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ABSTRACT Assistance for doctors in disease detection can be very useful in environments with scarce
resources and personnel. Historically, many patients could have been cured with early detection of the
disease. The application of deep learning techniques in the fields of medical imaging, on large datasets, has
allowed computer algorithms to produce as effective results as medical professionals. To assist doctors, it is
essential to have a versatile system that can timely detect multiple diseases in the lungs with high accuracy.
Over time, although many classifiers and algorithms have been implemented, however, deep learning models
(i.e., CNN, Deep-CNN, and R-CNN) are known to offer better results. After a thorough literature review of
the state-of-the-art techniques, this work applies various models such as MobileNet, DenseNet, VGG-16,
EfficientNet, Xception, and InceptionV3 to the selected large dataset. The goal is to enhance the accuracy
of these algorithms by experimenting with parameter optimizations. We observe that MobileNet produces
better results as compared to other models. We implement a deep convolutional GAN to produce synthetic
X-ray images containing various pathologies already included in the chosen imbalanced dataset namely NIH
Chest X-ray containing 14 classes. The synthetic dataset contains 1193 samples belonging to five classes.
We test the suggested model using evaluation measures like recall, precision, and F1-score, along with binary
accuracy. The suggested deep learning model produces recall as high as 57%, binary accuracy as 93.4%, F1-
Score as 0.553, and AUC as 81. After the inclusion of generated synthetic samples, the value of the F1-score
becomes 0.582 resulting in a 5% increase. Though, Generative Adversarial Network (GAN) shows lower
performance, however, we encourage further research and experiments to find the versatility of GANs in the
field of medical imaging.

INDEX TERMS Lung disease, mobile-net, image-augmentation, GAN, class imbalance, multi-class
classification.

I. INTRODUCTION
Health disorders and conditions affecting the lungs are
referred to as lung diseases. Diseases such as pneumonia,
asthma, tuberculosis, emphysema, malignancies in the lungs,
and a few more make the lungs lose their versatility and
hence decrease the overall volume of air. Around 2 million
chest radiography images are used by doctors around the
globe to examine various types of lung diseases. Diseases
targeting the human chest, one major cause leading to
death, essentially require this technology for diagnosis
and treatment. Computer systems can be used for the
interpretation of radiographs, as effectively as the actual
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radiologists, and for clinical support in health programs as
well as chest disease diagnosis. This can prove to be an
effective tool for countless clinical environments, where, for
instance, sufficient medical staff is not available.

Lung diseases like pneumonia, emphysema, asthma,
COVID-19, and others are very contagious with quite a high
death rate. Pulmonary fibrosis is a long-lasting infection that
is quite hard to diagnose because symptoms may appear at
either the initial stage or after many years. It causes difficulty
in breathing and as of now, it does not have any cure. Early
diagnosis is a very crucial and challenging task because some
diseases show only ignorable symptoms like common flu,
cough, and fever. Therefore, lung disease diagnosis at early
stages cannot be achieved via the symptoms only.

124062

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0006-9053-7275
https://orcid.org/0000-0003-0562-7403
https://orcid.org/0000-0003-1632-7588
https://orcid.org/0000-0002-5314-6113


M. Irtaza et al.: Multi-Label Classification of Lung Diseases Using Deep Learning

At the initial stages, Chest X-rays have proved to be very
helpful in highlighting the infection status as they can show
the early symptoms of such lung infections that can lead the
human body to respiratory failure. CT scans are helpful for
surgery and can also be beneficial for lung cancer detection
or heart failure. However, X-rays are much more popular due
to their cost-effectiveness and simplicity in capturing.

The advancement in the emerging deep learning techniques
and models has proven quite beneficial in the diagnoses
and detection of numerous lethal diseases more efficiently.
Application of state-of-the-art deep learning techniques,
on large datasets, has allowed computer algorithms to
produce as effective results as medical professionals, in the
fields of medical imaging tasks involving skin cancer
classification [1], lymph node metastases [2], and diabetic
retinopathy detection [3]. A keen interest of researchers,
in the advanced methods for automatic detection of chest
imaging [4], [5], has led to the development of such
algorithms that can detect pulmonary nodules [6]. Never-
theless, it is suggested that there must be a system that
can classify multiple pathologies, including pneumonia and
pneumothorax.

A versatile and accurate system is required to classify mul-
tiple pathologies, including pneumonia and pneumothorax.
The research is still in its early stages to find the models that
provide efficient and accurate classification of lung diseases
by examining various pathologies. This research work
conducts an experimental analysis for the assessment and
evaluation of deep learning-based state-of-the-art models on
large datasets with multiple lung diseases, for classification.
The deep learning models have been planned to train on
a large chest x-ray-based image dataset having various
classes for the early detection of fatal lung diseases. For
the assessment purpose, evaluation measures named Binary
Accuracy, Recall, Precision, F1 Score, and AUC were
calculated to compare the results of recent research models.
Furthermore, synthetic X-ray images, generated with GANs,
to tackle the scarcity of medical X-rays are also tested.
Our study introduces a groundbreaking novel approach to
lung disease diagnosis through multi-label classification,
enabling the simultaneous identification of multiple lung
diseases within a single chest X-ray. This contrasts with
traditional methods, which are limited to single disease
detection. By focusing on enhancing the recall metric, crucial
in the medical field, our method significantly improves
diagnostic accuracy. Additionally, we leverage a DCGAN
to address class imbalance by generating synthetic images
for various disease classes, further enhancing the robustness
and effectiveness of our diagnostic system. Although the
GAN results were not as promising as expected, our research
establishes a foundation for future exploration of generative
AI in lung disease classification.

A. RESEARCH GOALS
• Implementation of data processing techniques such as
normalization, and image preprocessing.

• Tackling the problem of class imbalance with the help
of Generative Adversarial Networks (GANs).

• Implementation of Image Augmentation techniques like
geometric transformation, colour transformation, and
image enhancement to examine the effect of overfitting.

• Implementation of MobileNet, EfficientNet, Incep-
tionV3, Xception, ResNet, and DenseNet.

• Examination of training time of Deep transfer learning-
based CNN models to find an efficient model.

• Comparing the classification results of synthetic data,
produced with GANs against the original data combined
with geometric image augmentation.

B. RESEARCH QUESTIONS
• Can we improve the classification results, along with the
efficiency of the algorithm for large datasets by using the
latest deep transfer learning models?

• Can data generated with Generative Adversarial Net-
works produce better results than conventional geomet-
ric image augmentation techniques?

