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ABSTRACT With the rise of intelligent transportation (ITS), autonomous cars, and on-the-road
entertainment and computation, vehicular edge computing (VEC) has become a primary research topic
in 6G and beyond communications. On the other hand, reconfigurable intelligent surfaces (RIS) are a
major enabling technology that can help in the task offloading domain. This study introduces a novel
VEC architecture that incorporates non-orthogonal multiple access (NOMA) and reconfigurable intelligent
surfaces (RIS), where vehicles perform binary or partial computation offloading to edge nodes (eNs) for
task execution. We construct a vehicle-to-infrastructure (V2I) transmission model by considering vehicular
interference and formulating a joint task offloading and resource allocation (JTORA) problem with the goal
of reducing total service latency and energy usage. Next, we decompose this problem into task offloading
(TO) problem on the vehicle side and resource allocation (RA) problem on the eN side. Specifically,
we describe offloading decisions and offloading ratios as a decentralized partially observable Markov
decision process (Dec-POMDP). Subsequently, a multi-agent distributed distributional deep deterministic
policy gradient (MAD4PG) is proposed to solve the TO problem, where every vehicular agent learns the
global optimal policy and obtains individual decisions. Furthermore, a whale optimization algorithm (WOA)
is used to optimize the phase shift coefficient of the RIS. Upon receiving offloading ratios and offloading
decisions from vehicles, edge nodes utilize the Lagrange multiplier method (LMM) and Karush-Kuhn-
Tucker (KKT) conditions to address the RA problem. Finally, we design a simulation model based on
real-world vehicular movements. The numerical results demonstrate that, compared to previous algorithms,
our proposed approach reduces the overall delay and energy consumption more effectively.

INDEX TERMS Reconfigurable intelligent surface, non-orthogonal multiple access, real-time task
offloading, vehicular edge computing, multi-agent deep reinforcement learning.

I. INTRODUCTION
Recently, the combination of vehicular communication and
edge computing has sparked revolutionary developments in
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vehicular networks, fostering several types of innovative
applications ranging from real-time traffic management
to autonomous driving. This has led to the development
of the modern era of intelligent transport systems (ITS)
with unprecedented capabilities. However, this requires
high data transmission and intensive computation, with
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stringent latency requirements. The traditional cloud-centric
computing paradigm faces never-before-seen issues owing to
the spread of data-intensive automotive services and the strict
latency requirements for future applications. Virtual servers
provide distant storage capacity and processing resources to
users via cloud computing.Without requiring vehicles to have
considerable storage space or processing power, stored data
can be retrieved anywhere. Therefore, users can exchange
large amounts of data across vehicles. Nonetheless, the
exponential rise in the quantity of devices, including vehicles,
has resulted in a substantial surge in data generation. These
devices send an escalating volume of data for processing
in the main cloud, thereby placing additional strain on
cloud resources. Furthermore, some small devices find the
communication cost with the cloud to be too expensive.
Moreover, the exchange of data between automobiles and
cloud servers requires large bandwidth. Additionally, a high
traffic load increases the energy consumption of different
wireless devices, significantly increasing the bandwidth cost.
Thus, keeping up with the growing advancements in vehicle
applications while satisfying the demands of computation and
communication has become increasingly difficult.

Nevertheless, traditional cloud or terminal computing
approaches cannot satisfy the various quality of service (QoS)
or quality of experience (QoE) requirements of vehicular
applications. Edge computing [1] is a desirable solution for
enhancing computational capabilities in vehicular environ-
ments. Vehicular edge computing (VEC) [2] has emerged as
a potentially useful approach for streamlining task execution
at the edge of automotive networks. Considerable work has
been devoted to developing VEC [3], [4], in which vehicle-
to-infrastructure (V2I) communication enables edge nodes
(eN)1 to conduct tasks using data uploaded by vehicles. With
the help of these computing models, computational work-
loads may be effectively offloaded to the edge, improving
the overall network performance and lowering latency and
energy usage.

In addition, to satisfy the diverse communication require-
ments of connected vehicles, non-orthogonal multiple access
(NOMA) has evolved into a potentially useful technology
for enhancing spectral efficiency and facilitating extensive
connectivity to maximize resource utilization. It enables
several users to transmit and receive concurrently within the
same communication bandwidth by employing successive
interference cancellation (SIC) and superposition coding [5].
NOMA has been acknowledged as a crucial communication
technique to support multi-access edge computing (MEC)
for fast data rates and large capacity, better than orthogonal
multiple access (OMA). In VEC, NOMA can enhance
the reliability and effectiveness of wireless communica-
tion between vehicles, roadside infrastructure, and edge-
computing nodes [6]. Furthermore, it enhances throughput
and facilitates real-time data exchange, cooperative sensing,

1An eN in this context contains a base station (BS) / roadside unit (RSU),
with edge server.

and collaborative computing of tasks. Despite its potential,
a vehicular scene may suffer from obstacles that can hinder or
weaken the direct communication between distant vehicles in
the cell and edge nodes. Therefore, reconfigurable intelligent
surfaces (RIS) have been suggested as a viable method
to enhance the wireless network performance [7]. An RIS
is composed of numerous reflecting elements that can be
adjusted to alter the phase and amplitude of incoming signals.
It can significantly increase the coverage and link quality by
modifying the phase-shift variables and amplitude-reflection
coefficients as necessary [8].

Despite the substantial potential of RIS, several technical
challenges must be overcome before they can be seamlessly
integrated into vehicular edge computing systems. These
obstacles include developing effective RIS design algorithms,
optimizing phase-shift control strategies, coordinating RIS
operations with vehicular mobility patterns, and integrating
RIS with current communication protocols and standards.
Additionally, the use of RIS-assisted NOMA-based offload-
ing does not solve the high communication overhead in
VEC owing to poor decision-making regarding offloading.
As such, informed decisions are essential, and the effective-
ness of the combination of RIS and NOMA depends on key
metrics such as delay and energy consumption [9].

The significant challenges facing existing research on
task offloading and resource optimization are poor real-time
decision-making and low decision-making accuracy [10].
Two offloading mechanisms have been explored in previous
studies, namely: binary and partial. Earlier studies have
employed iterative techniques (such as game theory and
heuristic algorithms) [11], [12]. However, real-world edge
networks frequently feature time-varying system factors
(such as the amount of data, vehicle states, and channel
conditions), complexity, and uncertainty. Current methods
make greedy decisions at every time frame, disregarding
the optimization of the overall performance of the system,
which may result in suboptimal decisions. For these reasons,
the researchers in [13], [14], and [15] used reinforcement
learning (RL) and deep reinforcement learning (DRL) to
make offloading decisions for the computational offloading
of VEC. However, none of these studies have investigated
both resource optimization and offloading in VEC. A few
studies have developed a joint optimization framework that
combines resource allocation and task offloading [16], [17].
Multi-agent deep reinforcement learning (MADRL) [18]
has surfaced as a distributed approach for unmanned area
vehicles (UAV) and vehicular applications [19], [20], [21],
[22]. Nonetheless, these solutions rely on centralized training
and decentralized execution (CTDE) methods. CTDE-based
methods result in problems such as centralized-decentralized
mismatch (CDE) [23] and multi-agent credit assignment
(MACA) [24]. Therefore, they cannot be directly applied
for real-time resource allocation in vehicular networks.
In contrast, [25] used a multi-agent distributed distributional
deep deterministic policy gradient (MAD4PG) and game
theory to address CTDE-based problems. However, their
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work did not investigate RIS capabilities in the VEC
environment.

For the above reasons, this study examines a joint task
offloading and resource optimization (JTORA) problem
for dynamic and fast-moving vehicles to realize real-time,
accurate, and decentralized joint task offloading and resource
allocation. The proposed JTORA problem aims to minimize
long-term service delays and energy usage. We separated
the problem into a task offloading (TO) problem on the
vehicular side and a resource allocation (RA) problem on the
eN side. Next, MAD4PG, together with a whale optimization
algorithm (WOA) termed (MAD4PG-RIS), is proposed to
address the TO problem and RIS phase shift optimization.
In particular, it combines distributional RL and value
decomposition functions (VDF) [23] to speed up learning
and facilitate convergence. Each eN then uses the Lagrange
multiplier method (LMM) and Karush-Kuhn-Tucker (KKT)
conditions to address the RA problem after receiving the
TO decisions of each vehicle. The main contributions of this
study are as follows:

1) We propose an RIS-assisted NOMA-based VEC
architecture that deploys multiple RISs to enhance
the communication links between vehicles and edge
nodes (eNs). Typically, vehicles must increase their
transmission power to maintain their signal strength
over longer distances, leading to higher energy con-
sumption. Our architecture mitigates this issue using
RISs. Vehicles offload tasks to eNs using the same
communication bandwidth, with tasks varying in terms
of their computational requirements and deadlines.
In addition, we enable vehicles to compute tasks
locally by combining the strengths of binary and partial
offloading.

