deployment of language models to resource-constrained edge devices is an uphill battle
against their ever-increasing size. The task transferability of language models makes deployment to the
edge an attractive application. Prior neural architecture search (NAS) works have produced hardware-
efficient transformers, but often overlook some architectural features in favor of efficient NAS. We propose
a novel evolutionary NAS with large and flexible search space to encourage the exploration of previously
unexplored transformer architectures. Our search space allows architectures to vary through their depth and
skip connections to transfer information anywhere inside the architecture; Skipformer, the top searched
model, displays these novel architectural features. To further increase Skipformer efficiency, we learn a
CUDA-accelerated attention window size at each self-attention layer during training. Skipformer achieves
23.3% speed up and requires 19.2% less memory on NVIDIA Jetson Nano with negligible accuracy loss on
GLEU benchmark compared to GPT-2 Small.

INDEX TERMS Language models, neural architecture search, on-device inference, transformers.

I. INTRODUCTION
Transformer [1] derived language models have made great
strides in natural language processing (NLP), with state-
of-the-art methods demonstrating strong performance across
multiple tasks [2], [3], [4]. However, deployment of state-of-
the-art language models to the edge has become unfeasible
due to the ever-increasingmemory and compute demands that
are necessary for inference. Still, deployment of models to the
edge has economical and end-user benefits, i.e., data is no
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longer required to be sent to remote servers for processing,
reducing latency and protecting data privacy. Therefore,
improvements in the computational and memory efficiency
of language models must be pursued for real-time inference
and reduced storage space on edge devices.

In parallel with the development of language models,
neural architecture search (NAS) has shown great success in
deep learning research in discovering more efficient archi-
tectures while maintaining accuracy [5], [6], [7]. Hardware-
aware NAS (HW-NAS) improves NAS by targeting specific
hardware devices for more optimized deployment to edge
devices [8], [9], [10]. While most previous NAS works
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target CNN tasks, NAS for transformer architectures has
been increasing in interest [11], [12]. NAS methods targeting
various hardware devices in translation [12] and language
modeling [13] have also been presented. However, these
methods often feature constricted search spaces in favor
of reducing search time. Restricted search spaces leave
many potentially promising architectures unexplored. For
instance, block-based search spaces are an efficient method of
reducing search time, but they assume that repeatable uniform
architectures are most optimal.

In this work, we propose searching for language models
using a large unrestricted chain-based search space. Our
search space allows for a continuously changing architecture
throughout the entire depth of the model, in combination of
unrestricted skip connections that can transversemany layers.
We propose a multi-stage evolutionary algorithm, which
first aggressively generates new parent models. Then, in the
next stage, only top-performing parent models are selected
and fine-tuned with a couple of mutations allowed. The
objective is to find a small language model that runs faster
without accuracy loss on amemory- and power-bounded edge
device, i.e., NVIDIA Jetson Nano, compared to the baseline
model, i.e., GPT-2 Small [3]. To further improve the model’s
efficiency, we introduce a learnable attention window with a
custom CUDA kernel to reduce computation time associated
with the self-attention ‘QK⊺’.
Our contributions can be summarized as the following:

• Edge-aware NAS for language modeling –We present
a multi-stage and latency-aware evolutionary search that
encourages the search to consider many architectural
parameters and layer configurations. Each stage in the
proposed search encourages model diversity to find
potential unexplored strong candidates.

• Learnable self-attention window size – During the
search, attention window sizes are learned by gradient
descent using our tanh-based masking function, improv-
ing both model accuracy and compute latency with
smaller window sizes over the prior work. A custom
CUDA kernel is implemented for real-world speed-up.

• Fine-tuning searched models to other NLP tasks –
The generalizability of the searched model is verified
by fine-tuning it to other natural language understanding
(NLU) tasks.

II. BACKGROUND
A. NATURAL LANGUAGE PROCESSING
Natural language processing (NLP) is a multidisciplinary
field that focuses on enabling computers to understand, inter-
pret, and generate natural language [14]. NLP encompasses
a wide range of tasks, including text classification, named
entity recognition, sentiment analysis, machine translation,
and question answering [15]. NLP techniques have numerous
practical applications across various domains, including
healthcare, finance, customer service, and education. Over
the years, NLP has witnessed significant advancements

driven by the availability of large-scale datasets, compu-
tational resources, and breakthroughs in machine learning
algorithms [16]. Deep learning techniques, such as recurrent
neural networks (RNNs), convolutional neural networks
(CNNs), and transformer-basedmodels, have played a pivotal
role in advancing the state-of-the-art in NLP [17]. Recently,
pre-trained language models, such as BERT [2] and GPT [3],
[18], have demonstrated remarkable performance across a
wide range of NLP tasks, leading to the emergence of transfer
learning as a dominant paradigm in NLP [19], [20]. Despite
these advancements, NLP still faces challenges, including
handling ambiguity, understanding context, and addressing
biases present in training data [21].