• What effects can image preprocessing techniques and
hyper-parameters including model, batch size, input
image resolution, and loss function, have on the
classification fitness functions?

C. RESEARCH CONTRIBUTIONS
• A transfer-learningmodel, combiningMobileNetV1 and
a three-layered deep neural network classifier incor-
porating Geometric Image Augmentation, for multi-
label classification of lung diseases. This model aims
to achieve superior performance compared to existing
approaches in terms of both accuracy and efficiency.

• A comprehensive analysis of data preprocessing tech-
niques (e.g., normalization, threshold segmentation) and
hyperparameter tuning for X-ray classification, with a
focus on optimizing classification performance.

• Generation and evaluation of a synthetic X-ray images
dataset belonging to five classes using deep convolu-
tional Generative Adversarial Networks (DCGANs).

The remainder of the paper is structured as follows:
In Section II, we describe the existing literature from
different perspectives considered in this study. Section III
presents methodology of the work. In section IV, we provide
experimental settings and experimental results. Results are
discussed in Section V. In Section VI, we conclude this
article.

II. LITERATURE REVIEW
Since the widespread of contagious diseases such as
COVID-19, the researchers have been keenly working to
develop reliable and efficient methods, for disease detection
and classification, to bring down the exposure of human
resources to such outbreaks. hese papers involved different
datasets namedNIHChestX-ray-14 [1], [7] [8], [9] [10], [11],
ChestX-ray2017 [7], PLCO [8], ICBHI 2017 [12], Subregion
demarked parenchymal-lung disease of ILD Dataset [13],
Chexpert [14], COVIDx Dataset [15] JSRT dataset [16],
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Montgomery dataset [16], Shenzhen Hospital data [17],
and various deep CNN-based techniques like MobileNetV2
[1], [7] DenseNet-121 [8], ResNet-38 [10],ResNet-50 [10],
[14],ResNet-101 [10], CNN [13], [14], [18], [19], VGG
[12], [14], [17], SVM Classifier [12], GAN [15], [16] and
InceptionV3 [14].

A. CNN
Convolutional neural networks (CNN) are probably the most
popular deep learning model used for both segmentation [20]
and classification of all kinds of data: image [21], text [21]
and speech. Within lung disease classification, the use of
CNN is also very common. The research work of [9] is solely
based on the diagnosis of tuberculosis & lung cancer disease,
which comes under thoracic diseases. This task is quite
time-consuming and labour-intensive, leading to diagnostic
errors. Usually, expert radiologists are required to analyze the
images. Recent deep learning-based approaches are powered
by huge network architectures and have been proven quite
fruitful in medical imaging interpretation tasks. However,
to obtain expert-level performance there is a need for a
large amount of image-based labeled datasets, which is a
bottleneck.

In 2018, Rajpurkar et al. [9] evaluated the deep learning-
based models and investigated the problem of pathologies
detection. For this problem, the pathologies in the chest
radiographs were compared with the practising radiologists.
A CNN-based model named CheXNeXt was developed to
detect the 14 different types of pathologies simultaneously.
The ChestX-ray14 dataset was used to train the deep learning-
based CNN algorithm. The dataset consists of a total of
112,120 chest radiographs based on frontal-view labeled
images of 30,805 different patients. The automatic extraction
approaches were used to obtain the labels of the images.
The dataset was divided into three partitions named training
set (images = 98637, patients = 28744), validation set
(images = 420, patients = 389), and tuning set (images =

6351, patients = 1672). The parameters of the model were
optimized using the training set, the validation set was used
to validate the CheXNeXt model, and the tuning set was used
to evaluate and compare the networks. The AUC was used
as the evaluation metric to evaluate the performance of the
CheXNeXt model.

The experimental results showed that the newly proposed
model gave better results in the case of atelectasis detection
giving an AUC of 86.2% as compared to the radiologist’s
AUC, which was 80.8%. The key limitations of the research
were that the CheXNeXt and radiologists were not allowed
to take any benefit by looking at the patient history and the
whole dataset was collected from a single institute.

B. MobileNet
Souid et al. [1] proposed a classification solution for lung
pathologies using state-of-the-art deep learning and transfer
learning techniques. A modified version of MobileNet V2

was used on the NIH Chest-Xray-14 dataset along with some
metadata provided with the dataset i.e. age, gender, etc.
Due to the significant class imbalance in this dataset, the
researchers employed resampling techniques to address this
issue.

One of the major goal of [1] was to develop a solution for
IoT systems, requiring the system to be trained and performed
on devices with low computing power. The authors specify
that the deep learning model used in this work was designed
particularly to develop low latency and small applications in
the field of computer vision and IoT. After data augmentation,
the authors divided the samples into training, validation, and
testing subsets. The training subset included 38,819 images,
and the validation, as well as testing subsets, included 12,940
image samples. It can be noted that the entire dataset was
not used in this study, as the total samples in the dataset are
112,120. The training was done with 10 epochs and a batch
size of 32.

The proposed solution was evaluated on the accuracy,
sensitivity, area_under_the_curve (AUC), specificity, and
time consumption, as fitness measures. The solution achieved
90% accuracy, 0.45 sensitivity, 0.97 specificities, and 0.55 f1-
score. Since details, such as tissue structure and texture,
are of utmost importance in medical image classification,
researchers have derived a module to capture multi-scale
input features in convolutional neural networks. Abnormal-
ities in the tissues can be of variable sizes; hence capturing
the spatial information is very important.

Hu et al. [7], proposed a solution, MD-Conv, which has
multiple depth-wise convolution filters with variable kernel
sizes in a single depth-wise convolution layer. This paper
compares the classification results i.e. accuracy, AUC, and
floating point operations per second (FLOPs), using this
technique, on two datasets to other state-of-the-art methods.
The proposed solution achieved AUC of 0.78 and the
FLOPs were much lower than ResNet50 and DenseNet121.
However, accuracy was lower than other techniques i.e.
DenseNet+LSTM and DenseNet121.