2) We formulated the JTORA problem to minimize the
overall service delay and energy cost by considering
binary and partial offloading. The model for V2I
transmission incorporates intra and inter-edge interfer-
ences using the NOMA principle. This optimization
is a long-run mixed-integer nonlinear programming
(LR-MINP) problem that is simplified by dividing it
into two subproblems: task offloading (TO), including
RIS phase-shift optimization on the vehicle side, and
resource allocation (RA) on the edge node (eN) side.
The TO problem is a decentralized, partially observable
Markov decision process (Dec-POMDP) owing to the
agile and partially perceived characteristics of vehicles.
The RA problem, given the offloading decisions and
ratios, is treated as a separate concave programming
(SCP) problem, which is straightforward to solve.

3) Given the complex and mixed action space of
each vehicular agent in Dec-POMDP, we utilize a
multi-agent distributed distributional deep determinis-
tic policy gradient (MAD4PG). To improve the con-
vergence, we used Kullback-Leibler (KL) divergence
regularization to address the convergence bias between

the distributions of the behavior and target policies.
This approach uses distributional functions to manage
continuous state-action returns and reduces imprecise
Q-value estimations. In addition, to effectively address
MACA and CDM concerns, the algorithm employs
value decomposition functions (VFD) to divide the
centralized critic network into a proportional total
of distinct critic networks, automatically determining
each vehicular agent’s local Q-value function.

4) We optimized the RIS phase shift parameters by
employing the whale optimization algorithm (WOA).
Hence, MAD4PG-RIS jointly makes offloading deci-
sions and offloading ratios and optimizes the RIS
phase-shift parameters. Subsequently, we designed a
simulation using real-world vehicular movement.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III describes the
proposed system model. Section IV describes the JTORA
problem. In Section V, the MAD4PG-RIS and WOA are
proposed, and we derive the optimal solution for the RA
problem. In Section VI, numerical results are presented.
Finally, the conclusions are presented in Section VII.
Lowercase and uppercase boldface letters indicate vectors

and matrices, respectively. Cn×m represents the complex
domain with space n×m and f (x) denotes the lower bound of
f (x). The operator [·]T represents the transpose, and |·| and ∥·
∥ denote the absolute value and Euclidean norm, respectively.
Table 1 summarizes the key symbols and notations used in
this study.

II. RELATED WORK
Over the years, significant efforts have been dedicated to task
offloading and resource optimization in VEC. Mainstream
research investigations are often concerned with minimizing
latency and energy consumption. Various strategies have
been implemented to address challenges related to optimizing
decisions and resources for task offloading. Some of these
studies used heuristics, meta-heuristics, greedy algorithms,
game theory, reinforcement learning, etc. Nguyen et al. [12]
used a meta-heuristic algorithm to maximize the acceptance
ratio and optimize task execution latency for parked vehicles
(PVs). Their approach suggests the use of Kubernetes-based
container orchestration, which intends to effectively offload
online processing to parked vehicles during peak traffic
hours. Raza et al. [26] employed a game-theoretical method
to reduce the delay and energy in VEC. Manogaran et al.
[31] formulated blockchain-assisted offloading to maximize
data availability. They proposed Naïve Bayes classification
to determine offloading instances to avoid unnecessary
backlogs. However, these iterative and probabilistic methods
cannot be used for real-time task offloading decisions in
VEC owing to the dynamic and frequent time-varying factors
in vehicular networks. Therefore, researchers have explored
reinforcement learning methods to determine the optimal
offloading policies in vehicular environments.

124332 VOLUME 12, 2024



A.-B. Yakubu et al.: TO and RA in an RIS-Assisted NOMA-Based VEC

TABLE 1. Summary of primary symbols and notations.

An in-depth analysis of RL and DRL methods for task
offloading in VEC and vehicular cloudlets was presented
in [14]. Their work briefly highlights algorithms such as
deep Q networks (DQN), deep deterministic policy gradient
(DDPG), proximal policy optimization (PPO), and many
others used in VEC. Liu et al. [16] formulated a semi-Markov
process and proposed two RLmethods (Q-learning and DRL)
to optimize computation offloading policies and resource
allocation. Their objective was to optimize the total utility of
the VEC network. Zhan et al. [13] employed a PPO algorithm
to schedule offloads in vehicular networks. They carefully
designed an overall computation cost function that sought to
minimize the delay and energy for traveling vehicle terminals
(VT), intending to offload their task for computation.
In another study, the authors of [15] developed a PPO strategy
that makes offloading decisions and uses alternate radio
access technologies to reduce latency. However, none of these
methods employ NOMA to improve the spectral efficiency of
the VEC architecture.

Patel et al. [6] examined NOMA-based vehicular network
communication capabilities, and the results revealed that
NOMA performed approximately 20% better than the
traditional OMA. Du et al. [32] utilized a heuristic algorithm
for resource optimization and offloading in NOMA-enabled
VEC. They aimed to decrease processing delay by per-
forming partial task offloading. Zhou et al. [33] presented
an improved WOA (IWOA) for multi-step offloading con-
sidering security and NOMA in ultra-dense IoT networks.

Their model obtained a binary association decision for IoT
mobile devices (IMDs) and performed partial offloading to a
nearby base station (BS). In another study [34], they proposed
a further improved WOA (FIWOA) and genetic WOA
(GWOA) to mitigate interference in ultra-dense networks
through joint multi-step secure offloading and resource
allocation utilizing NOMA. Zhu et al. [35] introduced an
efficient power allocation strategy designed to optimize
long-term power usage and latencywhile considering random
task arrival and channel variation. Liu et al. [36] suggested
an alternative directional algorithm based on NOMA to
allocate power to autonomous vehicles. Nevertheless, these
studies did not investigate the use of RIS to achieve spectral
efficiency.

Agrawal et al. [37] evaluated the effectiveness of RIS-aided
UAV-enhanced vehicular communications. Their work ana-
lyzed the performance by considering multiple nonidentical
interferers with regard to the bit error rate (BER), coverage
probability, and goodput using Monte Carlo simulations.
In addition, Javed et al. [38] presented the advantages
of using an RIS in cybertwin VEC networks, including
Doppler lessening, overcoming blockages, and improving
localization. They demonstrated that RIS could increase
the proportion of direct visibility in cars to 25% in an
area with traffic density reaching 60 cars/km. In another
study, Zhu et al. [28] illustrated a technique for dynamic
scheduling in RIS-aided vehicular networks with the goal
of maximizing the computing throughput. They formulated
a mathematical model for task offloading policies and task
scheduling considering vehicle movement taken into account.

Furthermore, researchers explored the synergy between
RIS and NOMA in VEC. Li et al. [30] investigated an
RIS-assisted cell with several user scenarios in a NOMA
MEC system. They jointly optimize the phase shift, transmit
data size, and transmission rate to minimize total energy
usage. Xie et al. [29] adopted a heuristic algorithm to jointly
optimize offloading decisions and computation resources
while using an iterative method to optimize the RIS
phase-shift coefficients. In contrast, Mirza et al. [27] used
an advantage actor-critic (A2C) technique to determine
offloading decisions in zero-energy RIS-aided vehicular
networks, which aimed to reduce the overall delay and
energy costs. However, the DRL of current studies, such as
iterative approaches, faces the challenge of poor real-time
decision-making because their foundation lies in centralized
scheduling, which entails a significant communication bur-
den and complex decision-making in a VEC.

