
Received 4 August 2024, accepted 28 August 2024, date of publication 5 September 2024, date of current version 13 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3454692

Automatized End Mill Wear Inspection Using a
Novel Illumination Unit and Convolutional
Neural Network
MÜHENAD BILAL 1, RANADHEER PODISHETTI1, LEONID KOVAL 1,
MAHMOUD A. GAAFAR2,3, DANIEL GROSSMANN 1,
AND MARKUS BREGULLA1
1Application Cluster ‘‘Digital Production’’ Progarm, AImotion Bavaria Instiutute, Technische Hochschule Ingolstadt, 85049 Ingolstadt, Germany
2Department of Physics, Faculty of Science, Menoufia University, Menoufia 32952, Egypt
3Institute of Optical and Electronic Materials, Hamburg University of Technology, 21073 Hamburg, Germany

Corresponding author: Mühenad Bilal (muehenad.bilal@thi.de)

This work was supported in part by the Research and Development Program ‘‘Forschung und Entwicklung (FUE) Programm
Informations—und Kommunikationstechnik Bayern’’ of the Free State of Bavaria under Grant IUK578/001 and Grant IUK578/002, and in
part by the Open Access Publication Fund of Technische Hochschule Ingolstadt (THI).

ABSTRACT Ensuring cutting tools are in optimal condition is essential for achieving peak machining
performance, given their direct impact on both workpiece quality and process efficiency. However, accurately
assessing wear on end mills, especially those with complex geometries, pose a significant challenge due
to their reflective surfaces and varied wear patterns. Presented here is a novel method that addresses this
challenge by employing a customized illumination unit in conjunction with a convolutional neural network
(CNN) for end mill wear analysis. This innovative approach involves utilizing the specially designed
illumination unit to capture high-quality images, enabling precise examination of material wear on helically
shaped endmills. Notably, this method is tailored to illuminate reflective surfaces and represents a pioneering
application in the realm of wear testing.We validate the viability of this approach by employing CNN-based
models to segment wear on complex-shaped endmills coated with titanium carbonitride (TiCN) and titanium
nitride (TiN). We achieved remarkable mean Intersection over Union (mIoU) results in wear detection on a
test dataset: 0.99 for tool segmentation, 0.78 for abnormal wear, and 0.71 for normal wear segmentation.

INDEX TERMS Cutting tools, machining performance, end mills, wear analysis, convolutional neural
network, illumination source, reflective surfaces, material wear, helical geometries, wear segmentation.

I. INTRODUCTION
Examining the condition of cutting tools is critical for
maintaining and improving the quality of a milling machine’s
production. Wear and damage to these tools can directly
affect the surface quality of the workpiece and the efficiency
of the machining process. Tool wear accounts for 20-30%
of the total downtime of a milling machine [1], [2] and tool
changes make up 3-12% of the overall machining costs [3].
Consequently, the evaluation of tool quality and wear has
received considerable attention in the machining industry.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alba Amato .

Despite considerable recent advances in cutting tools, tool
wear inspection remains a major challenge in Computer
Numerical Control (CNC) manufacturing, particularly due
to the complexity of accurately assessing the wear on
tools with complex geometrical structures. During the
machining process, the cutting tool is subjected to various
simultaneous mechanical and thermal stresses, leading to
different types of wear. The primary causes of tool wear
include mechanical abrasion, shearing off pressure welds,
oxidation, and diffusion. Tool wear can bee classified into
two main categories: normal and abnormal wear. Normal
wear is a natural consequence of machining, influenced
by factors such as cutting parameters, tool material, and
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workpiece material [4], [5], [6]. However, abnormal wear
owing to adverse factors such as excessive cutting forces,
poor lubrication, material adhesion, or outright tool failure.

Abnormal wear, often coupled with excessive cutting
forces, can lead to a cascade of further abnormal wear
incidents. To prevent or minimize the occurrence of
abnormal wear, a thorough examination of, both pre- and
post-machining cutting tools, is essential. Such examinations
assist in optimizing the design of tools by considering their
technical parameters to enhance their resilience against the
forces and stresses encountered duringmachining. Therefore,
there is considerable demand for a milling tool inspection
system that can effectively characterize different types
of tool wear. Currently, there are two categories of tool
failure detection technologies: indirect and direct methods.
Indirect methods analyze various signals generated under
different cutting conditions, such as acoustic emission [6],
[7], temperature variation [8], strain, vibration signals [9],
motor current, power of spindle with a neural network
technique [10], and cutting forces [11]. However, these
methods require a significant number of high-performance
sensors to be installed at specified locations on the machining
equipment, which increases the machining costs and poses
obstacles in the working spaces. In contrast, the direct
method can be considered more cost-effective. These meth-
ods predominantly involve the implementation of machine
vision techniques to assess various forms of tool failure.
By utilizing cameras, microscopes, scanners, and image
processing techniques normal and abnormal wear can be
identified. Machine vision techniques have proven to be
effective in investigating tool failures by analyzing tool wear,
workpiece surface quality and chip morphology [11], [12].
In this regard, Wang et al. investigated the normal and
abnormal wear of various inserts of rotary milling cutters
using a coarse-to-fine strategy and a threshold-independent
edge detection method [14], [15]. Although camera-based
machine vision methods provide better inspection in terms
of time, cost-effectiveness and flexibility, they are sensitive
to cutting fluids, lighting conditions and chips, and therefore
require downtime for measurement [16].