B. LANGUAGE MODELING
Language modeling is a task in NLP which aims to capture
the statistical properties and structural dependencies inherent
in natural language texts [14]. It plays a crucial role in various
NLP applications, including machine translation, speech
recognition, sentiment analysis, and text generation [22]. The
primary objective of language modeling is to estimate the
probability distribution of sequences of words or characters
(called tokens) in a given language. This estimation allows
language models to generate coherent and contextually
relevant text, enabling them to understand and produce
human-like language. Considering the incomplete sentence:
‘‘I enjoy taking long walks in the’’. A language model
trained on a dataset might predict the next word to be
‘‘park’’, ‘‘woods’’, or ‘‘countryside’’. Patterns learned from
the training data allow the model to predict the next token
using probability.

Recently, transformer-based architectures [23] have
demonstrated superior performance in various NLP tasks,
including language modeling. Pre-trained large language
models (LLMs), which are trained on large-scale text corpora
using unsupervised learning objectives, have emerged as a
dominant paradigm in language modeling [19]. Pre-trained
models such as BERT [20] and GPT [18] have demonstrated
remarkable capabilities in capturing contextual information
and understanding semantic nuances in text. These models
serve as the foundation for transfer learning in NLP, allowing
fine-tuning on specific downstream tasks with minimal
labeled data. Downstream tasks include text classification,
question answering, and language understanding.

C. TRANSFORMER ARCHITECTURE
Self-attention mechanism is the core of the transformer
architecture, which allows each token in the input sequence
to attend to all other tokens simultaneously. This enables
the model to weigh the importance of each token’s con-
textual information dynamically, without being constrained
by sequential processing. Self-attention is computed by
generating query, key, and value vectors for each token and
then calculating attention scores between token pairs. This
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FIGURE 1. Original transformer architecture for translation tasks [1].

process is done in the multi-head attention layer shown in
Figure 1.

The complexity of transformers can be analyzed using Big
O notation by breaking a transformer into its key operations.

• Self-attention mechanism: This operation computes
attention scores between all pairs of tokens in the
input sequence. For each token, it computes a weighted
sum of the values of all other tokens based on their
relevance scores. The time complexity of this operation
is O(N 2

· D), where N is the sequence length and D is
the dimensionality of the feature vectors.

• Position-wise feedforward networks (FFN): After the
self-attention mechanism, each token’s representation
passes through a position-wise feedforward network
(FFN), which consists of fully connected layers with
ReLU/GeLU activations. The time complexity of this
operation is O(N · Dff), where Dff is the dimensionality
of the feedforward layer.

In the case of transformers, the dominant term usually
arises from the self-attention mechanism, resulting in a
simplified time complexity of O(N 2

· D). However, if D
is small or remains constant, the complexity can be further
simplified to O(N 2). This simplification is often used in
practice to analyze the scalability of transformer models with
respect to input sequence length.

D. NEURAL ARCHITECTURE SEARCH
Neural architecture search (NAS) is a dynamic and rapidly
evolving field within machine learning that focuses on
automating the design of neural network architectures. Tradi-
tional approaches to developing neural network architectures

often rely heavily on manual design, which can be time-
consuming and requires significant domain expertise. NAS
aims to mitigate these challenges by using optimization
algorithms to discover optimal architectures automatically,
tailored for specific tasks. NAS can be broken down into three
components [24], [25]:

1) Search space: This defines the range of possible
architectures that the search algorithm can explore.
It includes choices about the number of layers, types
of layers, layer sizes, connection types, and other
architectural features.

2) Search strategy: This refers to the algorithm used to
explore the search space. Common strategies include
random search, reinforcement learning, evolutionary
algorithms, and gradient-based methods. Each has its
strengths and trade-offs in terms of speed, computa-
tional cost, and ability to find optimal solutions.

3) Performance estimation: This involves evaluating
the performance of architectures generated during
the search. Because training each model fully is
computationally expensive, techniques such as learning
curve extrapolation, network morphing, and one-shot
models are often used to estimate performance quickly.

Deploying sophisticated models such as language models
to edge devices presents unique challenges. Edge devices,
which include smartphones, IoT devices, and other consumer
electronics, typically have strict constraints on power,
memory, and processing capabilities. To optimize language
models for these platforms, hardware-aware neural architec-
ture search (HW-NAS) has emerged as a key technology.