Previous studies have suggested the use of MADRL as a
distributed approach for VEC task offloading. For instance,
Ju et al. [22] employed a double Q-learning algorithm to
obtain secure offloading decisions aimed at minimizing the
processing delay. They collaboratively optimized the spec-
trum selection and transmission power of the VEC networks.
Liao et al. [39] presented a blockchain and semi-distributed
learning with DRL used for training local data whereas
federated averaging was employed for collaboration in a
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TABLE 2. Comparing our work with related studies and emphasizing the main distinctions and contributions.

secure computation offloading setting. Zhang et al. [20]
proposed the use of MADDPG as a resource-allocation
technique to reduce the cost of offloading vehicular tasks
while maintaining stringent delay limits. Kumar et al. [17]
developed a Lyapunov MADDPG (L-MADDPG) to jointly
optimize task distribution and resources to reduce delay
and energy. In another study, Alam et al. [21] formulated a
bipartite graph maximum matching problem and proposed a
multi-agent DRL-based Hungarian algorithm (MADRLHA)
to address the offloading of dynamic tasks. Nevertheless,
this approach results in issues, such as MACA and CDM.
Zhang et al. [10] proposed an improved soft actor-critic
(SAC)-based decentralizedMADRL (IS-DMDRL) algorithm
to obtain decentralized task offloading policies in Industrial
Internet of Things (IIOT) devices. Similarly, Xu et al. [25]
utilized MAD4PG and game theory to optimize offloading
decisions to achieve a high service ratio for VEC networks.

Therefore, it is necessary to address the complex decision-
making dilemma in VEC while including cutting-edge tech-
nologies such as NOMA and RIS for spectral efficiency and
reliable communication links. Therefore, none of the existing
solutions can be employed directly for diverse resource
distributions and complex real-time task assignments in
VEC.

In this study, we employed NOMA and RIS for joint
task offloading and resource optimization. As highlighted
in Table 2, our proposed solution differs from the existing
literature in that it combines several advantages: it considers
both binary and partial offloading in V2I communication
and RIS usage and optimizes the phases of the RIS
for spectral efficiency. The synergistic benefits of these
techniques for task offloading and resource optimization
are demonstrated by comparing the results presented in
Section VI. It is worth mentioning that, while we focus on

optimizing communication efficiency, energy consumption,
and task offloading in RIS-assisted NOMA-based VEC
architectures, secure offloading and blockchain technologies
can be integrated by employing the methods in [31], [33],
[34], and MADRL converges to [39]. However, this aspect
is beyond the scope of the present study.

III. SYSTEM MODEL
We propose an RIS-assisted NOMA-based architecture for
joint task offloading and resource allocation in VEC. As illus-
trated in Fig. 1, infrastructures like roadside units (RSUs) or
base stations (BSs) are installed along roads, which serve as
eNs for vehicles to communicate using V2I communication.
Vehicles randomly receive varying tasks, which are partially
offloaded to the near eNs. The power control adopted in
this study is a base-station-centric approach. The edge node
centrally determines the power levels of all vehicles based on
their QoS requirements, channel conditions, and the overall
network state. In vehicular communication networks, distant
vehicles often experience significant path loss, leading to
weak channels between vehicles and edge nodes. To com-
pensate for this path loss and ensure reliable communication,
distant vehicles typically need to increase their transmission
power. A higher transmission power can reduce the trans-
mission delay by improving signal strength and reliability.
A higher transmission power also significantly increases the
energy consumption, which is undesirable, especially for
battery-powered vehicles. Therefore, we deployed an RIS
consisting of passive elements that do not require a power-
hungry transmitter. This passive nature significantly reduces
the overall energy consumption compared with active relays
or higher transmission power from vehicles. Vehicles transmit
through the same bandwidth and the signals are decoded
using the NOMA principle.
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FIGURE 1. RIS-assisted NOMA-based VEC architecture.

The eNs are represented as ee ∈ E with the index
e ∈ {1, 2, . . . ,E}, which contains several computing units
(CPU chips) to enhance the computational tasks offloaded
by mobile vehicles. ee = (pe, fe, re, ℓe) describes eN. The
highest V2I communication power is denoted by pe, fe ∈
[0,Fe] is the computational capacity, re is the eN coverage,
and ℓe represents the location of eN. The vehicles are
represented by the set νv ∈ V with index v ∈ {1, 2, . . . ,V}.
We consider multiple RIS with M passive elements, where
the RIS is represented as rr ∈ R with index r ∈

{1, 2, . . . ,E}. Where each RIS is associated with a specific
eN. Consequently, each RIS is dedicated to serving a paired
edge node. The RIS diagonal phase-shift matrix is defined
as [40] 2 = diag

(
ejθ1 , ejθ2 , ejθ3 , . . . , ejθM

)
∈ CM×M , where

each θM represents a phase shift within the interval [0, 2π ).
At a particular distance from the edges, indicated by the
small coverage within edge nodes, the signal strength starts
to fade away, which leads to an increase in power to reach
an edge node. Hence, the RIS offers a better communication
path to eN. The task requested by vehicles at discrete time
t ∈ T = {1, 2, . . . , T } is represented by k tv ∈ K , which has
data size dk , CPU cycles for processing C , and deadline Tkv .
Furthermore, we provide the communication scenario of

vehicles, where v refers to a single antenna vehicle and e
refers to the edge node (eN) equipped with N antennas.
In Fig. 1, v1 and v2 stochastically encounter tasks k1 and
k2 respectively, which need to be processed. They upload
through a direct link and the RIS link to eN e1, which
provides computational resources. Similarly, v3 and v4 upload

to eN e4 using V2I communication. However, considering the
impact of distance on channel conditions, which is primarily
attributable to the path loss of the vehicle, v4 is assumed to
have poor channel conditions for eN e4 represented as a weak
channel. RIS offers another link to communicate with eN e4.
Both v3 and v4 transmit through the same communication
bandwidth. Subsequently, e4 used SIC to decode the signal
of each vehicle.

A. TASK OFFLOADING MODEL
Let hdv ∈ CN×1, hrv ∈ CM×1, and G ∈ CN×M denote the
channel gains from vehicle v to eN, from v to RIS, and RIS
to eN e, respectively. The channel gains are

hdv,e =
[ η1

dγ /2
v,e

η2

dγ /2
v,e

· · ·
ηN

dγ /2
v,e

]T
,

hrv =
[ η1

dγ /2
v,r

η2

dγ /2
v,r

· · ·
ηM

dγ /2
v,r

]T
, (1)

where dv,e represents the distance from vehicle v to eN e, dv,r
is the distance from vehicle v to RIS r , ηn signifies Rayleigh-
distributed small-scale fading, that is, ηn ∼ CN (0, 1), for n ∈
{1, 2, . . . ,N } and γ represents the path loss exponent.

The received signal at the edge node from vehicle v at time
t can be expressed as [40]

yte =
∑ (

G2hrv + hdv
)
wvx tv,e + ne, (2)

where wv is the transmit scalar and |x tv,e| = 1 is the transmit
symbol of vehicle v. ne represents Additive White Gaussian
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noise (AWGN).

ℏℏℏtv,e = G2hrv + hdv,e (3)

The signal received at eN can subsequently be described in
relation to the channel ℏℏℏtv,e and the transmission power of the
vehicles ptv,e at time t [41] as

yte =
∑
∀v∈Vt

e

√
ptv,ex

t
v,eℏℏℏ

t
v,e +

∑
∀v′∈Vt

e′

∑
∀e′∈E

√
ptv′,e′x

t
v′,e′ℏℏℏ

t
v′,e+ne,

(4)

where x tv,e is the vehicle’s intended message and x tv′,e′
represents the interfering message.

B. COMMUNICATION MODEL
We modeled the V2I transmission and intra and inter-edge
interference using the NOMA principle for downlink and
uplink communication. For an uplink NOMA system, vehicle
channel conditions differ at a given time. Both sides are
expected to know the channel state information (CSI).
To control the power, eN allocates the transmit power based
on CSI, including information regarding path loss, fading,
and other channel conditions that affect the signal strength.
Near vehicles have better channel conditions than far vehicles
because of the path loss. According to the decoding of uplink
NOMA, the edge node first decodes the near vehicle signals
by treating the distant vehicle signals as interference. Then,
through SIC, the edge node cancels out the near vehicle signal
to decode the signals of distant vehicles [5]. The channel
gains of an arbitrary number of vehicles Ve served by eN e
are sorted as follows.