A CNN-based wear detection approach using a convolu-
tional autoencoder (CAE) is introduced in [18], [19], and
[20]. High-resolution images from optical microscopy were
used for tool wear labeling and inspection, but the method
is limited to small tool regions due to the microscope’s field
of view. Variations in lighting or tool geometry affect image
features, complicating comprehensive wear detection and
making it challenging to capture suitable images for advanced
AI applications [17], [21]. Optimizing hyperparameters is
crucial for enhancing the learning process of CNN-based
applications [22], [23], [24].
In this study, we present a novel and reliable method

for tool wear inspection. The proposed method utilizes a
new illumination unit, which enhances the image quality
of the endmill cutters. The proposed approach involves
capturing high-quality images to identify worn-out regions

by employing and fine-tuning CNNs models inspired by
CNN architecture [26].We followed a systematic approach to
optimize the hyperparameters and gain new insights into the
learning behavior of our proposed CNN architecture. As a
result of the pixel-wise evaluation of wear on the cutting
edges, tool performance can be thoroughly investigated.
Notably, tools with a substantial amount of abnormal wear
can be effectively analyzed to initiate improvement measures.
These results pave the way for an overall and effective
inspection of end mills.

The article is structured as follows: Section II discusses
the methodology and derivation of the new approach for
tool wear analysis. This section discusses the background
and challenges faced by tool manufacturers in image-based
inspection of cutting tools. The focus is on their optical prop-
erties, particularly their technical and geometric parameters.
The CNN-based methods for the detection of normal and
abnormal wear are presented in Section III. The learning
behavior and performance of various CNN models obtained
by changing the hyper-parameters will be discussed. Finally,
we verify the segmentation results of the new approach to
studyingwear behavior. The last section concludes the article.

II. MATERIALS AND METHODS
A. STRUCTURE PARAMETERS AND OPTICAL CHALLENGES
In this section, we address the specific optical challenges
associated with integral helical endmills by considering their
critical technical and geometrical parameters. Subsequently
we introduce the innovative image acquisition system.

Integral spiral endmills are extensively used for milling
complex workpieces of arbitrary shapes and materials. The
tool’s geometry plays a crucial role in the milling process,
where different geometric parameters of the cutting edges
significantly influence the quality of the machining outcome.
Fig. 1 illustrates some essential geometric parameters that
need careful consideration during the selection of a milling
tool: (i) the cutting tip’s design is fundamental in achieving
clean and precise cuts, (ii) the center groove enhances
stability and facilitates effective chip evacuation, (iii) the first
rake angle and peripheral angle are crucial for optimizing
the cutting performance of the endmill’s, minimizing cutting
forces, and ensuring an excellent surface finish, (iv) the helix
angle is also of utmost importance for efficient chip removal,
reducing heat generation, and promoting seamless cutting,
and (v) the relief angle plays a pivotal role in preventing
undesirable rubbing or chatter during machining operations.
Our novel research methodologies facilitate the utilization of
images to enable intelligent customization and adjustments
of tool design.

In general, the success of a visual inspection system
relies not only on image processing algorithms but also on
other critical factors such as optimal optical illumination
and reliable hardware for the image acquisition system [27],
[28]. The primary task of the optical illumination unit is
to ensure that high-quality, stable and reproducible images
are captured. The image should enhance the visibility of
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FIGURE 1. Geometric endmill parameters of utmost significance,
including the cutting tip, center groove on the rear cutting part, first rake
angle, peripheral angle, helix angle, and relief angle.

FIGURE 2. Light reflection on TiN coated endmill. The light is reflected
back most strongly at the edges of the cutter, whereas shadowing occurs
in the inner rake space.

important wear features and minimize undesirable reflections
and shadows.

Capturing high-quality images of metallic and spatially
curved surfaces using conventional measurement methods
is accompanied by many challenges due to multiple light
scattering and reflections occurring at various locations on
the end mill surface [29], [30]. To enhance the performance
of cutting tools, various coatings with high reflection
coefficients, such as multi-layered coatings, nanocomposites,
and superlattices, are applied. However, these coatings
make capturing high-quality images for inspection tasks
more challenging, or even impossible and require special
illumination techniques.

In machine vision applications for wear detection on
milling tools, circular ring arrays of light-emitting diodes
(LEDs) [18], direct diffuse illumination [31], and dome
lighting [16] are themost used lighting sources. These options
offer high illumination intensity and ease of installation
on any device, reducing the shadow phenomenon to a

certain extent and highlighting relevant features for detection.
Although diffuse illumination is mainly used for image-based
optical damage detection of reflective surfaces, it does not
completely eliminate unwanted reflections.

