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ABSTRACT Food texture is an essential factor in the perception of chewing. Compared to taste and aroma,
food texture is dominant in the palatability of solid and semi-solid foods. Hence, food development processes
require a method for evaluating broad food textures. This study proposes a prediction method for food
texture using multiple measurements and template data. First, a measurement system recorded the force,
vibration, and sound pressure data during food compression. The moisture rate of food was also measured
by a moisture meter. Second, many template data are automatically determined from the outline waveforms
of measurement data. Third, the dynamic time warping calculates distance vectors between measurement
and template data. Finally, the Gaussian process regression algorithm determines the relationship between
the distance vectors and sensory evaluation data. The advantage of using template data is that there is no need
to extract specific features from measurement data. The effectiveness of the proposed method was validated
through sensory evaluation and measurement experiments. The proposed method was able to predict food
texture value with low errors through the experiment with nine textures and 21 samples.

INDEX TERMS Food texture, machine learning, measurement, sensory evaluation.

I. INTRODUCTION
Food texture is an essential factor for the perception of
chewing. Compared to taste and aroma, food texture is
dominant in the palatability of solid and semi-solid foods
[1], [2]. Hence, food companies develop new products with
the preferred food textures for consumers. A method that
evaluates various food textures is required in the food
development process.

Sensory evaluation is a major method for measuring the
quality and intensity of texture through human perception [3].
Evaluation results that directly reflect human perceptions
are obtained. However, human subjects have individual
differences in their perceptions, which gives variance to the
results. Hence, trained subjects are required to minimize the
variance [4]. An appropriate environment should also be
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prepared for subjects. So, the sensory evaluation needs a lot
of costs and time.

Instrumental measurements are suitable for quantitatively
evaluating the physical characteristics of food in labora-
tories. Texture profile analysis (TPA) uses a motion and
measurement device that compresses a bite-size food sample
twice in reciprocating motion [1], [5]. A sensor measures
the force in the compressions and outputs a force-time
curve. TPA extracts texture parameters from the curve.
Texture parameters, such as hardness, adhesiveness, and so
on, quantify the physical characteristics and are important
to assess food texture. Because the measurement data are
objective, other measuring instruments were also applied for
food texture evaluation. Chauvin et al. evaluated crispness
and crunchiness from the acoustic data of dry and wet foods
in compression [6]. Taniwaki et al. measured acoustic data
of potato chips and evaluated their texture by analyzing
the data in the frequency domain [7]. Shibata et al.
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evaluated the doughnut’s texture using a sheet-type pressure
distribution sensor and teeth and tongue mechanical parts [8].
Kohyama investigated the effectiveness of a balloon-type
pressure sensor for the texture evaluation of tongue-crushable
foods [9]. These studies picked up a specific texture or
physical parameter and proposed methods for precisely
evaluating specific textures.

According to the definition by the International Orga-
nization for Standardization, texture is defined as ‘‘all the
mechanical, geometrical, and surface attributes of a product
perceptible by means of mechanical, tactile and, where
appropriate, visual and auditory receptors [10].’’ Food texture
is the perception of multisensory integration. Hence, it is
reasonable to use an instrument with multiple sensors to
evaluate food textures [11]. Vickers measured the acoustic
and force data of potato chips and analyzed the relationship
between sensory and measurement values [12]. Varela et al.
also investigated the combination of acoustic and force
data for the crispness of almonds [13]. Çarşanba et al.
analyzed the acoustic and force data of wafer products [14].
Nakamoto et al. measured the force, vibration, and acoustic
data to evaluate snack foods’ textures [15]. In addition, mul-
tiple reports measured the sound and force, e.g., [16], [17].
It is expected that detailed data related to texture can
be obtained by combining sophisticated sensor devices.
However, the relationship between the physical characteris-
tics of food and the texture perception by humans has been
discussed insufficiently. This matter makes it difficult for
texture evaluation using measurement data.