∥G2hrv1 + hdv1,e|
2
≥ · · · ≥ ∥G2hrVe + hdVe,e∥

2,

∴ ∥ℏℏℏtv1,e∥
2
≥ ∥ℏℏℏtv1,e∥

2
≥ · · · ≥ ∥ℏℏℏtVe,e∥

2. (5)

Following the effective cancellation of signals for vehicles.
The interference can be modeled as

χintra =
∑

∀v′∈Vℏℏℏv,e

∥ℏℏℏtv′,e∥
2ptv′,e, (6)

χinter =
∑
∀e′∈E

∑
∀v′∈Vt

e′

∥ℏℏℏtv′,e∥
2ptv′,e′ , (7)

where ptv′,e and ptv′,e′ are the transmission powers of the
interfering vehicle v′ within the same eN e and the interfering
eN e′, respectively. ∥hhhtv′,e∥

2 denotes the interfering vehicle’s
v′ channel coefficient.
The signal-to-interference-plus-noise ratio (SINR) at time

t is formulated as [25]

ϕtv,e =
∥ℏℏℏtv,e∥2ptv,e

χintra + χinter + σ 2 , (8)

where ∥ℏℏℏtv,e∥2 and ∥ℏℏℏtv′,e∥
2 are the channel coefficients of the

desired and interference vehicles, respectively; σ 2 is the noise

power; and ptv′,e is the interfering vehicle transmission power.
Thus, the transmission rate can be obtained as:

υ tv,e = b log2(1+ ϕtv,e), (9)

where b in Hz is the bandwidth of the V2I communication.

C. DELAY COST MODEL
1) LOCAL COMPUTATION
Given that vehicles have computing capabilities, certain tasks
are computed either partially or fully on a local processor.
When vehicle v executes its task locally, the local computing
delay is given by [42]:

Dt,loc
v =

αv,lCdk
fv

, (10)

where αv,l ∈ [0, 1] is the ratio of the task computed at vehicle
v, dk is the size of task k tv, C is the CPU cycle required to
process a bit of data, and fv is the computing capability of the
vehicle, which is determined by the frequency of the CPU
cycles.

2) EDGE COMPUTATION
Given the limited processing power of vehicle v, every vehicle
v can partially upload its task to an eN e. The transmission
delay of this task is:

Dt,trans
v,e =

αv,edk
υ tv,e

, (11)

where αv,e =
(
1− αv,l

)
denotes the task ratio to be executed

at eN. Following the receipt of the task at eN e, the execution
delay at eN e is expressed as:

Dt,exec
e =

αv,eCdk
f tv,e

, (12)

where f tv,e is the allocated computational capability of eN for
vehicle v at time t . The delay associated with downloading
can be ignored because the computed results are relatively
small [43]. Hence, the service delay or overall delay for
finishing task k tv is:

Dt
v,e = max

(
Dt,loc
v ,Dt,trans

v,e +Dt,exec
e

)
. (13)

Task k tv of the vehicles should be completed before the
vehicle moves out of sight of the RIS or eN. Therefore,
we denote the task deadline by Tkv . When a task is serviced
before its deadline, it is said to be successfully serviced.
Hence, the service ratio can be determined as follows:

0t
v =

∑
∀k tv∈Kt

v

I
(
Dt
v,e ≤ Tkv

)
|K t

v |
, (14)

where |K t
v | is the number of task vehicles requested in an

eN and I
(
Dt
v,e ≤ Tkv

)
is an indicator function that is 1 if

Dt
v,e ≤ Tkv and 0 otherwise.
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D. ENERGY COST MODEL
1) LOCAL COMPUTATION
The energy required by vehicle v to locally compute the task
is given by [10]

E t,locv = pt,locv Cαv,l, (15)

where pt,locv denotes local computing power.

2) COMPUTATION AT THE EDGE
Vehicle v consumes power ptv,e during the offloading of the
task to eN e. The associated energy required by vehicle v to
upload a task to eN e is:

E t,transv,e = ptv,eDtrans
v =

ptv,eαv,edk
υ tv,e

. (16)

In addition, the energy consumed during task execution at eN
is given as

E t,exece = pt,exece Cαv,e, (17)

where pt,exece is the power used by eN to process the task.
Hence, the total energy cost of vehicle v is

E tv,e = E t,locv + E t,transv,e + E t,exece . (18)

IV. PROBLEM FORMULATION
In this section, we formulate the JTORAproblem tominimize
the overall computational cost of vehicles. To reduce its
complexity, we divide it into a TO problem on the vehicle
side and an RA problem on the eN side.

A. JTORA PROBLEM
According to (8), (9), (11), and (16), vehicle v can increase
its transmission power pt,transv to reduce the transmission
delay Dt,trans

v,e . However, this increase leads to an increase in
uploading energy consumption E t,transv,e . Therefore, a trade-off
relationship exists between the energy and delay. We deter-
mined the cost of each vehicle as theweighted sum of its delay
and the energy expenses required for each vehicle device to
complete its task at time t .

8 = λDt
v,e + (1− λ) E tv,e +

gt (Dt
v,e −DTH )

DTH

+
ge

(
E tv,e − ETH

)
ETH

, (19)

where λ represents the weight, DTH denotes the delay
threshold, ETH denotes the energy consumption threshold.
The variables gt ∈ {0, 1} and ge ∈ {0, 1} are the penalty
factors for the delay and energy, respectively. When penalty
constraints are not applied,gt and ge are both zero [44]. The
sum of all the vehicle costs is the overall system cost at time
t . The total cost is then calculated over the time window
t1 < t < T .

P1 : min
αv,θ,f tv,e,qtv,e,ptv,e

T∑
t1

Ve∑
v1

8

s.t. : 1− αv,l = αv,e, (20a)

∑
∀v∈Vt

e

ptv,e ≤ pe, (20b)

∑
∀k tv∈Kt

ve

f tv,e ≤ Fe, (20c)

∑
∀e∈E

qtv,e = 1, (20d)

0 ≤ θn(t) ≤ 2π, 1 ≤ n ≤ N . (20e)

Constraint (20a) ensures that the total offloading ratios
from the vehicle to the edge nodes do not exceed 1.
Constraint (20b) ensures that the total transmission power
does not exceed the maximum V2I communication power.
(20c) stipulates that the amount of computing resources
assigned does not surpass the computational capacity of the
edge nodes. Constraint (20d) guarantees that each task is
limited to associating and offloading to only a single eNwhen
task offloading decision qtv,e is made. (20e) ensures that the
angle of the n-th RIS reflector remains between 0 and 2π .

B. TASK OFFLOADING AT VEHICLE-SIDE
Notably, given each time slot, P1 can be decomposed
into two sub-problems. The first subproblem concerns the
decisions to offload and the offloading ratio of vehicles,
which can be presented as:

P2 : min
qtv,e,αv,θ

T∑
t1

Ve∑
v1

8,

s.t. : 1− αv,l = αv,e, (21a)

1
∑
∀e∈E

qtv,e = 1, (21b)

0 ≤ θn(t) ≤ 2π, 1 ≤ n ≤ N . (21c)

Realistic vehicular environments are dynamic and partially
observable. Hence, P2 on the vehicle side can be regarded
as a decentralized Dec-POMDP problem. Owing to the
limited communication among vehicles, every vehicle (i.e.,
agent) can acquire local observations and discover its
optimal decentralized policy by continuously engaging with
its surroundings. (V , Sv,Ov,Av,Rv) is used to characterize
Dec-POMDP.

1) V is the set of vehicular agents and the number of
vehicular agents is represented by Ve.

2) Global system state (Sv): At time t , the global system
of the RIS-assisted VEC environment is st ∈ Sv.

3) Ov is the shared observation of vehicular agents.
At time t , each agent v collects the local observations
otv ∈ Ov from the environment.Ovn represents the local
observation space of agent v. otv comprises the vehicle’s
intrinsic state parameters derived from its system
configuration. It includes task data size, task deadline,
residual battery level, and CPU cycles. The perceived
environmental parameters include the distance to eN,
computational resources of eN, and channel conditions.
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Hence, the local observation can be simplified as

otv = {v, t,ℏℏℏ
t
v,e, dk , fv,Tkv}, (22)

where v is a vehicular index, t is time slot, ℏℏℏtv,e
is the channel conditions of vehicle v to eN, e,
dk represent the data size, and fv and Tkv are the
required commutation resources and deadline of task
kv respectively.