Undesirable light artifacts generally result from different
curvatures and orientations of the tool surface, leading to
regular and specular reflections. As shown in Fig. 2, milling
exhibits inaccurate color representation in terms of color
uniformity and accuracy due to reflections. Even with a direct
diffuse light source, avoiding reflection to an acceptable
degree remains challenging.

The Phong reflection model describes the composition of
the perceived brightness of the detected light intensity (I ) of
an object. Three components should be considered: ambient,
diffuse, and specular light [32]. The captured intensity I is
given as:

I = IaKa + IlKa cos θ + IlKd cos θ + IlKs cosα (1)

where Ka, Kd , and Ks are the coefficients of ambient light,
diffuse light, and specular light, respectively. Ia and Il are
the intensities of the ambient light and direct light from the
source, respectively. θ is the angle between the incident light
and the normal line of the object’s surface. α is the angle
between the reflected light and the line of sight, and n is the
mirror reflection coefficient.

The ambient component arises from the reflection of
nondirectional light from an infinitely large source. The
diffuse component accounts for the light scattering on rough
surfaces and is and is randomly reflected in all directions. The
specular component is based on a perfect mirror reflection,
which typically occurs on metal surfaces. Since we focus
on characterizing metallic surfaces of an endmill with
high optical quality and less surface roughness, the diffuse
component can be neglected, and only the reflective and
ambient light components should be considered. According
to [33], the perceived brightness is then given by:

I = KbIb + Kd Id cos θ + Kr Ir (2)

where Kb is the scale factor of the ambient diffuse light
source, Ib is the exposure component of the environmental
diffuse reflection, Kd is the scale factor of the direct light
source, Id is the irradiation component, θ is the angle between
the incident light and the normal vector of the surface of the
object, Ir is the intensity of the reflected light, and Kr is the
scale factor of the specular reflection.

In this section, we discuss the innovative approach
employed to overcome the challenges of imaging endmills,
which are known for their high reflection coefficients. The
core of our methodology lies in the adaptation and application
of the Phong reflection model to the field of optical imaging.
The Phong model, a breakthrough concept in computer
graphics, provides an ideal basis for understanding and
manipulating light behavior in real-world imaging scenarios.
Its effectiveness in modeling specular highlights and local
illumination of points on a surface makes it particularly
relevant for our purposes [34].
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Recognizing the inherent complexities in accurately cap-
turing images of highly reflective surfaces, such as those
of endmills [35], our aim was to design an illumination
source that could reduce or even avoid specular reflections
and enhance the visibility of critical surface features.
This customization enables us to selectively minimize the
overwhelming specular highlights that often occur in end
mill imaging, producing images with balanced homogeneous
illumination and improved clarity of surface detail.

In this context, the theoretical basis of our adapted
Phong-based illumination technique, the practical imple-
mentation and the resulting improvements in image quality
during milling are described. This application demonstrates
the versatility of the Phong model beyond its conventional
digital limitations and sets a new benchmark for the optical
imaging of highly reflective industrial tools. Thus, this
research paper represents an advanced CNN based tool wear
inspection method and imaging technology, while addressing
the unique challenges posed by the complex shapes and
reflective properties of milling tools.

A schematic diagram of the light reflection behavior at
a flat spot of a cutting edge on a milling tool is shown
in Fig. 3. According to the Phong model, when light hits
the surface of the endmill, it is not only directed in the
direction of reflection, but also scattered in other directions
with decreasing intensity. Therefore, rendering algorithms
can be used to utilize effective images of complex cutting
tools with conventional lighting techniques. However, several
challenges must be overcome. The complex shape of a
milling tool possesses regions with varying surface normals,
such as curved surfaces, sharp edges, or intricate details.
Obtaining and representing the correct surface normals for
these complex shapes can be challenging, especially when
dealing with sharp transitions or highly irregular surfaces.
Complex milling tools may have regions with different
levels of reflectivity, depending on the tool material or
surface finish. Accurately capturing and representing these
varying specular properties can be challenging, especially
when dealing with non-uniform tool surfaces. Furthermore,
the curved shape introduces intricate shadowing effects,
including self-shadowing, where parts of the tool cast shad-
ows on other parts. The accurate simulation and rendering
of these shadowing effects within the Phong model can
be computationally intensive. The light can interact with
different parts of the tool, depending on the angle, surface
orientation, and proximity to other objects. Capturing these
complex interactions and correctly applying the Phongmodel
to account for the tool shape can be challenging.