To determine the relationship between food texture and
measurement data, recently, machine learning methods have
been used [18]. Simon andUma used a deep learningmodel to
classify the food texture [19]. Khan et al. discussed the output
of artificial neural networks can provide information about
various mechanical properties based on the information in
food drying [20]. If machine learning is used, it is expected to
predict the intensity of food texture as perceived by humans,
rather than distinguishing food texture or predicting physical
properties. Kato et al. used the neural network to evaluate
the level of textures such as crispness and crunchiness in the
range (0,1) [21]. Nakamoto et al. predicted five food textures
of ten snack samples by a logistic regression model [22].
They proposed methods to quantitatively predict food texture
from measurement data, but the range of textures and foods
was limited such as crispness and potato chips. To expand
the range of food textures and foods, a method that predicts
food textures from a variety of measurement data that are
not limited to specific textures and food is needed. Texture
prediction using measurement data has the potential to be
an alternative to sensory evaluation. A method for texture
prediction for awide variety of foods is needed for application
in food development.

This study proposes a method to predict food texture using
four measurement data: force, vibration, sound pressure,
and moisture rate. This method uses the distance between

FIGURE 1. Flow of food texture prediction.

measurement data and template data as feature values instead
of using separately selected features depending on the texture.
A machine learning algorithm predicts an evaluation value
along a food texture descriptor from the distances. The
advantage of this method is that it can be applied to a variety
of food textures. This study validated the effectiveness of
the method through a prediction demonstration of nine food
textures for 21 samples.

II. METHODOLOGY
A. FLOW OF FOOD TEXTURE PREDICTION
This study proposes a prediction method of food texture
from measurement data as shown in Fig. 1. Measurement
data that reflects the characteristics of texture can be time
series, sequential data, or one piece of data. Multiple
template data are determined based on the range of the
measurement data. Next, dynamic time warping (DTW)
calculates the DTW distance [23], which represents the
similarity between the measurement data and template data.
The method uses the DTW distance as a feature value to
construct a distance vector. A model of the relationship
between distance vectors and human food texture perception
evaluation values is determined using Gaussian process
regression. The human texture evaluation value uses intensity
along texture descriptors, which is easier to understand
intuitively than physical quantities. On the left side of Fig. 1,
although the texture evaluation value is obtained by sensory
evaluation, this is only conducted when determining the
model. In the texture prediction, the vertical flow from
measurement to prediction on the right side of Fig. 1 is used.
One of the advantages of this method is the usage of template
data. By using multiple comprehensively created templates,
it is expected to perform evaluations that are independent of
the waveform characteristics of specific measurement data.
Furthermore, even if a measuring instrument is added in the
training stage, the method is able to predict texture using the
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FIGURE 2. Measurement system.

same flow by adding templates based on the measurement
data by the instrument.

B. MEASUREMENT
A measurement system that obtains force, vibration, and
sound pressure data during the compression of a food sample
is shown in Fig. 2. This system has a rod-sliding mechanism
(LEY16DA, SMC Co. Ltd., Japan) using a step motor
and compresses a food sample by vertical motion [24].
A magnetic food texture sensor equipped on the tip of the
rod measures force and vibration simultaneously during the
two-time compression [25]. The probe of the texture sensor
is cylinder-shaped and 10 mm in diameter to simulate the
shape of the molar. The compression velocity is 10 mm/s,
and the compression length from the point where the probe
touches the sample is 80% of the sample height. The sampling
frequency of the texture sensor is 10 kHz. A microphone is
placed horizontally to a sample with a 35-mm distance. The
microphone (MI-1271M12, Ono Sokki Co. Ltd., Japan) starts
and stops to record sound pressure synchronously with the
measurement of the texture sensor. The sampling frequency
of the microphone is 51.2 kHz. The measurement time is 8 s.
The sample size is 10.

This study also measures the moisture rate of samples. The
moisture rate on a wet basis is determined using a moisture
meter (MX-50, A&D Co., Ltd., Japan) that measures the
weight of moisture evaporated by the radiant heat of the
halogen lamp from the weight of the sample at a sampling
frequency of 1 Hz. The change of moisture weight is recorded
as time series data of the evaporation rate of a food. It includes
information on the microscopic structure of the sample that
affects its texture. The measurement of the moisture rate was

conducted separately from the measurement of the force,
vibration, and sound pressure. The sample size is 3.

C. SIGNAL PROCESSING
The measurement data are processed by the following
procedures.

1) FORCE DATA
A lowpass filter is applied to the force data for noise
reduction. The force data mainly have two peaks by two-time
compression and sometimes include small drops on the peaks
by sample fracture. The cut-off frequency was determined
as 54 Hz through preliminary trials to retain the small drops
on the peaks in the force data. The 8th-order Butterworth filter
was used. In addition, the filtered force data is resampled at
1 kHz to reduce the calculation time for DTW. Therefore, the
length of the force data is 8000 after this process.