III. RELATED WORK
Direct deployment of LLMs to edge/mobile devices is limited
by resource constraints, i.e., compute capability and memory
capacity [26]. Energy efficiency is another critical factor for
edge devices, as they are often battery powered, so power
consumption must be reduced to the bare minimum to
preserve battery life. Thus, when designing language models
for edge, the following features must be considered: number
of parameters, inference speed, energy consumption, and
hardware capabilities. Towards this direction, HW-NAS for
transformers [11], [12], reduction of attention span [27], [28],
and sparse transformers [29] have been presented.

A. HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH
HW-NAS extends traditional NAS by incorporating hardware
constraints into the search process. This approach ensures that
the resulting model not only achieves high performance in
terms of accuracy but is also optimized for energy efficiency,
latency, and memory usage, which are all critical for the edge
deployment [30]. We may benefit from HW-NAS to deploy
language models on edge, as small language models (SLMs),
so that no communication to cloud is needed. HW-NAS can
significantly reduce the inference time of SLMs, improving
the responsiveness of AI applications on edge devices.
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The Evolved Transformer [11] uses evolutionary block-
based NAS to search for a more efficient transformer
architecture. The proposed search space uses two branch
blocks to search for viable architectures. The branches
allow for either adjacent operations or skip connections.
However, these skip connections are limited to only skipping
a single block, in contrast to our search, which allows skip
connections to travel any number of layers. A decoder only
variation of The Evolved Transformer showed promising
results on Billion Word Benchmark [31] but little exper-
imentation was completed on other language modeling
benchmarks.

Hardware-Aware Transformer (HAT) [12] uses a weight-
sharing supernet to search for hardware-efficient Transformer
translation models, targeting a variety of hardware types
(CPU, GPU, and IoT device). A SuperTransformer is trained
and smaller edge-friendly sub-models are sampled from the
supernet. HAT archives a 2.7 × speedup and 3.6 × smaller
size over Evolved Transformer with 12,041 × less search
cost and no performance loss. However, HAT only targets
translation models, and the search space focuses on tuning
model hyperparameters rather than searching for unique
architectures.

AutoDistil [32] searches for optimal student models by
distilling knowledge from a BERT teacher model. The search
trains a task-agnotisic SuperLM to search for four hyperpa-
rameters in the transformer blocks. AutoDistil achieved fewer
parameters over previously proposed knowledge distillation
methods such as DistilBERT [33] while maintaining compa-
rable accuracies on GLUE benchmark.

Our proposed NAS aims to target the shortcomings of
previousmethods.We use a chain-based search space to allow
for architectures to vary through their depth. Chain-based
search space also allows for skip connection to travel any
distance in a model.

B. EFFICIENT TRANSFORMERS
Transformer provides state-of-art-results in NLP but is
limited in its deployment by its O(N 2) complexity, where
N is the length of the input sequence. Previous works have
proposed numerous methods to reduce the computational
complexity of transformer’s self-attention mechanism [27],
[28], [29], [34], [35], [36].

Adaptive attention span [27] employs a learnable attention
span of the key matrix K to reduce the size of the QK⊺

computation (refer to Figure 4(a)). A gradient-based masking
function is applied to the key array to allow the attention
span to be learnable via gradient descent during the model’s
training. Adaptive attention span achieves state-of-the-art
results with a sequence input length of 8,000 on text8
and enwiki8, but smaller input sequence lengths were not
considered. Longformer [28] uses a self-attention window
method to reduce the complexity of self-attention. The
window sizes are manually set using the findings from [27]
and are not learned to find their optimal size.

Luna [36] reduces the computational complexity of
transformer’s attentionmechanism to linear complexity. Luna
employs two nested linear attention functions to approximate
the softmax function. The effectiveness of Luna is on
par or better in masked language modeling benchmarks.
Sparsity has been shown to be another effective method for
reducing complexity of transformer, while also benefiting
the scalability of transformer models [29]. Sparse variants of
transformers are able to perform on the same accuracy level
of a fully dense transformer with multiple times of speed up.

We propose learnable attention window sizes that
are learned by during training, building upon previous
works [27]. To benefit from real-world speedups, we intro-
duce a custom CUDA kernel for our learnable attention
window.

IV. PROPOSED SEARCH METHODOLOGY
A. MULTI-STAGE EVOLUTIONARY NAS ALGORITHM
In this work, we propose a multi-stage evolutionary
algorithm, as a search strategy for NAS, to efficiently
navigate a large and flexible search space whose scope
extends beyond a single block as shown in Figure 2.
In addition, our search directly communicates with resource-
constrained edge devices to obtain the actual latency for
inference. We aim to answer two questions when searching
for efficient language models; is an attention layer necessary
at every block? and can long skip connections convey low-
level embedding features to the end of the model to benefit
the model’s performance?