Our newly designed inspection system is shown in
Fig. 4. This setup consists of a cylindrical-shaped cavity
(1) with a hemisphere on top (2), where light collection
and multiple scattering are enhanced. Thirteen LED emitters
are placed at equidistant intervals along the U-shaped edge
of the hemisphere (3) to enhance multiple light scattering.
An enlarged view of the U-shaped inner reflector is shown
in Fig. 4(b). The inner walls of the cylinder and hemisphere

FIGURE 3. The Phong model is used to simulate the reflection behavior of
light. The specular component ‘R’ results in a specular highlight, which
depends on the orientation of the surface of the tool relative to the
observer (A), the normal vector (N), the point light source (L), and R
representing the unit vector directed towards the ideal specular
reflection. θ is the viewing angle relative to the specular reflection
direction R, and finally, φ represents the angle made by L and R with N.
As a result, complex milling tools can exhibit areas with varying gloss,
shadowing, or reflectivity, influenced by factors such as the tool material,
shape, or surface finish.

cavity are coated with white, uniform, and diffuse barium
sulfate (BaSO4), which exhibits high reflectivity in the
spectral range from 250 nm to 2500 nm. The tool to be
inspected is placed in the middle of the enclosure (4).
By utilizing the principle of multiple diffuse reflections
in the integrating sphere (IS), resulting from its diffuse
coating, the ICH spatially integrates the radiation flux from
an internal light source. The light emitted from the LEDs
at the hemisphere is reflected downwards several times by
the BaSO4-coated inner wall of the cavity so that the sample
spatial features are uniformly detected by the optical system.
Finally, along the exit slit, the electromagnetic beams leave
the illumination unit towards the imaging system, creating
a homogeneously illuminated image of the tool (4) with
reduced unwanted specular and regular reflections according
to Eqs. (1) and (2).

The image is then transmitted via the camera’s serial
interface (6, 7) for further image processing. We have
named this new light source the ‘‘Integrating Cylindrical
Hemisphere’’ (ICH).

As shown in Fig. 5a and 5b,With the new illumination unit,
the image quality can be improved in terms of the following
aspects:

1) The uniform and diffuse illumination inside the tool
cavity helps to avoid shadowing and reflections on
different regions of the tool.

2) Similar to an integrating sphere, the multiple diffuse
reflections of the light inside aid in capturing the
tool with high color representation (color uniformity
and accuracy). This arrangement eliminates shadowing
effects and maintains uniform brightness inside the
cavity.

3) The uniform lighting enables capturing images with
high contrast.
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FIGURE 4. (a): The enclosure consists of a cylindrical-shaped cavity (1)
with a hemisphere (2) on the top. Thirteen LEDs are placed as emitters at
equidistant intervals along the U-shaped edge of the hemisphere (3). The
tool is placed in the middle of the enclosure (4). The exit port leads to the
camera (5). A serial interface connects the camera to the computer (6).
The camera is fixed or mounted on a camera mounting plate.(b): An
illustration of the U-shaped inner reflector, which enhances multiple light
scattering.

4) The uniform lighting conditions allow for capturing
reproducible high-quality images.

5) The bright diffuse background facilitates easier sepa-
ration of the tool from the background, with a clean
transition between the tool edges and the background.’’

B. CONVOLUTIONAL NEURAL NETWORK
Although CNNs have been around for a while, their earlier
use was primarily focused on large-scale classification tasks,
such as ImageNet [36] and VOC [37]. In recent years, deep
convolutional neural networks (DCNNs) have revolutionized
various visual inspection applications [38], [39]. DCNNs
have been effectively used for image analysis in optical
quality control [40] and in defect detection [41], [42], with
a particular focus on metallic surfaces and steel, respectively.

In the context of semantic segmentation U-Net has shown
better performance compared to convolutional networks
using the sliding window approach. The sliding window
approach involves applying a fixed-size window to different
parts of the input image to extract features. U-Net’s
ability to capture context and localize precisely through
its ‘‘U-shaped’’ architecture leads to improved performance
compared to the sliding window approach. A standard
U-Net architecture [26] consists of encoder and decoder
blocks. The encoder blocks downsample the input image
to capture features at different scales using convolutional

FIGURE 5. Comparison of illumination techniques: (a) Direct diffuse
illumination and; (b) New light source ICH.

layers, whereas the decoder blocks are responsible for
upsampling the feature maps. Transposed convolutions are
used for upsampling to recover spatial information lost
during downsampling. In this paper, inspired by the U-Net
framework we developed a modified version of U-Net for
the three-channel wear detection as shown in Fig. 6. This
modification allows for precise segmentation.

The proposed network is designed for wear segmentation
of the entire end mill. It follows a common neural network
architecture, featuring encoder and decoder blocks. The
encoder blocks employ convolutional and max-pooling
operations, whereas the decoder blocks use upsampling
operations to double the image dimensions and replace max-
pooling. This process increases the resolution of the output
for better feature learning and differentiation between wear
and abnormal wear. Fig. 6 illustrates the model’s structure,
with the contracting path using multiple convolutional and
max-pooling layers for hierarchical feature capture and input
compression.