4) Action space (Av): Each agent chooses action atv ∈
Av after obtaining its local observation otv to make
offloading choices according to the policy. The action
atv of vehicular agents is the offloading decision of tasks
and the task division ratio. It is donated by

atv = {qv,e, αv,l}, (23)

where qv,e ∈ {0, 1}. In the binary offloading procedure,
when qv,e is 0 and αv,l is 0, the task is computed locally.
If a vehicle does not have idle computing resources in
a particular time slot, then the decision qv,e is 1, and
αv,l is given 1 (i.e., the entire task is sent to eN). For
a partial scenario, when vehicle computing resources
are insufficient at a given time, the decision qv,e is 1,
and then 0 < αv,l < 1 where αv,l + αv,e = 1 are the
offloading ratios.

5) Reward function: The goal of each vehicle is to lower
the overall communication cost by optimizing the
offloading ratio and task offloading decisions.

r tv(av|ov) = −
Ve∑
v1

8. (24)

An agent receives fewer rewards when the total
communication cost is high.

C. RESOURCE ALLOCATION AT eN-SIDE
After the offloading actions of vehicular agents are executed,
eN must allocate the transmission power and computational
resources to each agent to simultaneously process the
offloaded task, seeking to reduce the service delay and energy
consumption. The RA problem is formulated as follows.

P3 : min
ptv,e,f tv,e

T∑
t1

Ve∑
v1

8

s.t. :
∑
∀v∈Vt

e

ptv,e ≤ pe, (25a)

∑
∀k tv∈Kt

qe

f tv,e ≤ Fe. (25b)

Variables ptv,e and f tv,e are independent. Constraints (25a)
and (25b) can be separated because the variables do not
overlap: Therefore, we can divideP3 into transmit powerRA
(TPRA) and computation RA (CRA), which are formulated
as follows [25]:

1) TPRA
It is with respect to variable ptv,e which concerns the
transmission power and is modeled as

P4 : min f (ptv,e) =
∑
∀e∈E

∑
∀k tv∈Kt

ve

αv,edk
b log2

(
1+ ϕtv,e

) ,

s.t. :
∑
∀v∈Vt

e

ptv,e ≤ pe. (26a)

We can further simplify f (ptv,e) in problem P4 to relate to
only one eN because the variables associated with each eN
are independent. Implies,

min f (ptv,e) =
∑
∀k tv∈Kt

ve

b log2
(
1+ ϕtv,e

)
s.t. :

∑
∀v∈Vt

e

ptv,e ≤ pe. (27a)

Nevertheless, owing to the interference in ϕtv,e, the problem
is not convex. Additionally, the objective is not concave in
ptv,e. The problem can be relaxed using the lower bound of
f (ptv,e), that is, f (ptv,e) formulated as

f (ptv,e) ≥ f (ptv,e)

f (ptv,e) =
∑
∀k tv∈Kt

ve

b
(
ξ tv,e + δtv,e log2 ϕtv,e

)
, (28)

where ξ tv,e and δtv,e are constants defined as [45]

ξ tv,e = log2
(
1+ ϕtv,e

)
−

ϕtv,e

1+ ϕtv,e
log2 ϕtv,e,

δtv,e =
ϕtv,e(

1+ ϕtv,e

) . (29)

Appendix presents the complete derivation of (29). It is tight
at the lower bound if ϕtv,e = ϕtv,e and we set p̃tv,e = log2 p

t
v,e.

Then, the relaxation is expressed as:

P5 : min f̃ (ptv,e) =
∑
∀k tv∈Kt

ve

b
(
ξ tv,e + δtv,e log2 ϕ̃tv,e

)
s.t. :

∑
∀v∈Vt

e

2p̃
t
v,e ≤ pe, (30a)

where log2 ϕ̃tv,e is given by

log2 ϕ̃tv,e

= p̃tv,e + log2 ∥ℏℏℏtv,e∥
2
− log2

×

 ∑
∀v′∈Vt

ℏℏℏv,e

∥ℏℏℏtv′,e∥
22p̃

t
v′,e+

∑
∀e′∈E

∑
∀v′∈Vt

e′

∥ℏℏℏtv′,e∥
22p̃

t
v′,e′+ne

.

(31)

Thus, P5 is a convex optimization problem.
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FIGURE 2. MAD4PG-RIS network and resource allocation.

2) CRA
The computational resource allocation problem of every eN
is expressed as follows:

P6 : min g(f tv,e) =
∑
∀k tv∈Kt

ve

αv,1Cdk
f tv,e

,

s.t. :
∑
∀k tv∈Kt

ve

f tv,e ≤ Fe. (32a)

Hence, both TPRA and CRA are SCP problems.

V. MULTI-AGENT DEEP REINFORCEMENT LEARNING FOR
BINARY AND PARTIAL TASK OFFLOADING
Dec-POMD agents operate in intricate, multidimensional,
and diverse action spaces. Hence, the DRL method is used
to learn the TO policy. Nevertheless, applying single-agent
reinforcement learning to tackle this issue is challenging
owing to interference among different vehicles. Also, the
TO problem involves a combination of binary and partial
offloading within the dynamic RIS-assisted NOMA-based
VEC environment, and to address MACA and CDM,
we utilized multi-agent distributed distributional reinforce-
ment learning (MAD4PG). The proposed MAD4PG-RIS
algorithm learns the decentralized policy of each agent.
It jointly optimizes the decisions, offloading ratio, and
RIS phase shifts to minimize the overall computational
cost.

A. MAD4PG FOR TASK OFFLOADING IN AN RIS-ASSISTED
VEC ENVIRONMENT
Fig. 2 illustrates MAD4PG-RIS task offloading and resource
allocation in an RIS-assisted VEC environment. MAD4PG
is an extension of D4PG [46]. It is a distributed off-policy
method that facilitates multi-agent collaboration in learning
continuous action-space strategies. It uses a Value Function
Distribution (VFD) to improve the critic network and priori-
tizes the replay experience to speed up learning and facilitate
convergence. The illustrated MAD4PG-RIS and resource
allocation is similar to the one in [25] which uses MAD4PG.
However, our proposed system modifies the MAD4PG to
mitigate convergence bias using KL divergence. In addition,
our network incorporates RIS and optimizes its phases using
WOA.

In the MAD4PG-RIS framework, each agent is designed
to maximize its expected return, defined as Rv(t) =∑

j≥0 ζ jr t+jv , where ζ represents the discount factor. Initially,
the learner randomly sets the parameters for the local critic
ωQ and policy network ωµ. These initial parameters are then
synchronized with the target critic network ωQ′ and the target
policy network ωµ′ .

ωµ′
← ωµ, ωQ′

← ωQ. (33)

Furthermore, global replay buffer B is initialized as part of
the setup process. Algorithm 1 provides a full description of
the process.
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Algorithm 1MAD4PG-RIS for Task Offloading
1: Initialize: network parameters ω, replay buffer B;
2: Start L distributed actors, each with replicated networks(

ωµ, ωQ
)
;

3: for iter = 1, 2, . . . , max iter do
4: Initialize: Observation space otv;
5: for t = 1, 2, . . . ,T do
6: for v = 1, 2, . . . ,V do
7: DrawM random samples from B for transitions of

lengthN ;
8: Create target network distributions;
9: Calculate network loss for both policy and critic;

10: Update the local critic and policy networks;
11: if t mod ttgt = 0 then
12: Update the target networks;
13: if t mod tact = 0 then
14: Synchronize network weights;

The L distributed actors
1: while learner not completed do
2: Initialize: random actions for exploration;
3: Actor receives initial observation o1;
4: for t = 1, 2, . . . ,T do
5: for v = 1, 2, . . . ,V do
6: Retrieve local observation otv;
7: Determine action space atv;
8: for atv = (qtv, αv,l ) do
9: Compute optimal RIS phase shift

θ∗(t) = fWOA
(
qv,e

)
;

10: Obtain reward r tv and next observation ot+1v ;
11: Store

(
otv, a

t
v, r

t
v, o

t+1
v

)
in replay buffer B;

The system consists of L distributed actors that interact
with the environment concurrently by performing actions
and collecting experience. The local policy parameters
for the lth actor are derived from the local network of
the learner ω

µ
l . Each distributed actor makes offloading

decisions and determines the offloading ratio for vehicle v
at time t based on the locally observed system states, as
follows:

atv = µ
(
otv|ω

µ
j

)
+ ϵ1t , (34)

where 1t represents exploration noise, which increases the
diversity of vehicular actions, and ϵ is a constant that governs
the extent of exploration. The actions atv executed by vehicles
at time t occur within the RIS-assisted NOMA-based VEC
environment. These actions lead to the generation of an
offloading decision that is input into the whale optimization
function, producing an optimal phase shift at a specific time t .
Rewards r tv for vehicles at time t are obtained according
to (24). Observations otv, vehicle actions a

t
v, rewards r

t
v, and

subsequent observation states ot+1v are retained in the replay
buffer. This procedure is repeated iteratively until the learning
process is complete.