Prior work on searching efficient transformer architectures
limit the search space to a single block [11]. More specif-
ically, the Evolved Transformer allows searching a block
having two operator branches [11]. The authors of HAT [12]
train a SuperTransformer that allows elastic embedding /
hidden dimensions to change within a block without altering
the block structure. Our search space aims to provide little
restriction onwhat architectures can be explored, with the aim
of discovering unique yet efficient transformer architectures
with long skip connections.

The proposed multi-stage evolutionary NAS is designed to
regularize the search and encourage further exploration of the
search space. Our evolutionary algorithm can be broken down
into three stages (i.e., multi-stage evolution in Figure 2);
1⃝ aggressive seeding, 2⃝fine-tuning, and 3⃝mass extinction.
These stages are repeated, with each repetition being called a
session in this article.

1⃝ Aggressive seeding aims to create a large diversity in
the initial population by mutating a randomly selected parent
base model multiple times. The number of mutations applied
to each new child model is selected at random between a
range of nA to 2nA, we set nA to 20. The five mutations are
depicted in Figure 2 and described in detail in Section IV-C.
For the first session of the search, child models are seeded
from a known successful base model, i.e., GPT-2 Small [3].
In the latter sessions, the base models consist of the surviving
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FIGURE 2. Overview of the proposed multi-stage evolutionary algorithm for the extensive neural architecture search for edge-friendly Skipformers. Edge
devices (NVIDIA Jetson Nano) are connected to GPU servers to provide real-time latency estimates.

models from all previous sessions. Aggressive seeding is
repeated until the population reaches a size of PA, which we
set to 100.

2⃝ Fine-tuning allows for promising architectures to be
further developed by gradually mutating them. A single
model is selected randomly from the top 10% of the fittest
models in the population, e.g., a single model is randomly
selected from the top 22 models from a population size
of 220. The selected model has nF = 1 or 2 mutations
randomly applied, then is added to the population. Fine-
tuning is repeated until the population reaches a size of
PA + PF , which we set PF to 200.

3⃝ Mass extinction regularizes the search by prevent-
ing the search focusing too deeply in one direction and
encourages exploration of other directions. Mass extinction
achieves regulation by removing most models from the
population, providing a clean start for the next population to
generate novel architectures. From the top 10% of models,
1% of population size are randomly selected from the top
10% population to be added to the pool of base, e.g.
3 models randomly sampled from 30 top models. Finally,
the population is purged by removing all models, leaving an
empty population for the next session.

B. PROGRESSIVE FITNESS SCORE
Our multi-stage NAS uses a progressive fitness score to
enable our NAS to be latency-aware. The objective of the
proposed progressive fitness score is to find efficient lan-
guage modeling architectures that enables real-time language
processing on the edge. Thus, we consider two metrics in our
fitness score, i.e., the model’s test perplexity and its inference
latency on the edge device. Perplexity is calculated from the
exponential of the cross-entropy loss between the ground
truth and the model’s prediction.

Our fitness score utilizes targets on both perplexity and
inference latency. The latency target ‘lT ’ rewards models that
are faster than the target and penalizes models that are slower
than the target. The test perplexity target ‘pT ’ progressively
shrinks, allowing the early stages of the search to be more
flexible, while ensuring that the latter sessions of the search
are more defined. The fitness score initially allows for a
target of within 10% of the target perplexity and shrinks
the acceptable perplexity by 1% for each session. The final
perplexity target encourages the fittest models to be at least
equal or better than the target. We set the target perplexity and
target latency from the seeding base model. The progressive
fitness score is defined as:

Fm = max
(

pm
(1.1 − 0.01s) · pT

, 1
)

·

(
lm
lT

)λ

, (1)

where pm is the test perplexity of the current model m, lm is
the inference latency of the model, s is the session index, pT is
the target perplexity, and lT is the target latency. The λ is set
to 0.1 which controls the relative importance of the latency
to the perplexity of the model. Lower λ values will prioritize
the model perplexity, whilst higher λ values with prioritize
the model latency.

C. SEARCH SPACE
Previous methods use block-level search to reduce the overall
search space of computationally expensive NAS [37]. The
block-level search only changes layer parameters within the
block, i.e., number of attention heads, hidden dimensions for
linear layers, and embedding dimensions [12]. While these
methods are effective at reducing the search time, they restrict
the flexibility of the search.