The customized CNN architecture consists of four
encoding and decoding blocks utilized for images with
three channels (RGB) to maintain visual information. The
expanding path employs upsampling and concatenation
operations to recover spatial information and generate pixel-
wise predictions. DO operations are applied after each block,
and skip connections connect the encoder blocks to decoder
blocks via long arrows. The contracting path in the model
consists of repeated 3 × 3 convolution operations controlled
by ReLU activation and 2 × 2 max pooling with stride
2 for downsampling, doubling the feature channels. The
expansive path performs upsampling followed by 2× 2 ‘‘up-
convolution’’ to reduce feature channels by half. To address
the loss of border pixels, concatenation is performed with
the corresponding cropping feature map from the contracting
path. Two 3 × 3 convolutions with ReLU activations are
then applied, followed by a 1 × 1 convolution at the final
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FIGURE 6. CNN Architecture for normal and abnormal wear segmentation.

level to match the feature vectors to the desired number
of four classes: Abnormal Wear, Normal Wear, Tool, and
Background. The bottleneck layer between the encoding

and decoding blocks represents the latent space that holds
the most compressed representation of the training dataset.
To achieve seamless tiling of the output segmentation map,
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the input tile size is chosen so that all 2 × 2 max-pooling
operations are applied to layers with the same x and
y size. As there are multiple classes, the pixel-weighted
soft-max sparse cross-entropy loss is used to account for
unbalanced classes in semantic segmentation. The pixel-
weighted Softmax Sparse Cross-Entropy Loss is defined as:

l(I ) := −

∑
x∈�

w(x)log
exp(ŷy(x)(x))∑K
k=0 exp(ŷk (x))

(3)

where x is a pixel in the image domain �, ŷk : � → R
is the predicted score for class k ∈ {0, . . . .,K }, K is the
number of classes, and y :→ {0, . . . .,K } is the ground
truth segmentation map. Thus, ŷy(x)(x) is the predicted score
for the ground truth class y(x) at the position x. As defined
above, w : � → R≥0 is the pixelwise-loss-weight map.
Loss weighting has been used to achieve class balancing and
address areas with no annotations, utilizing the weight map
wbal . Additionally, instance separation is enforced through
the use of weight wsep, as explained in the subsequent
sections. The ultimate loss weights are determined as follows:

w := wbal + λwsep (4)

where λ ∈ R≥0 controls the importance of instance
separation.

wbal(x) :=


1 if y(x) > 0,
vbal if y(x) = 0,
0 if y(x) is unknown.

(5)

We observed slightly better segmentation results when
replacing the step-shaped cutoff at the edges of the fore-
ground objects with a smoothly decreasing Gaussian function
for the weighted loss computation; therefore, we define

w′

bal(x)

:=


1 if y(x) > 0,

vbal+(1−vbal) · exp

(
−
d21 (x)

2σ 2
bal

)
if y(x) = 0,

0 if y(x) is unknown.

(6)

where d1(x) is the distance to the closest foreground
object, and σbal is the standard deviation of the Gaussian.
We approximate the ridge width at each pixel by the sum of
the distance d1 to its nearest instance and the distance d2 to
its second nearest instance. From this, we compute the weight
map as

wsep(x) := exp

(
−

(d1(x) + d2(x))2

2σ 2
sep

)
(7)

which decreases following a Gaussian curve with standard
deviation σsep.

C. THE OVERALL PROCESS FOR INTEGRAL SPIRAL
ENDMILL TOOL WEAR DETECTION
The methodology for the wear analysis is delineated in the
wear inspection process flowchart (see Fig. 7). Initially,
a sequence of tool images is acquired through an imaging
system optimized for low reflectance and high resolution (a).
Subsequent image processing delineates the region of interest
and standardizes the image dimensions (b). A targeted
mask is generated to emphasize the prospective wear
locations (c). This mask, along with corresponding image
data, is segmented into datasets conducive for neural network
analysis (d). The previously processed image input is then
introduced to a pre-trained neural networkmodel, specifically
a CNN designed for wear feature identification (e). The
model scrutinizes the input to identify wear patterns based
on its trained feature set (f). Consequently, the model outputs
a segmented mask that categorizes the wear regions as
normal or abnormal within the image (f). These individual
predictions are amalgamated into an integrated image repre-
sentation of the tool (g). The resultant data is then utilized for
further evaluation or subsequent procedures.

D. DATASET
Due to the huge labeling effort required for the training
datasets, we decided to focus our use cases on two distinct
types of tools with different coatings: TiCN and TiN.

TiCN is a widely-used coating for endmills, known for its
durability and application in machining steel and cast iron.
TiN is a popular coating for various cutting tools, renowned
for its wear resistance and low friction properties, allowing it
to be used on diverse materials, including steel and cast-iron
inserts.

Fig. 8 illustrates the typical dataset comprising images
of endmills captured using our new illumination technique
for training the U-Net models. To increase the variability
the dataset consists of eight different tools, four with TiCN
coating and four with TiN coating.