C. DenseNet
The computational cost of models can increase exponentially
when the input contains images. To handle this problem,
the images are resized to a lower resolution which leads
to losing details. Siemens et al. [8], proposed a solution
based on the location-aware technique of Dense Networks,
known as DNetLoc to incorporate high-resolution images
for maximum possible detail. The authors combined two
datasets i.e. Chest X-ray 14 and PLCO to have cumulative
samples equal to 297,541 images, although the PLCO dataset
has 12 classes along with class imbalance. This research
makes use of pre-trained models on ImageNet. For the first
dataset, cross_entropy was used as a loss function along with
some additional weights, as there is a class imbalance. The
batch size used was 128 samples per iteration. According
to the authors, the reason for having a large batch size
was to make the probability of samples belonging to all
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classes higher. Adaptive learning rate along with Adam
as the model optimizer was used. Furthermore, the input
image size was the same as the original size i.e. 1024
* 1024. Histogram normalization was also applied to the
PLCO dataset to tune the contrast and brightness of the
images. Further normalization techniques involved mean as
well as standard deviation normalization. The results with
the Chest X-ray dataset were 0.84 AUC and for PLCO the
AUC was 0.87.

D. VGG
Lung Disease is a very commonly found disease around
the world. The impact of this illness on health is escalating
quickly due to environmental changes, climate change,
adjustments in lifestyle, and other reasons. Since these fatal
diseases are spreading swiftly, so their timely diagnosis is
quite essential. To resolve the classification problem in this
field a lot of research has been done in the field of image
processing, deep learning, and machine learning.

In [22] Subrato Bharati et al presented a novel idea
of a deep learning-based hybrid model named VDSNet.
The model was a combination of CNN-based model
VGG and an image augmentation technique named Spa-
tial_Transformer_Network (STN). The newly proposed
model was trained on a well-known and publicly available
lung disease dataset (NIH Chest X-ray).

The experiments were done on two versions of the dataset
(Full and Sample), at both versions, VDSNet outperformed
the existing models. For the evaluation purpose, validation
accuracy, precision, F0.5 score, and recall were considered
as the evaluation metrics. With the fuller version of the NIH
Chest x-ray dataset, their proposed model VDSNet gave the
validation accuracy of 73% and outperformed the existing
models named hybrid CNN (validation accuracy = 69.5%),
vanilla gray (validation accuracy = 67.8%), VGG (validation
accuracy = 63.8%), vanilla RGB (validation accuracy =

69%), and modified capsule network.

E. ResNet-50
In another study, Baltruschat et al. [10], explored the
domain of transfer learning and weight initializations on
the model ResNet-50, on the NIH Chest X-Ray 14 dataset.
They experimented with the network architecture and the
input size passed to the model. They also incorporated
non-image features from the dataset such as age, gender,
etc. Their methodology section states that they introduced
class balancing and positive/negative balancing in the loss
function, but there was no significant difference in the results.
So, they used class-averaged binary_cross_entropy as their
objective function.

They also investigated the effect of two distinct strategies
of network initialization for ResNet50. In the first technique,
they used weights trained on the dataset of ImageNet,
whereas, in the second technique, they randomly assigned
weights to the network. The researchers concluded that

making use of non-image features proves to help increase
the classification results of some of the pathologies. They
achieved an average AUC of 0.80 for all 15 classes. This
research suggests that fine-tuning the models can enhance
results. In this study, the average AUC improved from
0.73 to 0.80.

F. MULTI-LABEL CLASSIFICATION
In [14] Aravind Sasidharan Pillai et al introduced a new
deep learning-based approach for multi-label classification
of chest X-ray images, which can simultaneously detect
multiple pathological conditions. The authors trained &
evaluated the technique on a publicly available dataset named
Chexpert of chest X-ray images, which included 14 different
pathological labels such as pneumonia, emphysema, and lung
mass. They down-sampled the dataset to 11 GB which was
originally of the size 439 GB and it was divided into two sets
train set 80% & validation set 20%.

The proposed approach consists of CNN (Custom Net,
DenseNet121, ResNet-50, Inception_V3, Vgg16) architec-
ture with residual connections and attention mechanisms for
feature extraction and classification. The residual connec-
tions help to alleviate the vanishing gradient problem in deep
networks, while the attention mechanism allows the network
to focus on specific regions of the image that aremost relevant
for each label. The proposed approach has the potential to
be a valuable tool for automatic multi-label classification
of chest X-ray images, which can aid in the diagnosis and
management of various lung diseases. The authors suggest
that their approach can be further improved by incorporating
additional clinical information or by usingmore sophisticated
deep-learning architectures.

The authors conducted extensive experiments to evaluate
the performance of their approach and compared it to
several other state-of-the-art methods for multi-label chest
X-ray classification. The results showed that their approach
outperformed all other methods in terms of both accuracy
and area_under_the_receiver_operating_characteristic curve
(DenseNet training AUROC 78 & training accuracy 87%).
The authors also conducted a detailed analysis of the perfor-
mance of their approach on different subsets of the dataset,
including cases with multiple co-occurring pathologies. The
results showed that their approach was able to accurately
detect specific pathologies, even in the presence of other
pathologies.

In [23], Shamrat et al. through customized MobileNetV2
from chest X-ray images, presented the MobileLungNetV2
model for classifying 14 lung diseases using chest X-
rays. The model is based on MobileNetV2 but fine-tuned
to improve accuracy. Pre-processing steps like contrast
enhancement and noise reduction were applied to the
ChestX-ray14 dataset. This study was about a single label
classification.

In [19], K. V. Priya et al proposed a federated learning
approach for detecting chest diseases in chest X-ray images
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using DenseNet for multi-label classification. The authors
note that chest diseases are a major cause of death world-
wide, and early detection is critical for effective treatment.
However, due to the large number of images and the need
for specialized expertise, manual interpretation of chest X-ray
images can be time-consuming and error-prone. Therefore,
automated classification of chest X-ray images can help to
improve diagnosis and reduce the burden on radiologists.
The proposed federated learning approach involves training
a deep neural network on local datasets at multiple hospitals
or clinics, with each dataset containing images from patients
at that location. The model is trained using the federated
averaging algorithm, which aggregates the gradients of the
local models to update a global model while maintaining
the privacy of the local datasets. The authors use DenseNet,
a popular deep-learning architecture, for the multi-label
classification of chest diseases.

The authors evaluate the performance of the federated
approach on a publicly available dataset of chest X-ray
images with 14 different chest diseases. They compare the
performance of their approach with a centralized approach
and a baseline approach using a single local dataset. The
results show that the federated approach achieves higher
accuracy and F1-score compared to the baseline and cen-
tralized approaches, indicating that the federated approach
can improve the performance of chest disease classification
while maintaining data privacy. The authors conclude that
federated learning can be a useful approach for large-scale
multi-institutional studies in medical imaging.