In our search space, we discard the use of blocks to allow
for a greater search space to be explored, promoting the
discovery of block-free novel architectures. This strategy is
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FIGURE 3. Original GPT-2 Small block, repeated 12 times in full model.

possible for small language models since the scalability is
less of a concern compared to the server-scale LLM. Each
architecture is represented as a chain-based layer list instead
of dividing the model into identical blocks as per the original
GPT-2 Small block (Figure 3). Our unrestricted chain-based
search space allows novel unexplored architectures to be
discovered. An architecture that can vary throughout its
depth may provide models that are better optimized for
the task than block-based search spaces. However, using an
unrestricted search space requires more search time and more
computational energy. We aim to reduce search time by using
early stopping in model training (Section VII-A).

The search includes five mutations that have equal chance
of selection; add/remove skip connection, add/remove layer,
and update layer hyperparameter. A flexible embedding
dimension offers the opportunity for the embedding dimen-
sion to vary throughout the depth of the model.

Add/remove skip connection randomly selects a starting
layer and ending layer within the model for adding a
skip connection. The rationale behind this is to let skip
connection transverse any number of layers within the
architecture so that it can pass information outside the
original transformer block design. When removing a skip
connection, a skip connection is randomly selected from the
model.

Add/remove layer randomly selects a location to add a
layer and a layer type from the following: linear, normal-
ization, multi-head attention (MHA) or non-linear activation.
Linear/MHA layers have the input/embedding dimension set
to the output dimension of the last layer before the position
of the new layer. After the addition of a linear layer, there is a
50% chance a non-linear activation layer to be added after.
Non-linear activation function include ReLU, GELU [38],
and squared ReLU [39]. Additionally, we add a dropout layer
after the new layer if there is no dropout after the placement
of the new layer. When a layer is added, layer dimensions
are checked throughout the model to ensure dimensional
consistency.

Update layer hyperparameter randomly selects a linear
or MHA layer in the model, then randomly updates one
of its hyperparameters. For linear layers, output dimension
can be randomly updated to any value that is divisible by
192 between 192 and 4,416. The subsequent linear layer

FIGURE 4. (a) Adaptive attention span [27]. (b) Proposed learnable
attention window applied to QK⊺ output (white regions are zeros).

has its input dimension set to the new output dimension of
the updated layer. For MHA layers, the number of heads is
randomly updated from 4, 8 or 12.

D. LEARNABLE ATTENTION WINDOW IN LANGUAGE
MODELS
Transformer owes its success to the self-attentionmechanism.
However, the self-attention mechanism is limited by its
squared complexity in time and memory, O(N 2) where N
is the length of the input sequence. The O(N 2) complexity
is a result of the QK⊺ operation, where Q and K have a
size of RN×dmodel , where dmodel is the embedding dimension.
Attention between all tokens has been shown to not be always
required [27], [28], [40].

We propose a learnable attention window for language
models, a learnable sliding window to reduce the number of
computations of the self-attention layer in language models.
Unlike adaptive attention span, where they learn the span of
the key and value matrices (Figure 4a), our method learns the
optimal self-attention window using gradient descent during
training (Figure 4b). Our method only completes necessary
computations and also avoids calculating values that are
masked by the attention mask found in causal language
modeling, reducing complexity from O(N 2) to O(wN ),
where w = zS + R is the attention window size. A custom
developed CUDA-accelerated kernel enables speed-up on
CUDA GPUs.

For the window size to be learnable by gradient descent
via backpropagation, a differentiable masking function must
be introduced into the self-attention mechanism. We use
a masking function that uses tanh-based ramp function,
as shown in Figure 5 (blue solid line). Our tanh ramp
function is capable of producing smaller attention win-
dows than the linear ramp function used in [27], while
maintaining the same or better perplexity (see Table 3 in
Section VII-B).

To train the attention window, we first initialize a base
maskmb of dimension RN×N . Each element of the base mask
is initialized as follows.

mb[i,j] = − |i− j| . (2)
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FIGURE 5. Tested masking functions for training self-attention windows:
our tanh function (blue) and a linear function (red; Sukhbaatar et al. [27]).

A differentiable attention window mask is updated at each
forward pass with the following ramp equation.

mw = max
[
0, tanh

(
4
R

(mb + zS + R)

)]
, (3)

where R is the minimum ramp size, S is the maximum
window,mb is the base mask, and z is the learnable parameter
which controls the window size. We can describe z as
adjusting the percentage of the maximum window, z must
be minimized to reduce the attention window. Finally, the
mask is element-wise multiplied with the attention output, i.e.
(QK⊺) ⊙ mw.

At the beginning of training, the attention window is at its
full size, by initializing all z values to 1. The attention window
is encouraged to shrink during training via the addition of an
attention window loss to the model’s loss.

lw =

n∑
i=0

γ Szi, (4)

where γ is the loss coefficient and i is the layer index.