2) VIBRATION DATA
The vibration data is the voltage change proportional to the
probe velocity and has spike waveforms in both plus and
minus directions with 0 V as the baseline. The vibration
data has a stationary noise derived from an amplifier circuit.
To remove the noise, the standard deviation of the noise is
calculated from 50 data without vibration, and the data within
the three times the standard deviation are set to 0 V. After that,
a moving average filter is applied to their absolute values to
transform the spike waveforms into smooth waveforms based
on the height and number of waves. The length of averaging
data is 50. The smoothed vibration data is resampled at 1 kHz
to reduce the calculation time for DTW. The length of the
smoothed vibration data is 8000.

3) SOUND PRESSURE DATA
Regarding the sound pressure data, in the same manner as
the vibration data, the stationary noise of sound pressure
data is removed. The sound pressure data are characterized
by amplitude and frequency. Hence, a-weighted 1/3 octave
spectra from 0.02 to 20 kHz are calculated [26]. The range
from 0.02 to 20 kHz almost coincides with the frequency
range of human hearing except for the very low range. The
length of the spectra data is 31.

4) MOISTURE RATE
Time-series moisture rate data tends to be recorded without
variance by using samples of the same size. Hence, average
time-series moisture rate data are calculated from three-time
measurement data. The length of the data depends on the
sample. To fix the data length, the length of the moisture rate
data is set to 8000 to match the length of the force data, and
the trailing part with no data is filled with zeros.

D. DTW AND GENERATION OF TEMPLATE DATA
DTW is a pattern-matching algorithm that minimizes the sum
of distances between elements of two sequential data using
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TABLE 1. Key points of outline form of force data.

FIGURE 3. Outline waveforms and parameters of template data.

a warping function [23]. The measurement data includes
a variance based on the sample’s individual differences.
It occurs in the directions of both time and value (e.g.,
force). DTW optimizes the correspondence relation between
elements of two sequential data and minimizes the data
variance in the time direction. The sum of distances between
elements is called a DTWdistance that becomes a small value
if the two sequential data are similar. For force, vibration, and
moisture rate, this study uses the DTW distance as a distance
value between two sequential data; one of the two sequential
data is measurement data, and the other is template data.
For sound data, the Euclidean distance is calculated from
measurement and template data because the sound data are
transformed into the 1/3 octave frequency band.

The measurement system compresses a food sample two
times and measures force, vibration, and sound simultane-
ously. Although the time-series waveforms of measurement
data depend on the physical characteristics of the sample,
a possible waveform can be determined as an outline form of
measurement data. Hence, this study determines the outline
waveform as shown in Fig. 3 and generates multiple template
data from the outline.

A force’s outline waveform has 10 key points fromPF1(tf 1,
pf 1) to PF10(tf 10, pf 10) as shown in Fig. 3(a). Because the
measurement system compresss a sample with a constant
compression velocity, the time of each point is almost
constant. Their times are determined as listed in Table 1.

TABLE 2. Parameters of outline form of vibration data.

T is a measurement time and is 8 s in the experiment as
mentioned in II-B. The maximums of force in Table 1 were
also determined based on all force data. Force template data
are generated by dividing the force maximums of pf 2, pf 3,
pf 4, pf 5, and pf 8 equally down to zero. The number of the
dividing step is 4, and the number of force template data is
1024. The length of template data is 8000, which corresponds
to 1 kHz sampling. The data between key points are generated
by linear interpolation as shown in Fig. 3(a).

Vibration data have information on the magnitude and
frequency of the probe’s vibration and are processed in the
smooth waveform shown by a moving average. As shown in
Fig. 3(b), the outline waveform of the vibration data consists
of two waves expressed by an exponential function. The
waveform functions v(t) are as follows:

ve(t, tc, vv) = exp(−
(t − tc)2

vv
) (1)

v(t) =


av1ve(t,

T
8

, vv) (0 ≤ t <
T
2
)

av2ve(t,
5T
8

, vv) (
T
2

≤ t ≤ T )
(2)

The peak values and width of the two waves that are defined
by av1, av2, and vv, are listed in Table 2. av1 and av2 are
devided into 16 steps down to zero and vv is also devided into
4 steps. The number of vibration template data is 1024. As in
the case with force, the length of template data is 8000.