In another study, Al-Sheikh et al. [24] introduced an auto-
mated system for multi-lung disease detection using X-rays
and CT scans. It employed a customized convolutional neural
network (CNN) and two pre-trained deep learning models
(AlexNet and VGG16Net) with a new image enhancement
model based on k-symbol Lerch transcendent functions. The
system involved two main steps: pre-processing with image
enhancement and classification using the CNN models. This
study did not address the issue of multi-label classification.

G. GANs (GENERATIVE ADVERSARIAL NETWORKS)
Data augmentation techniques and generative adversarial
networks (GANs) have been used extensively for syntheti-
cally generating all kinds of data such as images [25], [26],
speech [27] and videos [28]. Within images, GANs have
also been used to generate medical images [29]. Similarly,
in [15] Saman Motamed et al. used the GAN for the data
augmentation of chest X-ray images to detect Pneumonia and
COVID-19 diseases. A GANwas trained to generate accurate
X-ray pictures to be combined with initial training data. The
authors demonstrated that using GAN-generated pictures for
data augmentation could improve the efficiency of detection
models by evaluating their method on two publicly accessible
datasets.

The first utilized chest X-ray dataset named
ChestXRay2017 consists of two categories named Normal

(having 1575 images) and Pneumonia (having 4265 images)
in JPEG format. The images were resized to 128 × 128 and
they chose Pneumonia (the larger class) as the training set
and 500 images were randomly selected per class to test the
performance of the model. The rest of the images were used
for augmentation and to train the different models.Wang et al.
created the second publicly available dataset named COVIDx
by mixing the Covid-chest X-ray dataset with the four other
datasets. Covid-chest X-ray was developed by Cohen et al
which includes chest X-rays having radiological readings for
COVID-19. The COVIDx dataset has 3 classes named normal
(having 8066 images), pneumonia (having 5559 images), and
COVID-19 (having 589 images). All images were converted
in grayscale and resized to the size of 128 by 128. The test set
consists of a total of 589 images randomly taken from each
of the 3 classes.

The results showed that IAGAN model achieved the
highest results for dataset-I (Sensitivity/Recall = 0.82,
Specificity= 0.84 & Accuracy= 0.80) and dataset-II (Sensi-
tivity/Recall = 0.69, Specificity = 0.69 & Accuracy = 0.69).
They conclude that using GAN-based data augmentation is
an excellent method for enhancing the performance of deep
learning models in applications involving medical imaging.

Malygina et al. [11] investigated how GANs can be
utilized to improve the performance of deep learning-based
models to detect the pathologies in the chest X-rays in
the case of an imbalanced dataset. The authors used a
publicly available dataset namedChestXray14which consists
of a total of 112,120 x-ray images taken from 30,805
patients having 14 labels. The total dataset is divided into
three categories of data for the pathology classification &
localization task: train set (70%), validation set (10%), & test
set (20%).

To reduce the computational power to detect pneumonia
the images of the dataset were resized to 256 × 256 from
the 1024 × 1024 to train both the GAN & the image
classifier. They created synthetic pictures using a GAN
that was trained on the normal and pneumonia categories,
adding them to the training dataset to create more evenly
distributed classes. After that, the authors analyzed the
performance of several deep learning models that had been
trained on both the initial and supplemented datasets. Model
without augmentation showed the AUC (Pneumonia =

0.9745, Pleural-Thickening = 0.9792, & Fibrosis = 0.9745),
and PR AUC (Pneumonia = 0.9580, Pleural-Thickening =

0.9637, & Fibrosis = 0.9446) while the model with the
augmentation showed the AUC (Pneumonia = 0.9929,
Pleural-Thickening = 0.9822, & Fibrosis = 0.9697), and PR
AUC (Pneumonia = 0.9865, Pleural-Thickening = 0.9680,
& Fibrosis = 0.9294). The augmented dataset by GAN
increased the model’s accuracy in the case of pneumonia &
COVID-19 recognition.

Munawar et al. [16] proposed a two-stage approach,
in which firstly, a GAN is trained to create synthetic lung
images, and then these images are used to train a segmen-
tation network. The authors used a publicly available dataset
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of chest X-ray images named the JSRT dataset, Montgomery
dataset & Shenzhen dataset, which was preprocessed and
augmented to create a large training set. The datasets were
divided into three categories: the JSRT dataset (train set:
200, validation set: 20, test set: 20), the Montgomery dataset
(train set: 110, validation set: 10, test set: 18), and Shenzhen
dataset (train set: 200, validation set: 40, test set: 40). The
GAN was then trained on this dataset to generate realistic
lung images. The segmentation network was then trained
on the synthetic lung images and evaluated on a separate
test set.

The results showed that the proposedmethod outperformed
a few other state-of-the-art methods for lung segmentation
on the same dataset. The authors also conducted a detailed
analysis of the performance of the method and showed
that it was able to segment lungs accurately in a variety
of challenging scenarios, including images with significant
pathology and those with low image quality. The authors
conclude that the proposed method has the potential to be a
valuable tool for automatic lung segmentation in chest X-ray
images and can aid in the diagnosis and monitoring of lung
diseases. Table 1 summarizes the existing works.

H. RESEARCH GAPS
Thoroughly examining the literature revealed a few research
problems and gaps such as class imbalance problems,
generalization problems, and the challenge of computational
complexity. Improvement in these areas, which can enhance
our capabilities in the field of medical imaging.

1) REMOVING CLASS IMBALANCE
NIH Chest X-ray 14 dataset has 14 disease classes with
60000 samples in total and 1 non-disease class with
60000 samples. There are about 10,000 images of just the
Infiltration class. Class of Hernia has the least amount of
samples i.e. around 0.3% of the total samples. This indicates
a huge class imbalance which leads to non-uniform results for
each class. So there is a need to reduce this imbalance with
augmentation by using Generative Adversarial Networks
(GANs), or by merging some other datasets of the same
type with it. Finally, we can evaluate the results by applying
various deep learning or transfer learning models.

2) BETTER GENERALIZATION OF MODEL
Another gap that our team came up with is lower values
of accuracy or F1 score or area_under_the_curve (AUC).
For example, the results from research work [1] show that
the same model that provides good results in some classes
produces quite low results for others. One of the tasks in the
future is to find such a technique that is generalized enough
to produce high results for all diseases. One of the classes
that have lower classification results is the Infiltration class.
Although this class has a large number of samples, the results
do not reflect that. One reason for suboptimal results might be
the quality of the samples, which can be examined in future
research.