E. CUDA KERNEL FOR NARROWED ATTENTION WINDOW
We implemented a custom CUDA kernel for the nar-
rowed attention window that enables real speed-up over
the cuBLAS-based torch.matmul function. The kernel
archives computational speed-ups by only calculating values
inside the attention window at the QK⊺ output matrix. The
kernel also supports the masked attention found in causal
language modeling and will ignore computation for forward
tokens, further reducing computation.With an input sequence
length N of 1,024 we achieve up to a 1.9x speed up on the
target NVIDIA Jetson device over full attention (Figure 6).
Due to the CUDA thread and block allocation, there in no
speed up below an attention window size of 128.

V. EXPERIMENTAL SETUP
A. TRAINING LANGUAGE MODELS DURING SEARCH
Our language model search focuses on causal language
modeling, where the probability of the next token in
the sequence is predicted. WikiText103 [41] is used for
training and testing of architectures during the search, and
OpenWebText [42] for full training and testing of the
searched architectures in the final results. A vocabulary size
of 50,257 tokens is used for all datasets, with input sequence
length of 1,024 tokens. We preprocess the sequences and

FIGURE 6. Our custom attention window CUDA kernel (blue) compared to
PyTorch torch.matmul (red). Attention window varies from 4 to 1024 with
batch size of 1, number of heads 12, and sequence length of 1024.

encode tokens using the same methods described in [3].
Sequences are packed together to create sequence lengths of
1,024. If the sequence is too long, we split the sentence and
start the next input with the second half of the split sequence.
During the search, a batch size of 5 is used to enable training
on a single GPU. Final results are trained for 2 epochs on
OpenWebText with a batch size of 48, resulting in 49,152
tokens per batch. Penn Treebank [43] and enwik81 are used
as zero-shot benchmarks. Datasets are divided into train, test,
and validation splits using the splits provided in the Hugging
Face dataset hub.2,3,4,5

B. NATURAL LANGUAGE UNDERSTANDING BENCHMARK
To evaluate each model’s generalizability and performance,
we use GLUE benchmark [44]. GLUE benchmark com-
prises nine datasets that cover a variety of NLU tasks.
The following datasets are included; CoLA [45] tests for
grammatical acceptability, SST-2 [46] predicts sentiment of
movie reviews, MPRC [47] assesses semantic equivalence
between sentence pairs, QQP6 determines if question pairs
are paraphrases of each other, STS-B [48]measures similarity
between sentence pairs, MNLI [49] evaluates textual entail-
ment across ten different genres of text,QNLI [50] evaluates
semantic textual similarity on question-answer pairs, RTE
[51] finds textual entailment between sentence pairs, WNLI
[52] tests if a sentence with the pronoun substituted is entailed
by the original sentence. Datasets are divided into train, test,
and validation splits using the splits provided in the Hugging
Face dataset hub7 and organized into sequence lengths of 128.
We fine-tune the pre-trained models for 5 epochs on each
dataset, then take the test accuracy.

C. LATENCY COLLECTION
We collect actual latency measurements directly from target
hardware rather than using a latency predictor, as there

1http://mattmahoney.net/dc/textdata.html
2https://huggingface.co/datasets/enwik8
3https://huggingface.co/datasets/openwebtext
4https://huggingface.co/datasets/ptb_text_only
5https://huggingface.co/datasets/wikitext
6https://quoradata.quora.com/First-Quora-Dataset-Release-Question-

Pairs
7https://huggingface.co/datasets/glue
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is sufficient time to collect each metric accurately due to
the slower nature of evolutionary NAS [53] compared to
supernet-based [9], [12] and zero-shot [13] NAS methods.
The forward pass of the model is measured over 400 passes
with a fixed input length of the maximum sequence
length of 1,024. Outliers outside 3σ of the mean are
removed before calculating the final mean of the model’s
latency. All latencies are reported in seconds, unless stated
otherwise.

D. TRAINING SETUP AND HYPERPARAMETERS
1) TRAINING HYPERPARAMETERS
We complete all training using Adam optimizer with a
learning rate of 1e-4, betas of (0.9, 0.98) and epsilon of 1e-9.
We set the window loss coefficient γ in Eq. 4 to 1e-5.

2) SEARCH HYPERPARAMETERS
For search hyperparameters, we set PA to 100 and PF to 200,
giving a total population P of 300 per session. We search up
to session 10 which totals 3,000 searched architectures. The
first seeding base model is set to GPT-2 Small for the search.
In Eq. 4, pT and lT are set to GPT-2 Small’s test perplexity
and latency, respectively. The fitness score coefficient λ is set
to 0.1 for all searches. Early stopping at 100,000 steps is used
to reduce the search time (Section VII-A).