Each individual tool was captured from eight different
angles, at 45-degree intervals, resulting in a total of eight
high-resolution images. The images were then cropped
into 24 sub-images with dimensions of 512 × 512 pixels
(Fig. 9), to preserve visual information that might otherwise
be lost through data compression. Additionally, assigning
each subimage to a matrix helps us to analyze wear
patterns in specific regions of an image and to ensure a
structured representation. Thus, a total of 768 images were
generated for training and testing the neural network for
each tool. The participating employees came from Linner
Werkzeug Schleif Fabrik (https://herionlinner.com/linner-
gmbh-werkzeugfabrik/(accessed on 30 May 2024)),
a company specializing in tool regrinding. Furthermore,
fragmenting the image allows parallel wear detection
on graphics processing units (GPUs) and accelerates
the seamless combination of predictions from individual
fragments into a complete image.
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FIGURE 7. Flowchart of the Wear Inspection Process. (a) New camera system. (b) Captured image. (c) Mask of normal wear and
abnormal wear. (d) Data set fragmentation. (e) Trained CNN model. (f) Normal and abnormal Wear prediction. (g) Merged tool image
for analysis.

During the labeling process, there were various challenges,
particularly regarding the darker TiCN coated milling tool,
which shows more subtle wear with darker wear character-
istics that cannot be properly recognized and assigned to the
corresponding class. We marked instances with a polygon.
The number of instances varied depending on the tool type
and the amount and types of wear. The TiCN tool shows sig-
nificantly more normal and abnormal wear pixels compared
to the TiN tool. This variety in the data set highlights the
challenges for proper annotation and can affect the training
performance. The amount of instances of the four different
classes used to train the models are summarized in table 1.

TABLE 1. Instance distribution in datasets.

E. TRAINING STRATEGY
We implemented our models on the TensorFlow platform and
trained them on NVIDIA GeForce RTX 4090 GPUs, which
have 24GB of memory. The following hyperparameters:

learning rate (LR), dropout (DO), and batch sizes (BS) can
influence the model’s performance.

The learning rate (LR) determines the step size at each iter-
ation while moving toward a minimum of the loss function.
Dropout (DO) is a regularization technique used to improve
model performance and avoid overfitting. During training,
neurons are randomly ignored or ‘‘dropped out,’’ allowing the
network to learn more robust features and generalize better.
The batch size (BS) defines the number of training examples
used in one iteration during the training process.

In our study, the LR was set to 0.001 and 0.0001,
respectively. We experimented with different dropout rates
for each layer: 0.3, 0.5, and 0.8, and different batch sizes:
8 and 16. For each parameter combination, we trained
the model using sparse categorical cross-entropy, and the
network was trained for 70 epochs.

F. TRAINING PERFORMANCE WITH VARIED
HYPER-PARAMETERS
Fig. 11 and Fig. 12 show the normalized training and
validation loss curves of the different models trained with
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FIGURE 8. Series of images captured by the acquisition system ICH. TiCN
coated tool (a) and TiN coated tool (b).

FIGURE 9. Fragmentation of an image of an integral spiral endmill into
24 parts.

different hyperparameters for the two data sets of the tool with
TiN coating and the tool with TiCN coating.

Considering the loss curves for the model trained on
TiN-coated tools (Fig. 11a) with a DO rate of 0.5, a BS
of 8 and an LR of 0.001, an increased variation of the
training and validation loss can be seen in the first epochs

FIGURE 10. Dataset annotation example for the semantic segmentation
of wear on two types of coated tools: TiCN coated tool (a) and TiN coated
tool (b). The wear is divided into two distinct classes - ‘‘yellow’’ for normal
wear and ‘‘green’’ for abnormal wear. The additional two other classes
are: ‘‘red’’ for the background and ‘‘black’’ for the tool itself. On the right
side, a magnified view displays the wear classes for better visibility.

and increasingly from the middle to the end of the epochs,
indicating an unstable training performance especially in
the late epoch phase. The training behavior of models
without drop-out tends to show a faster learning performance.
However, despite a sharp decline, however, the learning
curves of validation and training losses show a certain
disproportionality with peaks that indicate poor to unstable
learning behavior. Similar training behavior, but slightly less
noticeable, is the training behavior of the model when using
a of DO 0.3. Despite the good convergence behavior in the
first epochs, some peaks in the validation losses occur in the
first epoch phases, but also increasingly in later epochs, which
makes it clear that training and generalization are improved
but can also become unstable in the final phase.

As can be seen in Fig. 11b, a lower LR 0.0001 shows amore
stable training and validation process across all DO rates,
indicating improved training performance and generalization,
with no tendencies towards under- or over-fitting. At a higher
BS (16) and higher LR, Fig. 11c shows an improved learning
behavior with a slightly more balanced ratio between the
training and validation losses. However, the validation losses
show increasing oscillating peaks, especially for models with
DO of 0.3 and 0.5, indicating poor generalization.

Finally, Fig 11d with a smaller LR 0.0001 and stack size of
16 shows the best convergence behavior for both the training
and validation curves of the models across all DO rates.
In particular, the model with a DO of 0.3 appears to exhibit
particularly stable learning behaviour and generalization.