Distributed agents interact with each other through learn-
ers to improve performance and learning efficiency. This
interaction involves sharing experiences and policies among
the agents. The experiences collected by each agent are
stored in global replay buffer B which is accessible to all

agents. This shared replay buffer enables agents to learn from
each other’s experiences, thereby enhancing the diversity and
quality of training data. In addition, the policy parameters ωµ

are periodically updated and shared among all agents. This
synchronization ensures that the agents’ policies are aligned,
promoting coordinated actions and reducing conflicts in the
multi-agent system. The exchange of information among
agents helps in faster convergence and more robust learning
because agents can benefit from the collective knowledge and
experience of the entire system.

The learning process involves training learner networks by
sampling a minibatch consisting of M transitions, each of
length N , from the replay buffer. The target distribution for
vehicle v is calculated as follows:

Yv =
N−1∑
n=0

(
ζ nr j+nv

)
+ ζNQ′

(
oj+Nv , aj+N |ωQ′

)
. (35)

The loss function for the critic network is defined as

L(ωQ) =
1
M

∑
j

1
Ve

∑
v

KL
[
Yv∥Q

(
ojv, a

j
|ωQ

)]
,

=
1
M

∑
j

1
Ve

∑
v

Yv log
Yv

Q
(
ojv, aj|ωQ

) , (36)

where KL [P∥Q] denotes the Kullback-Leibler divergence
between the target and policy distributions. The pol-
icy network is updated using the policy gradient given
by

∇ωµJ =
1
M

∑
j

1
Ve

∑
v

∇ajv
Q

(
ojv, a

j
|ωQ

)
∇ωµµ

(
ojv|ω

µ
)

.

(37)

This comprehensive approach ensures that distributed agents
within the MAD4PG-RIS framework can efficiently interact
with the environment, optimize their performance, and learn
from their experiences to improve the decision-making
processes over time. A flowchart of the complete algorithm
is shown in Fig. 3.

Similar to [47], the computational complexity per time slot
of a distributed MADRL algorithm is

O

 V∑
v=1

Ll,act∑
i=1

n(i)l,act (n
(i+1)
l,act +

Ll,cri∑
i=1

n(i)l,cri(n
(i+1)
l,cri

 , (38)

where V represents the number of agents, n(i)l,cri and n(i)l,act
represent the number of neurons in the i-th layer of actor l
and critic l, respectively. While Ll,act and Ll,cri indicate the
number of hidden layers in the actor and critic, respectively.
The complexity of the WOA per time slot can be analyzed,
as demonstrated in [48].

O (WD) , (39)
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FIGURE 3. A flowchart of the MAD4PG-RIS algorithm.

where W is the number of whales, and D is the size of each
search agent. In this regard, the complexity of the MAD4PG-
RIS for Iiter iterations and time slot T is

O

IiterT V∑
v=1

Ll,act∑
i=1

n(i)l,act (n
(i+1)
l,act +

Ll,cri∑
i=1

n(i)l,cri(n
(i+1)
l,cri

+WD
 .

(40)

The complexity depends on the number of agents, neural
network architectures, and WOA. Local computations such
as observation retrieval, action determination, and reward
calculation are relatively inexpensive.

Each agent performs local updates asynchronously but
periodically synchronizes its parameters with the learner.
This synchronization ensures that all the agents’ policies
converge towards a common optimal policy. The discussion
of how a distributed MADRL converges to a locally optimal
policy is detailed in [49] and [50].

B. RIS PHASE SHIFT OPTIMIZATION
Given the offloading decision qtv,e and task offloading
ratio αv, is a nonconvex optimization issue that determines
the ideal RIS phase shift θ in P2. We used the Whale
Optimization Algorithm (WOA) [51] described in [52]
and [53]. WOA offers flexible methods for striking a
balance between the algorithm’s exploration and exploitation
features. In comparison, this increases the likelihood of
avoiding suboptimal solutions compared with other heuristic

approaches. Hence, the WOA is applied to numerous
optimization issues, including resource allocation in wireless
communication [48]. In our design, the WOA algorithm
θ∗(t) = fWOA

(
qv,e

)
takes an offloading decision qv,e as

the input and iteratively finds the optimal RIS phase shift
θ∗(t) through J evolution.We initialized thewhale population
as θ ′(0) = {θ ′1(0), θ

′

2(0), . . . , θ
′
W (0)}, where W denotes the

number of whales in the environment. We randomly generate
RIS phase shift, the i − th whale θ ′i (0). During the j − th
iteration, the global RIS phase shift that minimized the overall
computational cost is determined. This is formulated as [53]:

θ∗(j) = argmin
θ ′∈{θ∗(j−1)}∪θ ′(j−1)

8, (41)

where θ∗(j) represents the global optimal RIS phase shift
selected in the j iteration. There are two phases in WOA:
exploitation and exploration.

1) Exploitation phase: The optimal solution is thought
to be fairly close to the best whale in that other whales
explore the surroundings of the present good whale for
a better root. The ith whale within the whale population
is updated using the following equation:

D =
∣∣Bi(j)θ∗(j)− θ∗i (j− 1)

∣∣ , (42)

θ∗i (j) =
∣∣θ∗(j)− Ai(j) · D∣∣ , (43)

where Bi(j) = 2 · ri(j) and Ai(j) = ai(j) · (2ri(j)− 1).
The exploitation phase is selected when |Ai(j)| < 1.
ri(j) is a real value between 0 and 1 which is generated
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at random, and ai(j) = 2 ·
(
1− j

J

)
is a scalar that

decreases linearly over j iterations from 2 to 0. Given
p is the probability of choosing spiral updating or
shrinking encircling and that p < 0.5, the humpback
whale’s movement (i.e., spiral) is used:

D =
∣∣θ∗(j)− θ∗i (j− 1)

∣∣ , (44)

θ∗i (j) =
∣∣∣(D · e♭·li(j) · cos 2π · li(j))+ θ∗(j− 1)

∣∣∣ ,
(45)

where ♭ = 1 is a constant for establishing the spiral
shape, and li(j) is a value within the interval [−1, 1].

2) Exploration phase:When |Ai(j)| ≥ 1 the i-th whale is
updated through exploration. The update rule is given
as

D =
∣∣∣θ randi (j)− θ∗(j− 1)

∣∣∣ , (46)

θ ′i (j) =
∣∣∣θ randi (j)− Ai(j) · D

∣∣∣ , (47)

where θ randi (j) is an RIS phase shift that is randomly
generated. The ultimate output of the WOA is the
resulting RIS phase shift, θ∗(J+1) after all J iterations
are completed.

C. RESOURCE ALLOCATION AT EACH eN
In Section IV-C, the RA problem is transformed into an easily
solved SCP problem. Hence, we employed the LMM and
KKT conditions to solve TPRA and CRA problems. The
Lagrange function for the TPRA is constructed as

L1(p̃tv,e, λ1) = f̃ (ptv,e)− λ1

 ∑
∀v∈Vt

e

2p̃
t
v,e − pe

 . (48)

Similarly, the Lagrange function for the CRA is

L2(fv,et , λ2) = g(f tv,e)− λ2

 ∑
∀k tv∈Kt

ve

f tv,e − Fe

 , (49)

where λ1 and λ2 are Lagrange multipliers. Equation (48)
can then be determined by applying partial derivatives with
respect to the choice variable and Lagrange multiplier,
whereas (49) is solved following the KKT condition.
Differentiating (48) partially with respect to p̃tv,e gives,

∂L1(p̃tv,e, λ1)

∂ p̃tv,e
= bδtv,e − p

t
v,e

×

λ1 +
∑
∀v∈Vt

e

bδtv,e∥ℏℏℏ
t
v,e∥

2
ϕtv′,e

∥ℏℏℏtv′,e∥2p
t
v′,e

 .