3) IMPROVING COMPUTATIONAL COST
The NIH Chest X-ray 14 dataset comprises 112,120 samples
and a size of 45 GB. The image size is 1024 by 1024 obtained
from x-ray tests of around 30,000 patients. Many dense
layered deep learning models struggle in the training phase
Since this dataset has a large size. The computational
time is so high that a single training execution of around
20 epochs costs around 5 hours. These rounded-off results
were obtained from our implementation of the EfficientNet
B4 model on this dataset. Such long computation times can
hinder in-depth experimental research. Hence, one of the
future research can be decreasing the execution complexity
of models or applying some preprocessing techniques that
keep the results good as well as decrease the execution time.
One such way of decreasing the execution time is to use
such models that have a low no of layers such as MobileNet,
GoogleNet, etc.

III. RESEARCH METHOD
This section provides insights towards our methodology
for the classification of lung diseases. Figure 1 pro-
vides a flowchart of the methodology followed in this
research.

FIGURE 1. Flow chart of research methodology.

A. DATA COLLECTION AND INPUT
Human chest exams with X-rays are one of the most common
and cost-effective processes for examination used by doctors.
However, since X-rays have low quality as compared to other
sophisticated methods such as CT scans, it is a difficult
task to perform disease classification using X-ray images.
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TABLE 1. Summarized review of existing works.

Arranging an adequate number of samples for deep learning
models is a difficult, if not impossible, task to do. due to
patient privacy and confidentiality concerns, finding publicly
available datasets is challenging. However, the National
Institute of Health has made available, publicly, a dataset
that is convenient to download and work with. This dataset
is called NIH Chest X-ray 14 dataset, containing 112,120
samples of multiclass images along with annotated labels up
to an accuracy of 90%. The labels were generated by the

authors using natural language techniques. This data belongs
to 30,805 patients.

The NIH CXR 14 dataset is available in the form of.png
images with extension, over the internet. The size of the
dataset is huge i.e., 45 GBs. Nevertheless, since it can be
downloaded to the local machine and is already available
on Kaggle, it makes the experiments convenient. For this
research work, we used image resolution between 224 *
224 and 500 * 500, although the original is 1024 * 1024.
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FIGURE 2. Visual class imbalance of NIH Chest Xray 14 dataset [1].

FIGURE 3. Mutually exclusive samples vs total samples.

The labels, corresponding to each image, are available in
a comma-separated-value (CSV) file in the form of strings.
We first converted these labels to a one-hot-encoded format
and then divided the data into 3 subsets for training, validation
and testing phases using Python’s library named Sklearn.
We used the train_test_split function with random_state equal
to 0. The ratio for these divisions was 7:1:2 for 3 subsets.
80726 images were used in training, 8970 for validation and
22424 for testing the model’s performance.

Figure 2 indicates the number of samples belonging to each
class. It is evident how imbalanced the dataset is.

Figure 3 shows the number of samples that belong to a
single class and the total samples belonging to each class.
Each class has less than 50%mutually exclusive images, with
the lowest as 22% for Pneumonia.

Figure 4 presents a few sample images of the dataset.
All images are labelled with a disease(s) from the 14 lung
pathologies or no-finding that represents the no-disease class.

B. DATA PREPROCESSING AND DATA AUGMENTATION
In data processing, data fed as input is scaled/normalized
which helps the model in learning the objective function
quickly and effectively. Data augmentation can be applied
to a variety of data types, including images, audio, text, and
time series. Some common data augmentation techniques for
image data include:

• Flipping or rotating the image horizontally or vertically
• Cropping or resizing the image
• Adding noise or distortions to the image
• Changing the brightness, contrast, or color of the image
• Applying geometric transformations such as scaling,
shearing, or perspective warping

1) IMAGE PREPROCESSING
It refers to the set of operations or techniques applied
to raw images to prepare them for further analysis or
processing. The goal of image preprocessing is to enhance
or extract meaningful information from the image while
reducing noise, artifacts, or other unwanted components that
may interfere with subsequent analysis. The preprocessing
step typically includes a series of operations such as
image cropping, resizing, color correction, filtering, noise
reduction, image enhancement, segmentation, and feature
extraction. These operations are chosen based on the
characteristics of the images and the specific application
requirements.

• In this research work, the image input size was kept to
either 224 * 224 or 300 * 300 which caused blurriness.

• To improve the quality, image sharpening was applied to
all the dataset subsets.

• Since images are read in RGB format, we applied
various rescaling techniques including multiplying each
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FIGURE 4. Sample images of NIH Chest X-ray 14 dataset [1].

pixel with 1/255 or converting each pixel value between
−1 and 1. This not only generalizes the input but also
saves memory and decreases the computational cost of
operations applied. Furthermore, it also smoothens the
learning of the objective function.

• The filter used for sharpening was: [0 −1 0] [−1 5 −1]
[0 −1 0]

2) IMAGE AUGMENTATION
This technique is used to produce data samples from the
existing samples. It can be useful when the dataset has a
low number of examples or if there is a class imbalance
in the dataset. We can apply various geometric methods to
produce augmented data. This not only aids in learning a
class imbalanced dataset but also generalizes the model’s
learning, hence decreasing overfitting. The model learns
to handle new variants of training examples. We used
the ImageDataGenerator library of Keras, to apply image
augmentation.

Following are the methods that were implemented for this
purpose:

• Random Rotation: It randomly rotates the input image
according to the value provided. In this work, the value
was set to 20 degrees.

• Sheering: It shifts the viewing angle of the image.
• Random Zoom: It randomly zooms into the input image
and the value was set to 0.1 percent in this work.

• Width Shift: It shifts the image’s width horizontally and
its value was set to 0.1 percent of the total width of the
image.

• Height Shift: It shifts the image’s height vertically and
its value was set to 0.1 percentage to the fraction of the
image’s total height.

• Horizontal Flip: This option randomly flips the image
horizontally to change the sides of the image.

3) IMAGES BEFORE AND AFTER APPLYING VARIOUS
PREPROCESSING AND AUGMENTATION TECHNIQUES
Figure 5 and Figure 6 present the original and processed
images, respectively, from the dataset. We can see the images
in smaller resolution (Figure 6) are a little blurry.

FIGURE 5. Original Images with a resolution of 1024 * 1024.

FIGURE 6. Augmented images with a resolution of 224 * 224.
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Figure 7 demonstrates augmented images after image
sharpening with a resolution of 224 * 224. (The left image
has height shifted whereas the right image has width shifted).

FIGURE 7. Augmented images after image sharpening with resolution of
224 * 224.

Figure 9 presents X-ray images after applying image
augmentation and sharpening in RGB format; these images
are fed to the network.