As shown in Fig. 12a and 12b, the TiCN-coated tools show
similar trends to the TiN-coated tools. As can be seen in
Fig. 12c, higher bs (16) and a DO rate of 0.5 and 0.3 for
TiCN-coated tools lead to an even stronger unstable gener-
alization compared to TiN-coated tools, indicating a possibly
too intensive regularization. Similar to the TiN-coated tools,
a lower LR (0.0001) in combination with a larger BS (16) has
a positive effect on the learning and convergence behavior
at all DO rates, as shown in Fig. 12d. From the results,
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FIGURE 11. Validation and training loss curves of models with different hyper-parameters LR, BS, and DO to illustrate the learning performance on
TiN-coated milling tools. Each sub-figure analyzes the impact of these parameters on training dynamics and model stability.

a moderate DO rate of 0.3, a small LR and a large BS
(16) for both coating types provides a good balance between
adaptability and generalization capability and thus these
hyperparameters can be well matched to the specific image
information of the tool types due to the reflectance and
absorption properties of the coatings used for a robust CNN
model.

G. CNN MODELS FOR SEMANTIC SEGMENTATION OF
TOOL WEAR
The learning behavior and generalization ability of different
models have already been investigated in an ablation study
by varying the hyper parameters. Similarly, in this section,
we discuss the segmentation results of our ablation study
on the detection of wear patterns on TiN and TiCN coated
milling tools for the proposed network architecture. The
influence of hyperparameters, including LR, BS size, and the
application of DO, was investigated to find the model, with

the best segmentation performance, in its first application on
a test dataset. To evaluate the results, we use the well-known
metric Intersection over Union (IoU). The score, also known
as the Jaccard similarity coefficient, quantifies the proportion
of correctly classified pixels for each class by dividing the
number of true positives by the union of the predicted and
actual positives:

IoUi =
TPi

TPi + FPi + FNi
(8)

Here,i stands for the class and ‘True Positive’ (TP) refers
to pixels correctly predicted as belonging to the ground
truth class. ‘False Positive’ (FP) refers to pixels incorrectly
predicted as belonging to the ground truth class. ‘False
Negative’ (FN ) refers to pixels that are incorrectly predicted
as not belonging to the target class To evaluate the models on
their overall performance, we introduce a weight adjustment
of the underrepresented classes such as normal and abnormal
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FIGURE 12. Loss curves of models with different hyper-parameters LR, BS, and DO to illustrate the learning performance on TiCN-coated milling tool.

wear compared to the overrepresented classes such as
background and damage-free tool surface. The formula to
determine the weights for a weighted average calculation
(WMIoU) is described below:

1) Determine the class frequencies by counting the
occurrences of each class in the dataset to obtain
N1,N2,N3, and N4.

2) Calculate the inverse frequencies for each class as
follows:

1
N1

,
1
N2

,
1
N3

, and
1
N4

. (9)

3) Normalize the weights by summing all the inverse
frequencies and then dividing each inverse frequency
by this sum to get weights w1,w2,w3, and w4 that add
up to 1:

wi =

1
Ni∑4
j=1

1
Nj

(10)

4) Apply the weights to calculate the weighted mean IoU:

WMIoU = w1 · IoU1 + w2 · IoU2

+ w3 · IoU3 + w4 · IoU4 (11)

By using inverse frequencies, we ensure that underrep-
resented classes (with a lower frequency Nj) are given
more weight in the calculation. This increases the influence
of the underrepresented class on the average performance
evaluation of the model.

Table 2 and Table 3 show the segmentation results mIoU
of the four classes: Background, Tool, Abnormal Wear and
Normal Wear for both data sets the TiN and TiCN coated
tools. The weighted overall performance metric WMIoU was
calculated to provide a measure of the overall segmentation
accuracy despite the unbalanced class frequency. The perfor-
mance of each model was analyzed by varying the different
hyperparameters: LR, DO and BS. First, we consider the
results from the TiN-coated tool. Almost all models provide
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TABLE 2. Comparison of the segmentation results as mIoU for the four classes background (BG), tool(T), abnormal wear(AW), normal wear(NW) and the
overall performance WMIoU on the test data set of a TiN-coated milling cutter with variation of the hyperparameters LR, dropuot and BS.

TABLE 3. Comparison of the segmentation results as mIoU for the four classes background (BG), tool(T), abnormal wear (AW), normal wear (NW) and the
overall performance WMIoU on the test data set of a TiCN-coated milling cutter with variation of the hyperparameters LR, dropuot and BS.

impressive segmentation results for the background with a
mIoU for all models with a 1.00 models. The segmentation
class tool also shows outstanding performance, ranging from
0.96 to 1.00. This means that the models can fully distinguish
the classes, tool and wear, from the background from the class
tool, normal and abnormal wear.