(50)

The optimal transmission power is determined by setting (50)
to 0. Hence, the power for transmission by vehicle v in the jth

iteration is obtained as

pt,(j+1)v,e =
bδtv,e

λ
(j)
1 +

∑
∀v′∈Vt

ℏℏℏv,e

bδtv,e∥ℏℏℏtv,e∥2ϒ
(j)
v′,e

, (51)

where ϒ
(j)
v′,e is;

ϒ
(j)
v′,e =

∑
∀v′∈Vt

ℏℏℏv,e

∥ℏℏℏtv′,e∥
2pt,(j)v′,e

+

∑
∀e′∈E

∑
∀v′∈Vt

e′

∥ℏℏℏtv′,e∥
2pt,(j)v′,e′ + ne. (52)

Following the KKT condition, (49) yields the following
formulas [25]:

λ2∇f tv,e

 ∑
∀k tv∈Kt

ve

f tv,e − Fe

+∇f tv,eg(f tv,e) = 0,

λ2

 ∑
∀k tv∈Kt

ve

f tv,e − Fe

 = 0,

λ2 ≥ 0. (53)

The optimal CRA for a given task is obtained by solving (53).
Hence,

f t∗v,e =
1/Fe
√
dkC∑

∀k tv∈Kt
ve

1/Fe
√
dkC

. (54)

VI. NUMERICAL RESULTS
A. SETTINGS
In this section, we evaluate the performance of the pro-
posed multi-agent DRL-based JTORA algorithm for the
RIS-assisted NOMA system. We examined the overall
situation in a 300 × 300 m2 square region. E = 9 eN
containing RSUs were evenly dispersed over the road map,
and RISs were deployed 300 m away from each edge node.
Additionally, realistic vehicle trajectories were extracted
from a 300 × 300 m2 area of Qingyang District, Chengdu,
China, on November 16, 2016, and used as traffic inputs
obtained from the Didi GAIA open dataset [54], similar to
that used in [25]. Specifically, we examined a scenario in
the period 8 : 30 to 8 : 35 am, where the number of
vehicular traces is 1181, the average dwell time is 233.2 (s),
the variance of dwell time is 117.7, the average number of
vehicles in each second is 878.8, the average speed of vehicles
is 4.91 (m/s), and the variance speed of vehicles is 2.61.
Furthermore, the simulation settings are set as follows: the
number of M RIS elements is 12, eN antennas N is 8, the
number of vehicular agents participating in task offloading Ve
is [3, 27], the eN coverage re is 500m, and the computational
capabilities of eN and the vehicles are set to 10 GHz and
3 GHz, respectively. The W whale population is set to 12.
We selected a small number of elements in the RIS to
assess the effect of using the RIS on communication quality.
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In addition, we assessed the effect of increasing RIS element
size.

TABLE 3. Parameters.

The following sections describe the design of the critic and
policy networks used to create the algorithms. We employed
ten distributed actors. The local policy network and target
policy network are identical and feature three hidden layers,
each comprising 256 neurons in a fully connected five-layer
neural network. The local critic network and target critic
network are also identical and feature three hidden layers
of the first two 512 neurons and the other 256 neurons in a
fully connected five-layer neural network similar to [25]. The
Adam optimizer is used for network weight updates, whereas
the Rectifier Linear Unit (ReLU) is used as the activation
function [35]. The system model and hyperparameters of the
algorithms are listed in Table 3.

The performance was evaluated by comparing it with other
algorithms, as described below.

• Local computation (Local): Vehicles prefer to compute
tasks locally given their computing capability.

• D4PG [46]: It is a single agent that uses the global
system status as input and is implemented using a
DDPG agent. It jointly makes offloading decisions and
offloading ratios and allocates V2I transmission power
and computation resources.

• D4PG-RIS: An extension of D4PG with a WOA to
optimize the RIS phase shift coefficient.

• MADDPG [20]: It is designed by using the CTDE
approach. To optimize the expected return, each agent
updates its actor and critic networks based on their
combined observations and actions during the training
phase. The trained actor network is then used to obtain

offloading decisions and offloading ratios based on local
observations.

• MADDPG-RIS: The MADDPG is extended with the
WOA to optimize the RIS phase-shift parameters.

Furthermore, after training all seven algorithms for
4100 evolutions, we employed three performance metrics to
assess these algorithms: the average service delay (ASD),
average energy consumption (AEN), and average service
rate. If the service time of task k tv is less than its deadline
Tkv , then it is denoted as a completed task. The service ratio
is the percentage of tasks completed of the total task requests
received by the vehicle.

B. RESULTS AND ANALYSIS
1) CONVERGENCE ANALYSIS OF ALGORITHMS

FIGURE 4. Convergence performance of algorithms.

Fig. 4 shows the convergence behavior of the seven
algorithms. Notably, the algorithms implemented with RIS
converge faster typically around 1500 iterations, and achieve
higher cumulative rewards owing to their ability to dynami-
cally adjust the wireless environment. The WOA specifically
fine-tunes the RIS phase-shift parameters, which optimizes
the signal propagation and reduces the energy consumption
or delay. This optimization process allows RIS-based algo-
rithms to achieve better performance than those without an
RIS. The MAD4PG-RIS algorithm outperformed the other
algorithms because it combined the advantages of the RIS
with a multi-agent deep reinforcement learning approach.
The distributed actor-critic framework in MAD4PG accel-
erates the learning process by enabling parallel experience
replay, which not only speeds up convergence but also leads
to a higher cumulative reward. The distributed nature allows
the algorithm to effectively handle complex environments,
resulting in superior performance compared to MADDPG
and other algorithms. In the baseline model, where the
computational capabilities of the vehicles and eNs remained
constant, the cumulative reward remained stable. This is
because vehicles consistently compute a similar proportion of
tasks locally, leading to a predictable and steady performance.
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FIGURE 5. Performance comparison under different computing capabilities of vehicles.

The lack of dynamic adaptation in this local model limits its
ability to further improve performance.

The reason for the performance disparity between
MAD4PG and MADDPG lies in their distinct approaches
to balancing exploration and exploitation. MAD4PG’s
use of distributed actors allows for more diverse and
efficient sampling of the experience replay buffer, which in
turn accelerates learning and leads to faster convergence.
MADDPG, while effective, may not sample experiences
efficiently, leading to a slower convergence and lower
overall rewards. D4PG lacks distributed learning capabilities
that allow parallel experience sampling. Without these
capabilities, D4PG may require more iterations to explore
the state space adequately and determine an optimal policy,
particularly in environments with many interacting entities.
The single-agent nature of D4PG limits its ability to leverage
the full potential of the environment, resulting in lower overall
rewards compared to multi-agent strategies that can better
coordinate and optimize actions acrossmultiple entities. If the
D4PG algorithm is implemented with RIS, it benefits from
an optimized signal environment, potentially improving its
performance compared to a version without RIS. However,
the lack of distributed learning and coordination among
agents still places it at a disadvantage relative to multi-
agent approaches, such as MAD4PG-RIS, which can more
effectively exploit the RIS-enhanced environment.