3) HARDWARE SETUP
We use 40 NVIDIA GPUs to train and evaluate architectures
for the search, ranging from Titan Xp up to A100. We mea-
sure actual latencies from two NVIDIA Jetson Nano 4GB
boards in 10W power mode.

VI. EXPERIMENTAL RESULTS
A. SEARCH RESULTS AND ARCHITECTURAL FEATURES
Out of the 3,000 searched models, we select two models
for testing, i.e., Skipformer A (Figure 7), and Skipformer B.
Skipformer A has the best final fitness score, and Skipformer
B is a model that produces slightly worse perplexity results
but greater improvement in latency.

In both Skipformer models, the total number of MHA
and linear layers are reduced from the original GPT2-
Small model. Skipformer A features a reduction of 2 MHA
and 3 linear layers, and Skipformer B features a reduction
of 3 MHA and 5 linear layers. Skipformers also vary greatly
in architecture compared to GPT2-Small. In the searched
models, many of the remaining linear layer dimension
have been reduced from the original dimension of 3,072.
The largest reduction is found in the first linear layer of
Skipformer A with an output dimension of 384. Little to
no change was observed in the number of heads per MHA
layer. These three unique architectural features observed in
the search reduce the total number of parameters in themodel,
boosting on-device efficiency.

FIGURE 7. Skipformer A architecture.

1) NON-REPEATABLE ARCHITECTURAL PATTERNS
The searched models vary through the depth of the model.
This feature may not have been discovered using a repeatable
block-based search algorithm. Block-based search algorithms
repeat the searched block multiple times to create the full
model architecture, creating a repeatable pattern. Although
some structural similarities to GPT-2 Small remain, there
is greater variation in the architectures. It is found that the
earlier layers in an architecture have many variations, while

VOLUME 12, 2024 124435



M. Bodenham, J. Kung: Skipformer: Evolving Beyond Blocks

TABLE 1. All models are pre-trained on OpenWebText for two training epochs. All results are reported as perplexity on the respective test datasets,
excluding enwik8, which is reported as bit per character. Latencies are actually measured on NVIDIA Jetson Nano. Lower is better.

the latter layers follow patterns found in the original GPT-2
Small block.

2) COUNTERINTUITIVE LAYER ORDERS
In the searched architectures, we can see combinations of
layers that would not usually be considered when manually
designing a model. Some of these features include, double
non-linear activations, i.e. ReLU Squared → GELU, and
single linear layer with same input and output dimensions.

3) LONG SKIP CONNECTIONS
Within each Skipformer there are skip connections that trans-
verse multiple layers. It is believed that these connections
reintroduce lost information back into the final layer of the
model.

B. PERFORMANCE ON LANGUAGE MODELING
To evaluate the quality of Skipformers, we evaluated the
performance of each model on five datasets, i.e., Open-
WebText, Billion Word, Penn Treebank, WikiText-103, and
enwik8, and summarized in Table 1. We take GPT-2 Small as
the baseline as an on-device language model. GPT-2 Small
with reduced attention window was assessed as a faster
baseline (GPT-2 Small-W). For all models, pre-training was
performed with 2 epochs on OpenWebText. The metrics for
other datasets shown in Table 1 are zero-shot. Skipformer
A reduces the model size by 19.2% and the latency by
23.3% compared to GPT-2 Small. With two training epochs,
Skipformer A degrades the accuracy by 19.1% and 12.6%
on average compared to GPT-2 Small and GPT-2 Small-W,
respectively. Skipformer B is significantly worse in accuracy
while reducing model size and latency by another 9.0% and
8.2%, respectively.

C. FINE-TUNING TO OTHER LANGUAGE TASKS
Accuracy loss in large-scale datasets in Table 1 does not
necessarily mean that the searched models will perform
poorly in smaller NLU datasets. We believe that the GLUE
benchmark, i.e., smaller NLU datasets, is more suitable for
evaluating the quality of on-device language models. Thus,
we fine-tune the searched models for the GLUE benchmark
and the results are reported in Table 2. Fine-tuning on
each dataset is completed after 2 pre-training epochs on the
OpenWebText. As summarized in Table 2 and Figure 8, the
accuracy of Skipformer A on GLUE benchmark is similar to
that of GPT-2 Small or GPT-2 Small-W (-0.95% on average).

FIGURE 8. Overview of GLUE results for the evaluated language models.

Even the smallest and fastest Skipformer B loses accuracy
only by 2.6% on average, while improving the latency by
31.5%.