Sound data, which are transformed into the frequency
domain data have an outline waveform as shown in Fig. 3(c).
Except for sound pressure levels from 20 to 200 Hz that
were almost zero, the sound data has seven key points from
PS1(fs1, ps1) to PS7(fs7, ps7). fs1 and fs7 are determined by
the frequency range of the microphone and fs4, fs5, and fs6
are determined by the equal logarithmic interval frequency
between fs3 and fs7 in the frequency domain listed on Table 3.
Regarding the sound pressure level, in the samemanner as the
force data, themaximums of ps3 to ps7 were determined based
on all sound data, and sound template data are generated by
dividing the maximums equally down to zero. The number
of sound template data is 1024. Because the number of the
center frequency in 1/3 octave is 31, the length of template
data also is 31. The data between key points are generated by
linear interpolation.
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TABLE 3. Key points of outline form of sound data.

TABLE 4. Key points of outline form of moisture data.

Moisture rate starts at the highest peak and decreases to
zero over time. The study assumes the decreasing curve is
expressed with a Bezier curve as shown in Fig. 3(d). The
equation is as follows:

t(u) = m1(u)tm1 + m2(u)tm2 + m3(u)tm3,

p(u) = m1(u)pm1 + m2(u)pm2 + m3(u)pm3, (3)

where 0 ≤ u ≤ 1, and

m1(u) = (1 − u)2, m2(u) = 2(1 − u)u, m3(u) = u2. (4)

Three key points in Fig. 3(d) are PM1(tm1, pm1), PM2(tm2,
pm2), and PM3(tm3, pm3). The maximum of pm2 is calculated
from pm1, tm2 and tm3 as follows:

pm2 = (−
tm2
tm3

+ 1)pm1. (5)

The maximums of pm1 and tm2 were also determined as
listed in Table 4. The template data of water content are
generated by dividing the maximums equally down to zero.
The dividing steps of pm1, pm2 and tm2 are 20, 11 and 5,
respectively. The number of moisture template data is 1100.
Themaximummeasurement time is TM = 8000 s. The length
of template data is 8000, which corresponds to 1Hz sampling.

E. PREDICTION OF FOOD TEXTURE
To predict food texture evaluation values, this study uses
Gaussian process regression (GPR), one of the machine
learning methods with a nonlinear model. GPR needs a
dataset of explanatory variables and an objective variable in
the learning process. The explanatory variables are vectors
consisting of the DTW distances between force, vibration,
and moisture rate data and their template data, and the
Euclidean distances between the sound data and the template
data. Since the sample size of each sample is 10, the number
of distance vectors calculated from force, vibration, and
sound data is also 10. The moisture rate is average data,
hence, its DTW distance is added as a common value for
the sample to the other 10 distance vectors. The objective
variable is an average of sensory values evaluated by human
subjects. One GPR model predicts an evaluation value of one
food texture from the vector of DTW distances. Hence, the
number of GPR models corresponds to the number of food
textures. In prediction calculation, the kernel function in the

GPR model is a squared exponential kernel. The average
function is constant. The hyperparameters of the kernel
function are optimized using one of the general methods,
the quasi-Newton algorithm. The prediction performance
is evaluated by mean absolute error (MAE) between the
target and prediction values through 10-fold cross-validation.
In the learning and prediction process, the calculation was
conducted by MATLAB (R2023b, Mathworks, Inc, USA)
and Python (ver. 3.11, Python Software Foundation, USA).

F. FOOD SAMPLE
Food samples are listed in Table 5. They are easily available
in Japan. They have different structures and various physical
characteristics. The samples S1 to S9 have relatively crispy
textures made by baking or frying. The samples S10 to S12
have high water contents and have some viscoelasticities.
S13 is relatively soft of gummy candies. S14 is a Japanese
traditional food with dense and soft textures. S15 is a soft and
small cheese. The samples S16 to S21 are baked or steamed
foods made from mainly flour. The measurement condition
in Table 5 indicates the size of the sample in measurement.
For samples with a large volume, such as konjac S10 and
white bread S16, the center part was cut out and used for
measurement. Although some samples have low height, the
compression rate by the measurement system is 80% and this
rate is constant for all samples.