2) EVALUATION OF ALGORITHMS UNDER VARYING VEHICLE
COMPUTING CAPACITIES
Fig. 5 presents a comparative analysis of the seven algorithms
for different vehicle-computing capacities. In this set of
experiments, we assessed vehicle computing capabilities
ranging from fv ∼ 1 GHz to fv ∼ 5 GHz, with an eN
computation capability fe set at 10 GHz. Increased computing
power allows vehicles to execute more tasks. Fig. 5(a)
compares the ASD across the seven algorithms, showing
a decline in ASD as vehicle computing power increases.
This is because the vehicles can execute more tasks locally,
reducing the need to offload tasks to eN. This results in a
decrease in ASD across all algorithms, as more computing

tasks are handled directly by the vehicles, thereby shortening
the overall processing time. The MAD4PG-RIS algorithm
achieves the lowest ASD because it optimally balances the
tasks between local vehicle processing and offloading to
the eN, owing to its advanced multi-agent learning strategy
and RIS phase adjustments. Fig. 5(b) shows the ASR,
indicating that the ASR improved for all algorithms with
increased vehicle computing capacity. Fig. 5(c) shows an
AEN comparison of the algorithms, demonstrating that the
proposed MAD4PG-RIS algorithm also achieves a lower
energy consumption. Across all performance indicators, the
RIS-optimized algorithms (D4PG-RIS, MADDPG-RIS, and
MAD4PG-RIS) outperformed the others (i.e., D4PG, MAD-
DPG, and MAD4PG) because the RIS technology enhanced
the communication link quality, reduced packet loss and
increased the reliability of task completion. In addition,
the local algorithm approaches the performance of both
MAD4PG and MAD4PG-RIS when the vehicle computing
power is substantial (i.e., 4 GHz to 5 GHz). Under these
conditions, the advantages of multi-agent learning and RIS
optimization become less pronounced because vehicles can
handle their computational demands effectively.

3) EFFECTS OF TASK ARRIVAL PROBABILITY
Fig. 6 presents an analysis of the seven algorithms under
varying task arrival probabilities for vehicles. Tasks arrive
stochastically in vehicles and require computation. In this
evaluation, we considered task arrival probabilities to
increase from 0.3 to 0.7 per time slot. As anticipated,
all algorithms exhibited worse performance as task arrival
probabilities increased. This decline is owing to the higher
computational load, which led to increased delays, lower
service rates, and higher energy consumption. When tasks
arrive less frequently (e.g., at a probability of 0.3), vehicles
have more time and resources to compute each task, resulting
in improved performance metrics. Between the task arrival
probabilities of 0.3 and 0.4, there is a minimal performance
difference between the algorithms. This is because the
available computational resources (e.g., vehicle and eN
computing capacities) are sufficient to efficiently handle
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FIGURE 6. Performance comparison under task arrival probabilities at vehicles.

FIGURE 7. Performance comparison under different number of RIS elements.

incoming tasks. In this range, the task scheduling and
resource allocation strategies of each algorithm are less
critical because there is ample capacity to process incoming
tasks, leading to similar performance levels.

When the chance of task arrival exceeds 0.4, the
computational load becomes more challenging to manage,
leading to a greater divergence in performance among the
algorithms. Algorithms that are better at optimizing resource
allocation and communication, such as those with an RIS,
have demonstrated significant advantages. The MAD4PG-
RIS algorithm, for example, achieves the lowest ASD
because of its ability to dynamically optimize both the
task distribution and the wireless environment, ensuring
that tasks are processed more efficiently, even under heavy
loads. Fig. 6(a) presents a comparison of the ASD of the
seven algorithms, with MAD4PG-RIS achieving the lowest
ASD. This is because its advanced distributed learning
strategy allows for better coordination between vehicles
and eN, effectively managing increased task load. Fig. 6(b)
and 6(c) compare the ASR and AEN of the algorithms,
respectively.

4) EFFECTS OF RIS ELEMENTS
Fig. 7 shows the effect of varying the quantity of RIS
elements M from 8 to 128 on the performance of the

RIS-implemented algorithms. The findings clearly indicate
that, with an increase in the number of reflecting elements
in the RIS, the surface becomes more capable of fine-tuning
the signal reflections, leading to better signal quality,
reduced interference, and more efficient use of the wireless
spectrum. This enhancement directly affects the performance
metrics of the algorithms. This enhancement underscores
the capability of the WOA to optimize the phase shift
of the RIS elements effectively. The ASD values of the
algorithms are compared in Fig. 7(a). As observed, the
ASD gradually decreased with the increasing number of
elements, reflecting the improved efficiency of our proposed
method. Notably, the MAD4PG-RIS algorithm achieves the
lowest delay, thereby demonstrating its superior performance.
Fig. 7(b) shows the ASR across the algorithms. A positive
correlation was observed between the performance and the
number of RIS elements, with the ASR steadily increasing.
The improved signal quality and reduced latency afforded
by more RIS elements indicate that a greater number of
tasks can be completed within their deadlines, thereby
increasing the service rate. The MAD4PG-RIS algorithm
benefits the most from this because its advanced learning and
decision-making framework can better exploit the enhanced
communication environment provided by the RIS. This
leads to the highest ASR among the algorithms, reaffirming

VOLUME 12, 2024 124345



A.-B. Yakubu et al.: TO and RA in an RIS-Assisted NOMA-Based VEC

its effectiveness in managing complex task offloading
scenarios.

Finally, Fig. 7(c) presents a comparison of the AEN
among the algorithms. A consistent reduction in energy
consumption was observed as the quantity of the RIS passive
elements increased. This demonstrates the efficiency of RIS
in lowering energy usage during the offloading process.
Overall, the results convincingly show that integrating RIS
enhances the algorithm performance by reducing delays
and lowering energy consumption, with the MAD4PG-RIS
algorithm emerging as particularly effective. The MAD4PG-
RIS algorithm consistently achieved the best results across
all the performance indicators (ASD, ASR, and AEN) as the
number of RIS elements increased. Its distributed learning
approach allows for more effective coordination between
agents, whereas the RIS optimizes the communication
environment, ensuring that tasks are processed quickly,
successfully, and with the least energy consumption. This
combination of advanced learning and communication opti-
mization sets MAD4PG-RIS apart from the other algorithms.

VII. CONCLUSION
In this paper, we introduce an innovative RIS-assisted
NOMA-based VEC architecture that leverages RIS to
enhance the efficiency of computational task offloading in
vehicular networks. The architecture accommodates both
binary and partial computation tasks offloading to edge nodes
(eN) for processing, thereby offering enhanced flexibility and
efficiency in addressing diverse computational demands from
vehicles.

We have formulated a Joint Task Offloading and Resource
Allocation (JTORA) problem with the dual objective of
minimizing overall service delay and energy consumption.
We validated the effectiveness of our proposed approach
by analyzing performance metrics including service delays,
service rates, and energy consumption. Our experimental
results demonstrate that the MAD4PG-RIS algorithm sig-
nificantly reduces both the overall service delay and energy
consumption compared with traditional methods. Further-
more, we observed that algorithms employing the Whale
Optimization Algorithm (WOA) for RIS phase optimization
consistently outperformed their counterparts that did not
utilize RIS-assisted communication. Our proposed RIS-
assisted NOMA-based VEC architecture and MAD4PG-RIS
algorithm offer a robust solution to the challenges of task
offloading and resource allocation in vehicular networks.
This study paves the way for future research on optimizing
VEC systems and highlights the potential of RIS technology
to advance the capabilities of intelligent transportation
systems, especially in the task offloading domain.

APPENDIX
The constants ξ tv,e and δtv,e in (29) are derived to ensure
that the linear approximation

(
ξ tv,e + δtv,e log2 ϕtv,e

)
is tight

at ϕtv,e = ϕtv,e. This means that the approximation equals

the function log2
(
1+ ϕtv,e

)
at a specific point ϕtv,e = ϕtv,e

and also has the same slope (derivative) at that point. The
constants are derived as follows.

log2
(
1+ ϕtv,e

)
≥

(
ξ tv,e + δtv,e log2 ϕtv,e

)
, (55)

At ϕtv,e = ϕtv,e,

log2
(
1+ ϕtv,e

)
=

(
ξ tv,e + δtv,e log2 ϕtv,e

)
. (56)

Taking derivatives with respect to ϕtv,e, implies

1(
1+ ϕtv,e

)
ln 2
= δtv,e

1

ϕtv,e ln 2
(57)

Then making δtv,e the subject, we have:

δtv,e =
ϕtv,e

1+ ϕtv,e
. (58)

Substituting δtv,e in (56) implies:

log2
(
1+ ϕtv,e

)
= ξ tv,e +

ϕtv,e(
1+ ϕtv,e

) log2 ϕtv,e. (59)

Hence,

ξ tv,e = log2
(
1+ ϕtv,e

)
−

ϕtv,e(
1+ ϕtv,e

) log2 ϕtv,e. (60)
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