D. EFFICIENCY OF OUR CUSTOM CUDA KERNEL
When considering the speed-up of the original attention
method, our learnable attention window with the custom
CUDA kernel can achieve a speed-up of up to 1.9×. Even
on the original GPT-2 Small model, we can see a 6.9% speed
up, when comparing GPT-2 Small with GPT-2 Small-W in
Table 1, simply by allowing the learnable attention window
with our custom CUDA kernel.

VII. ABLATION STUDIES
A. ABLATION STUDY ON EARLY STOPPING
We employ early stopping in our proposed search method
to reduce the training time of each model, in turn reducing
the overall search time. We first completed a study of how
effective early stopping is for reducing search time whilst
still providing accurate final training accuracies. We fully
trained 300 models to 500,000 steps on WikiText-103 (one
session size), while recording the test perplexity at every
10,000 steps. Using this data, the test perplexity ranking can
be calculated relative to the other models at each interval.
With Spearman’s rank correlation, we can find the ranking
correlation at interval compared to the final test perplexity
ranking. It was found that over 100,000 training steps there is
a strong collection > 0.8 for the test accuracy ranking of the
model in the population (Figure 9).
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TABLE 2. Performance on GLUE task test set (trained for 5 epochs on each dataset). CoLA is reported with Matthews correlation coefficient. MRPC and
QQP are reported with accuracy and F1. STS-B is reported with Pearson and Spearman correlation coefficient. MNLI is reported with accuracy on the
matched and mismatched test sets. All other tasks are reported with accuracy. All values have been scaled by 100. Higher is better.

FIGURE 9. Spearman’s rank correlation of test perplexity against test
perplexity at 500,000 steps when calculated at 10,000 step intervals with
a sample size of 300. A strong rank correlation can be seen at 100,000
steps in both all models and top 10% of models.

TABLE 3. Comparison on the quality of learnable attention window using
different ramp functions. Results are extracted by training GPT-2 Small on
OpenWebText for one epoch.

B. ABLATION STUDY ON ADAPTIVE ATTENTION WINDOW
MASKING FUNCTION
To understand how the masking function affects the model’s
accuracy and latency, we performed a set of experiments in
finding the optimal masking function (Table 3). We trained
GPT-2 Small with learnable attention window for 1 epoch
on OpenWebText with no ramp, tanh ramp, and linear
ramp functions. With no ramp function, the window size
continuously decreases to its minimum size, causing poor
test perplexity. The study indicates that a ramp function
is required to learn the attention window effectively, and
our proposed tanh ramp function outperforms linear ramp
function on test perplexity and achieves smaller window
sizes.

TrainingGPT-2 Small with our learnable attentionwindow,
i.e., GPT-2 Small-W, showed that full self-attention is not
necessary for strong perplexity (Table 1). We find that
most of the learned attention windows converge to their
minimum learnable size, which is set to 16 in our experiments
(Figure 10).

VIII. DISCUSSIONS
The main limitation of our proposed method is the search
time, running for ∼18,000 GPU hours. Our search was

FIGURE 10. Attention window size per attention layer. All models are
trained for 1 epoch on OpenWebText. Unlabeled bars have value of 16.
Value in bracket denotes the test perplexity on OpenWebText.

completed using on a selected edge device, i.e., NVIDIA
Jetson Nano, but our proposed method and code are designed
so that target devices can be easily changed, ranging from
server-scale GPU cards to edge devices such as Raspberry
Pi. In order to target other devices, the initial base model must
run on the target hardware to collect the target latencies for
the NAS fitness score.

Self-attention acceleration is only provided for CUDA-
supported devices. Self-attention acceleration must be devel-
oped for the target hardware when targeting devices outside
of CUDA enabled hardware. Further hardware optimization
must be considered to improve efficiency of all layer types
within the searched architectures. Our proposed method can
lack scalability as each architecture is unique and features
no repeatable structures. Thus, we may extract important
features of Skipformer per stage and establish a scalable
architecture.

IX. CONCLUSION
Our proposed multi-stage latency-aware evolutionary NAS
produced novel transformer architectures to support on-
device language modeling. In addition, our learnable self-
attention window reduced the computation cost of language
models using our custom CUDA kernel. By applying the
proposed learnable attention window on GPT-2 Small,
we could achieve 7% speed up (without any architectural
modification). The searched model with the learned window
size has shown promising results on GLUE benchmark
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comparable to the original GPT-2 Small baseline model.
Skipformer achieves 23.3% speed up and requires 19.2% less
memory with negligible accuracy loss on GLUE benchmark
compared to the GPT-2 Small. As a future work, shallower
models should be explored by adjusting the search space.
Furthermore, custom hardware can be designed to further
improve the speed-up of the restricted attention window.
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