For studying the wear behavior the segmentation results
of normal and abnormal are of particular relevance. For the
TiN-coated tool, the modelMTiN 1(LR:0.001, BS:8, DO:0.3)
provides the best wear identification results with an mIoU
of 0.71 for abnormal wear and 0.69 for the normal wear
class. Considering the weighted overall performance across
all classes,MTiN 1 also performs best with aWMIoU of 0.71.
When evaluating the models with the test dataset with respect
to the hyper-parameters, the expectation differs from the
expected trend of the validation curves in Fig. 8 and 9.Models
trained with a higher LR of 0.001 in tend to outperform the

test data set. This may be due to the fact that the test data may
be more similar to the training data than the validation data.

Consider now the segmentation results of the TiCN coated
tool. Similar to the TiN-coated tool, all models deliver good
segmentation results for the background. This means that we
can also distinguish the tool from the background particularly
well here. However, the models perform worse in the tool
class. The MTiCN 1 model with hyperparameters (LR:0.001,
BS:8, DO:0.3) provides the best segmentation results with
regard to the tool class. For the classes of interest, normal
and abnormal wear, theMTiCN 7 (LR:0.0001, BS:8, DO:0.3)
model provides the best segmentation result of 0.61 for
abnormal wear and 0.60 for normal wear, respectively.
It appears that normal wear is often more difficult to identify
than abnormalWear due to its more subtle nature, particularly
with TiCN tools. Where as TiN-coated tool models with a
lower LR of 0.001 tend to give better results, the TiCN-coated
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FIGURE 13. Illustration of the segmentation results of a TiCN-coated milling tool: (a) raw images
captured by our inspection system; (b) ground of truth mask; (c) segmentation results predict by the
MTiCN 7 model.

FIGURE 14. Ilustration of the segmentation results of a TiN coated milling tool: (a) the raw images
captured by our inspection system; (b) the ground of truth mask; (c) the segmentation results predicted
by the MTiN 1 model.

tool models perform slightly better at lower learning rates.
In summary, the models of both tools show successful mIoU
values, which demonstrates the stability and usability of

wear analysis of cutting tools. The MTiN models trained and
tested on TiN data set, perform better in the identification of
abnormal and normal wear, this is because the TiN coated
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tool shows more obvious abnormal wear patterns, which can
be more accurately distinguished from normal wear as a
feature, wherea the TiCN coated tool shows significantly less
abnormal wear, which is also more difficult to distinguish
from normal wear due to its subtle nature. The regulation
method with a DO of 0.3 seems to have a positive effect on
all models, whereas the LR plays a smaller role and the BS
seems irrelevant for the training process.

To identify, locate, and analyze the wear behavior the
segmentation results of the best-performing models of the
proposed model are shown visually in Fig. 13 and Fig. 14.
The segmentation results of the TiCN-coated tool (Fig. 13)
clearly show that abnormal wear occurs on the cutting tip
and rear cutting part. This indicates that a careful analysis
of the machining conditions, tool material, and cutting
edge geometry can be beneficial in identifying issues and
improving tool life, thereby enabling the implementation of
targeted countermeasures. Additionally, normal wear through
the rake angle is also recognizable.

Similarly, the segmentation results of the TiN-coated
milling tool are presented in Fig. 14. Abnormal wear
appears to play a less significant role in comparison to the
TiCN-coated tool, which can be attributed to the proper
utilization of the tool and the appropriate selection of
geometric parameters.

III. CONCLUSION
This paper presents a novel method for automating the
wear analysis of cutting tools. We employed a custom
illumination unit tailored specifically for end mill wear
inspection, enabling the generation of high-quality, low-
reflection images conducive to our CNN architecture.
Utilizing these distinctive images, we compiled datasets
featuring two different tools coated with TiN and TiCN
for training customized CNN models. To optimize the
CNN’s performance in detecting normal and abnormal wear,
we experimented with various training parameters, analyzing
the models’ behavior through detailed examination of loss
curves and segmentation of four classes (background, tool,
normal wear, and abnormal wear). Our findings indicate that
a moderate DO rate of 0.3 strikes an optimal balance between
adaptability and generalization capability for both coating
types. Thus, these hyper parameters can be well adapted to
the specific image information of the tool types due to the
reflection and absorption properties of the coatings used.

We found that the MTiN 1 model (LR: 0.001, BS: 8,
DO: 0.3) provides the best results in wear detection, with
an mIoU of 0.79 for abnormal wear and 0.69 for normal
wear. Looking at the overall weighted performance across
all classes, MTiN 1 performs with a WMIoU of 0.71 best.
For the TiCN coated milling tool for the classes normal
and abnormal wear, the MTiCN 7 model provides the best
segmentation result of 0.61 for abnormal wear and 0.60 for
normal wear, concluding a DO of 0.3 mostly improves
the model performance for wear detection. The proposed
method was primarily tested on tools with TiN and TiCN

coatings. However, in real-world scenarios, tools can have
other materials or coatings. The tools can be used for different
workpieces with various materials and coatings, leading to
more distinct wear characteristics that make annotations
across different tool types more time consuming, inconsistent
and difficult for real-world applications. In the future, we will
use the system for other cylindrical cutting tools or other
construction parts for inspection tasks, which may require
an extended data set and customized optimization of the
acquisition system in its current form.
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