G. TEXTURE DESCRIPTOR
Nine texture descriptors with significantly different physical
properties were selected to represent the texture of each food.
Their definitions are listed in Table 6. Participants for sensory
evaluation discussed these descriptors and their definitions in
advance and determined them.

H. SENSORY EVALUATION
Ten participants in the sensory evaluation perceived and
recorded the food texture of the sample after two times of
chewing. The average age of the participants was 23.5 ±

1.72, mean± standard deviation and the male-to-female ratio
was 9:1. Each participant conducted three-time evaluations of
21 samples shown in Table 5. The samples on a spoon were
provided to participants in random order, and the participants
chewed themwith the molars. The participants had their prior
eating experiences with the samples. The room temperature
was approximately 20 ◦C. This study was approved by the
Ethics Committee of Kobe University Graduate School of
System Informatics (No. R02-01) in accordance with the
Helsinki Declaration.
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TABLE 5. Samples.

TABLE 6. Texture descriptors.

In recording the intensity of textures in Table 6, the
participants made a vertical mark at the position representing
the intensity on a 150-mm horizontal line in a check card.
The horizontal line had two-word anchors at 15 mm from
both terminals. The left and right terminals corresponded to
‘‘no feel’’ and ‘‘strong feel’’. After checking, the distance
from the left anchor to the position of the vertical mark was
measured and converted into numerical data with intensity
ranging from 0 to 10.

III. RESULTS AND DISCUSSION
A. SENSORY EVALUATION
The results of the sensory evaluation are summarized in
Table 7, which include also significant differences between
the samples regarding food textures (p<0.01) by Tukey’s
honestly significant difference test. Samples with high
sensory evaluation values differ depending on the texture;
e.g., S1 to S3 are sakusaku, S4 to S6 are paripari, and S7 to
S9 are karikari. Some samples had a high value in only one
texture, such as S1 and S13, and some had high values in two
or more, such as S17 to S19.

B. MEASUREMENT EXPERIMENT
Typical measurement data are shown in Fig. 4. The samples
S1 to S9 have physical properties with fractures, and the
data shows that vibration and sound pressure are generated,
and the force peaks synchronize with the other peaks. The
samples S10 to S12 had high moisture rates and were low
force, and S13 to S15 had middle or low moisture rates.
The samples from S16 to S21 were low force, as typified
by S16 (white bread), and had a relatively low moisture rate.
Furthermore, almost no vibrations or sounds were observed
from S10 to S21. The samples with high moisture rates
required time to dry. There were differences in drying speed,
such as between S17 and S21, and some, such as S20, had
a low drying speed due to their dense structure even if the
moisture rate was low.

The relationship between sensory evaluation value and
measurement data is confirmed. Sakusaku was high in
samples S1 to S3, and the force data showed that they were
fractured by low force. Paripari was high in S4 to S6, and
the sound pressure occurred for about 0.5 s, as defined by
breaking with sound. In particular, S4 had low force and
high sound data, and it can be considered that sound has
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FIGURE 4. Typical measurement data of 21 samples. The horizontal axis is limited to 6000 s for moisture rate
and 6 s for the other measurement data. The ranges of the vertical axis of moisture rate differ depending on
the initial moisture rate of the sample.
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a role for Paripari. Karikari was high in samples S7 to S9.
Since they were fractured at once with high force, the force
and sound data of S8 and S9 had one peak. S7 had two
peaks because it was broken twice on one surface and the
opposite surface of the cylindrical sample shape. The two
peaks were also observed in the vibration data. Purupuru
was high in S11, and the second highest in S10, and the
measurement data showed that the force was low and the
first and second peaks of the force data were almost the same
height. In addition, they had no vibration or sound and high
moisture rates. Gunyagunya was high in S13 and had low
force and low moisture rate. Guchagucha was high in S14
and S15 and was characterized by a difference in the height
of the peaks of the first and second peaks of force. It also
had adhesive characteristics, indicating a force in the tensile
direction after compression. Fuwafuwa had a high evaluation
value for S16 to S19, which are soft and porous foods. It had
the characteristics of low force and drying in a short time
regardless of the initial moisture rate. Sittori was high in S17
to S20, and the measurement data showed that the samples
had a moisture rate of about 25% in addition to the low
force. Mochimochi was high in S21. The heights of the first
and second force peaks were almost the same, indicating
elasticity. The relatively long drying time indicates difficulty
in evaporating moisture.