4) DATA GENERATION WITH GENERATIVE ADVERSARIAL
NETWORK (GAN)
GAN’s [30] can be used to produce data from already
available samples. It can be vital for scenarios such asmedical
image classification wherein arranging enough data to train a
large deep learning model, can be tedious. By using current
available data, we can generate new samples with GAN and
these synthetic samples do not belong to real patients in
any direct sense. This technique has accelerated the use of
deep learning in the medical field; however, it still needs
a lot of improvement in terms of capturing delicate tissues
from the images. In this work, we have implemented deep
convolutional GAN (DCGAN) [31] to produce synthetic X-
ray images containing various pathologies that are already
included in the used dataset. A deep generative model
with around 5 layers was implemented against a rather
shallow discriminator network. The deep architecture helps
in capturing minor tissues from the X-ray images. DCGAN
was chosen for this study due to its balance of simplicity
and effectiveness in generating high-quality images. Unlike
more complex GAN variants such as WGAN, CGAN, and
BEGAN, DCGAN provides a straightforward architecture
that is easier to implement and optimize, making it suitable
for our application inmedical image generation. Additionally,
DCGAN has been widely validated in various image
synthesis tasks, demonstrating its robustness and efficiency in
generating realistic images, which aligns well with our goal
of augmenting medical datasets.

The DCGAN generates synthetic X-ray images by training
a generator and a discriminator in an adversarial manner.
The generator creates images from random noise, while
the discriminator evaluates whether the images are real or
synthetic. During training, the generator tries to produce
images that are increasingly realistic, thereby ‘fooling’ the
discriminator. This adversarial process iteratively improves
the quality of the generated images. Specifically, the

generator learns to map random noise vectors to image
spaces that resemble the distribution of the real X-ray images,
whereas the discriminator learns to distinguish between real
and synthetic images. Over time, this results in the generator
producing high-quality synthetic X-ray images that closely
resemble real ones.

We used 3 layers in this network with 512, 256 and
128 neurons in each layer respectively. We used LeakyReLu
with alpha equal to 0.2, as the activation function in all
the layers except the output layer, where we used sigmoid
due to binary classification. As for the generator network,
it consisted of 6 layers. The number of neurons in each layer
was 128, 256, 512, 512, 1024, and 1024, respectively. All the
layers used LeakyReLU except the output layer, which had
tanh activation function. Figure 8 shows the structure of GAN
used.

FIGURE 8. GAN architecture.

The resolution of the original images fed to the GAN was
300 by 300 with a batch size of 32. The training was done for
300k epochs for each class. It took 30 hours for each class on
our local PC with a 1050Ti GPU and i7-8750H CPU. Due to
time and hardware constraints, it was a challenge to train the
GAN for further epochs. In Figure 10, we can see some of
the samples generated for the Cardiomegaly class after 300k
epochs.

Figure 11 shows individual images belonging to the class
of Hernia. The images are a little pixelated, which is due to
the low resolution of the latent vector and input size of the
original images.

Our GAN implementation aimed to generate synthetic
X-rays that closely resemble real images within the training
data. This approach doesn’t introduce any external data and
solely augments the existing dataset to train our model.

C. TRAINING PHASE
This section highlights some of the major details involved in
the training phase such as types of models, hyper-parameters,
and architectures of classifiers.

1) DATASET SPLIT
The dataset split is 70% for Training, 10% for Validation and
20% for Testing.
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• Training Images: 80726
• Validation Images: 8970
• Testing Images: 22424
Table 2 presents the distribution of samples belonging to

each class in the training subset of the dataset.

TABLE 2. Training set sample distribution.

2) MODEL ARCHITECTURES
A few deep learning models are applied to the dataset to
examine the performance based on different architectures.
Ten models were implemented with Python’s library named
Keras. In terms of model initialization, we used transfer
learning for the convolution part of the models and random
initialization for the fully connected network. Off-the-shelf
weights that were trained on the ImageNet dataset were used
for quick learning of convolution network. Deep as well as
shallow models were used to test which convolutional net-
works produce better results in feature extraction. As for the
classifier network, a custom architecture was implemented.
This custom architecture included 2 hidden layers and an
output layer comprising 15 neuron units, i.e. a dedicated
neuron for each class. 256 and 50 neurons were assigned to
the first and second hidden layers, respectively. Fewer layers
and neurons were used to avoid overfitting.

3) HYPER-PARAMETERS
The hyper-parameters used in the implementation were kept
the same for all the models, to have a proper comparison of
performance.

• Batch Size: The memory constraint of RAM and VRAM
of GPU didn’t allow many options to be tried in terms
of batch size. Hence, the value of 32 was used for all the
models trained.

• Optimizer: At first two options were tried i.e., Stochastic
Gradient Descent (SGC) and Adaptive Momentum
(Adam), but after some executions no significant
difference was found. Therefore, we settled for the
Adam optimizer for the training of models, as it is one
of the advanced methods of learning the weights of the
model.

• Learning Rate: Since we used already trained weights
(i.e., transfer learning) for convolutional networks in our
models, the learning rate was kept low. Its value was set
at 0.0001.

• Activation Functions: For its simple computation and
effectiveness, ReLU was applied in all the layers, except
the output layer, for activation of neurons and to add
non-linearity into our models. As for the output layer,
sigmoid was used, since our problem is a multi-label
classification problem, and each neuron has to output an
independent value.

• Loss Function: Since the dataset has non-mutually
exclusive labels, we need such a loss function that can
consider each class independently. For this purpose,
Binary_Cross_Entropy (BCS) is used to measure the
loss of all the classes.

D. TESTING AND EVALUATION PHASE
In this section, we discuss the metrics that are used for the
evaluation of our trained models.

1) BINARY ACCURACY
In general, accuracy states a percentage of correctly classified
samples divided by all the classification results, including the
correct as well as the misclassified results. Since the dataset,
we worked on belongs to a multi-label classification problem,
we cannot just consider the one-hot encoded labels as a single
label. For example, if there are three classes in total and the
sample belongs to classes 1 and 2 (label: 1 1 0). However,
our model prediction states that the sample belongs to classes
1 and 3 (label: 1 0 1), so using regular accuracy would be
considered incorrect. Whereas, binary accuracy calculates
the percentage of labels that matched in the entire one-hot
encoded label. Therefore, the binary accuracy of the above
example would be 2 divided by 3, i.e. 66% accuracy.