Since the samples have different physical properties, even
if it is only the force data, there were differences between
samples when looked at in detail. Furthermore, it is possible
to confirm these differences in more detail by measuring
force, vibration, sound pressure, and moisture rate as in this
experiment. However, these differences can be confirmed
through comparison, and it isn’t easy to quantify individual
characteristics for each sample. Hence, the proposed method
characterizes them using template data and predicts their food
texture.

C. FOOD TEXTURE PREDICTION
Prediction values calculated by GPR through 10-fold cross-
validation are shown in Fig. 5, and MAEs between sensory
and prediction values are listed in Table 8. The samples
with high values in the sensory evaluation, e.g., samples
S1 to S3 for sakusaku, had high prediction values. Even
if only one of the samples had a high sensory value such
as mochimochi, GPR could predict it. Sakusaku, paripari,
and karikari are categorized into crispy textures and have
relatively similar textures in the textures of this study. GPR
predicted them even for the small difference of samples with
a similar texture tendency. Focused on low evaluation values,
gunyagunya, fuwafuwa, and shittori had errors within 1.0,
e.g., samples S4 to S7 for gunyagunya. The sensory value
of some samples was outside of the error bar of prediction.
It might be difficult for GPR to predict a low evaluation value
because there is a wide variation of physical characteristics
without a certain texture. For example, samples S1 to S15
have different physical characteristics, but their prediction
values of fuwafuwa are all expected to be close to zero.
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FIGURE 5. Relationship between sensory and prediction values.

TABLE 8. MAE between sensory and prediction values.

Regarding Table 8, all MAEs were within 0.7. Because
the range of sensory values was from 0 to 10, GPR was
able to predict sensory values with an accuracy within 10%.

Five of nine textures were less than 5%. The previous study
also predicted the crispy textures from the feature values of
force, vibration, and sound data [15]. TheMAEs of sakusaku,
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paripari, and karikari which were corrected for the range of
sensory evaluation were 0.35, 0.50, and 0.50, respectively.
These MAEs were higher than those predicted by the method
using template data in Table 8. The proposed method also
used moisture rate data. However, despite the expansion
of the variety of textures, the proposed method predicted
them with low errors. Due to using template data and being
demonstrated on various textures and samples, it is confirmed
that the proposed method is more effective for food texture
prediction.

The limitations of this study are as follows: The outline
waveform and its parameters to generate template data were
determined from all measurement data of food samples
used in this study. Hence, the outline waveforms depend
on the measurement data, and their ranges are limited.
Because the standard GPRmodel was used to predict texture,
variations in kernel functions and hyperparameters were not
compared. The prediction accuracy could change depending
on their optimization. This study used 21 samples and nine
food texture descriptors. Because the Japanese language has
445 food texture descriptors, the texture descriptors in this
study are just a few. The same goes for the food samples.

IV. CONCLUSION
This study proposed the food texture prediction method using
the distance vector between the measurement data of force,
vibration, sound pressure, and moisture rate and the template
data. The template data are generated from the outline of
measurement waveforms. GPR determines the relationship
between the distance vectors and a sensory evaluation and
then predicts a sensory evaluation value from the distance
vector. In the experiment, the measurement system and the
moisture meter measured 21 food samples (solid and semi-
solid samples), and 10 participants evaluated the samples’
food texture along nine descriptors. GPR predicted relatively
high sensory evaluation values with high accuracy. The key
findings of this study are as follows:

• The proposed method was able to predict the food
textures using the same procedure regardless of whether
the food was solid or semi-solid.

• Whether the target texture is crispy or elastic, the
proposed method was capable of predicting it with an
MAE of 10% or less.

The advantage of the proposed method is that it summarizes
the measurement data into a distance vector. Even if
new measurement data is obtained by adding measurement
devices, the proposed method can be expanded to use those
data.

In future works, we will verify the effectiveness of the
proposed method using more broad types of textures and
samples. Increasing the data set of sensory evaluation and
measurement data is expected to not only improve the
accuracy of prediction but also identify the measurement
data that are the principal factors on a certain texture.
This will clarify the relationship between the physical
properties of food and texture, and it is expected that this

relationship will greatly contribute to food development in
food companies.
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