2) RECALL
When a dataset has a class imbalance, evaluating the model
based on simple accuracy is not enough. Recall is a measure
of how many actual positive examples in the dataset, were
classified as truly positive by the model. The recall is an
important measure in the medical field since we aim to
classify all the actual diseased samples as truly diseased,
by the model. It is defined in [1], as follows:

Recall(orSensitivity) =
TruePositives

TruePositives+ FalseNegatives
(1)

3) PRECISION
Another metric that can evaluate the performance of the
trained model on the imbalanced dataset is Precision. It is a
measure of howmany samples were actually positive from all
the samples that the model predicted as positive. It is defined
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FIGURE 9. Sharpening of X-Ray images in RGB format.

FIGURE 10. Images generated after 300k epochs belonging to Cardiomegaly class.

in [1], as follows:

Precision =
TruePositives

TruePositives+ FalsePositives
(2)

4) SPECIFICITY
This measure can be considered as a recall but for negative
samples, i.e. it gives a measure of how many actual negative
examples were classified as negative by the model. It is

defined in [1], as follows:

Specificity =
TrueNegatives

TrueNegatives+ FalsePositives
(3)

5) F1 SCORE
This measure considers both recall and precision of the model
and indicates more of a balanced performance value. It is
a harmonic mean of precision & recall. The F1 Score of a
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FIGURE 11. Images generated by GAN belonging to Hernia class.

model will be high if more samples predicted as positive by
the model were actually positive and more samples predicted
as negative by the model were actually negative. It is defined
in [1] with the following formula:

F1Score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(4)

As the F1 Score gives equal importance to both precision
& recall, it might sometimes fail to indicate the performance
of the model where one is more important than the other. For
example, in the medical field, we need a higher recall rate
of models and can give up on the importance of precision.
Therefore, F-Beta Score can be used where we assign a
weight that defines the importance of each measure. A higher
Beta value i.e. more than 1, gives more weightage to recall,
and a lower beta value i.e. lower than 1 gives more weightage
to precision.

6) AUC (ROC)
The Receiver Operating Characteristic (ROC) curve is used
to examine the capability, of a model, of distinguishing
between classes and is plotted using measures named True
Positive Rate (TPR) and False Positive Rate (FPR). Both
of these measures are directly proportional i.e. if one
increases the other increases as well. The ROC curve is
plotted against a number of thresholds and indicates an
area_under_the_curve (AUC). The higher the area, the better
the model’s performance is.

TABLE 3. MobileNetV1 results without geometric image augmentation
with adam optimizer.

IV. EXPERIMENTAL RESULTS
In this section, the results of our experimental research and
the programming environments, that were used to obtain, are
documented in separate sections.

A. EXPERIMENTAL SETUP
The size of the dataset played a significant role in deciding the
programming environments to conduct experiments. Deep

learning models were implemented and trained on two
platforms. The first one was a free GPU-based platform
called ‘‘Kaggle’’. Its free version provides 13 Giga Bytes
of RAM, a 2-core CPU, and a P100 GPU. The second
platform was of our own i.e. an ASUS ROG laptop
with 16 Giga Bytes of RAM, an 8th generation 6-core
Intel CPU i.e. i7-8750H, and NVIDIA’s GTX 1050Ti GPU.
Although we had multiple options, these were not enough to
explore the multi-dimensional space of experimental analysis
thoroughly. Nevertheless, we obtained decent results with
different models.

B. EXPERIMENTAL RESULTS (WITHOUT GEOMETRIC
IMAGE AUGMENTATION)
This section presents the results of deep learning models
without any geometric augmentation techniques. The original
images from the dataset were passed as it is to the deep
learning model. MobileNetV1 was used for this experiment.
Table 3 indicates the model starts to overfit as the number of
epochs is increased. The batch size was set to 16 and the input
resolution of the images was 300 * 300. We scaled the pixels’
values between 0 and 1 and to optimize the model we used
binary cross entropy loss. To tackle this overfitting problem
we use augmentation for the rest of the experiments in the
research.

1) VGG16
In medical CXR data, spatial information can be very vital in
the classification of diseases. Therefore, it is common to use
deep learning-based networks to extract the features having
important information from the images. VGG16 is one such
model that has a high no of layers in its convolution network.
We implemented this model with already learned weights for
its feature extractor and a custom classifier with 3 layers.
There were 4 executions with 5, 10, 15, and 30 epochs,
having batch size 32. The model gave an above-average
performance, with recall as high as 54.5 and amaximumAUC
hitting mark of 67.

2) INCEPTION-V3
This model focuses on a rather optimized approach for
producing good results without a huge network architecture.
It has less number of learnable parameters as compared to
VGG16 but produces quite good classification results. In this
work, we trained it on 5, 10, and 15 epochs with a batch
size of 32. It gave recall as high as 55 and AUC as high as
69, which are higher than VGG16 with a lesser number of
epochs, training time, and parameters. Although the graphs
and results indicate that, the model started to overfit as the
epochs were increased.

3) Xception
Similar to Inception, this model also follows the idea of a
shallow-depth network with optimized performance. We ran
this model on 5, 10, and 15 epochs with 32 batch sizes and
Adam optimizer for weight learning. It gave recall as high as
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56.3 and an AUC of 67.7. The results were quite constant for
all 3 executions.

4) DenseNet-121
It has many number of layers, although the number of
learnable parameters is not high. It uses transition layers to
pass the information from one layer to the layers ahead by
skipping some of them. We implemented this model with
a custom classifier of 3 layers and trained it on 5, 10, and
13 epochs. The results show that the model starts to overfit
as the epochs are increased. Hence, the best results that this
model produced were on 5 epochs. The recall was 55 and
AUC was 68.4.

5) MobileNet
A lightweight model, as the name suggests, with only
4.3 million learnable parameters (as compared to VGG16’s
138 million). This is the best model in terms of results so far
in this research work. It gave recall as high as 57 and an AUC
of 70 with 10 epochs.

6) MobileNet-V2
This is a newer version of the previous model and has a
slightly less number of learnable parameters. The model was
trained on 5, 10, and 15 epochs, and it produced slightly lower
results than its predecessor did. The model has an AUC of
69.1 and a maximum recall of 55.

7) EfficientNet-B2
The efficientNet model introduces an idea of systematic
increment of the model’s width, depth, and input resolution.
This model was trained on multiple epochs but it did not
produce good enough results. With recall only as high as
48 and AUC just hitting 57, it was not as promising as other
models.

8) EfficientNet-B4
It is another version of the EfficientNet model, with a slightly
larger network architecture. It does not necessarily have a
huge number of parameters to learn, nonetheless, it takes
quite a while to train. Just like the previous model, it did not
produce good results with a maximumAUC of 52 and a recall
of 43. Due to high training hours, we were not able to train it
on a higher number of epochs.

9) EfficientNet-B6
Similar to EfficientNet B4, this model does not produce
good enough results to carry on with further experimentation.
It was trained on only 5 and 10 epochs due to its high training
hours. It produced 56.2 AUC and 46.8 recall. It did give
slightly better results on higher epochs, which highlights the
question of whether this model produces good results with
fine-tuning.

10) ResNet50-V2
This model has a very large no of layers and uses residual
blocks to pass information to the layers ahead. We trained
it on 5, 10, and 15 epochs. It gave almost similar results as
MobileNet V2, although it takes more time to train. It gave a
recall of 55 and an AUC of 67.4 on 10 epochs.

C. SUMMARY OF EXPERIMENTAL RESULTS (MODEL
EXPERIMENTATION)
Table 4 provides the best results for each of the implemented
models regardless of the number of epochs.
Observation 1: MobileNet (version 1 and 2) models

produce slightly better results than other CNN-based
models i.e., VGG-16, DenseNet, InceptionNet, etc.

D. INITIAL COMPARISON RESULTS
This section demonstrates how our preliminary results turned
out to be in comparison to the existing work [reference to base
paper].

1) CLASS-WISE AUC
Table 5 shows a comparison between the existing models
[base paper] and some of the well-performing suggested
models. It was observed that MobileNet performs better
mostly in terms of accuracy for 4 classes.

2) AUC RESULTS COMPARISON
The suggestedMobileNet produces better AUC for 9 diseases
when compared with the MobileNetV2’s class-wise AUC
as shown in Table 5. However, the average AUC does not
improve due to MobileNet’s lower AUC for diseases such as
Emphysema, Cardiomegaly, Hernia, etc. We concluded that
this is because of the lower number of mutually exclusive
samples for these classes.

3) EXPERIMENTAL RESULTS (AFTER HYPER-PARAMETER
TUNING, IMAGE PROCESSING, AND FINE TUNING)
We experimented with various aspects of deep learning
including image-preprocessing techniques, hyper-parameter
tuning, fine-tuning the models, and generating synthetic
samples with Generative Adversarial Networks (GANs).
We documented the obtained results after applying each
mentioned technique.

4) RESULTS AFTER HYPER-PARAMETER TUNING
The results of various hyper-parameter tuning options are
demonstrated with the MobileNet model. From an infinite
number of factors, that can affect a model’s performance,
we tested a small number of options from the hyper-parameter
list.

5) LOSS FUNCTION
Two types of loss functions i.e., conventional Binary Cross
Entropy (BCE) and Multi-Label Binary Cross Entropy
(MLBCE) were tested. In MLBCE, the loss of a specific
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TABLE 4. Summary of best results (model experimentation).

TABLE 5. Preliminary results: class wise AUC.

TABLE 6. Results with MLBCE loss with 224 * 224 image resolution.

class was calculated by multiplying the ratio of positive and
negative samples of the class, in the simple BCE formula.
This loss function pushed the Recall higher but the Precision
and F1-Score remained very low at a smaller classification
threshold. This indicates that the model was classifying a
huge number of samples as positive, even the negative ones.
However, when using a threshold of 0.9, the metrics’ values
normalized but remained very poor. Table 6 shows the values
for various evaluation measures with MLBCE. The loss
function was tested on 5 different batch sizes with an input
size of 224 by 224 and was discarded for the rest of the
research as the results were not encouraging.

Conventional binary cross entropy loss produced better
results as compared to the custom loss. AUC did not
improve, however, other metrics had higher values. Table 7
demonstrates the results of classification while using BCE
loss. A similar approach was used to test BCE i.e. results were
examined with 5 batch sizes with an input size of 224 by 224.
We also tried a higher number of epochs to see if the results
improved or not.

6) BATCH SIZE
Different batch sizes were also tested on this dataset.
However, the results indicated that the lower batch sizes were
producing better results. Results with batch sizes 8, 16, and
32 were a little better than batch sizes 64 or 128. Batch size
of 16 was used in most of the experiments. Table 8 shows
the results with respect to different batch sizes with 5, 10,
and 15 epochs, respectively. The input image size was 224 *
224 and the loss used was BCE.

7) INPUT IMAGE RESOLUTION/SIZE
Image input sizes were also tweaked with the MobileNet
model to increase image quality and detail. Though the
model can benefit from higher resolution images, the same
can be counterproductive in terms of a drastic increase in
computational cost.

Table 9 shows MobileNet results of different input sizes
and resolutions with a batch size of 16. Resolution of 500 by
500 again produces better results; however, the training time
is twice the number of epochs. There is not a huge difference
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TABLE 7. Results with BCE loss with 224 * 224 image resolution.

TABLE 8. Results of batch sizes with 5, 10 & 15 Epochs with 224 * 224 image resolution.

TABLE 9. Results of resolution 224, 300, 400 and 500 with batch sizes 8 and 16.

TABLE 10. Results of image normalization techniques without sharpening (300 * 300 image resolution and 16 batch size).

between average AUCs of 300 by 300 and 500, but we do
save time with the former one.
Observation 2: We can obtain the best overall results

by choosing a small batch size i.e. 16, and by keeping
the resolution around 300 by 300, and using BCE as
a loss function. Results after Image Preprocessing’’
This experiment involves image normalization/preprocessing
along with Threshold segmentation. The image resolution
was increased which resulted in increased computational
cost. However, 224 by 224 seems to work better most of the
time. The following 3 types of scaling were tried:

• One-Minus-One scaling: The pixel values are normal-
ized between -1 and 1

• Zero-One scaling: The values are between 0 and 1
• Min-Max scaling: The values are set considering the
minimum and maximum values of the particular image.

Table 10 presents the results of MobileNet with BCE
loss after applying three types of mentioned normalization
techniques. The batch size was 16 and the input image size
was 300 by 300.

8) IMAGE NORMALIZATION (WITH IMAGE SHARPENING)
Table 11 presents the results of MobileNet with BCE
loss after applying three types of mentioned normalization
techniques with an added filter that applies sharpening on the
images. The batch size was 16 and the input image size was
300 by 300.

9) THRESHOLD SEGMENTATION WITH BINARY
OTSU-THRESHOLDING
Image Segmentation was also applied using OTSU thresh-
olding. This technique determines the optimum threshold to
separate the foreground and background. However, it did
not produce encouraging results, as it is hard to calculate
the thresholds for lung tissues. Table 12 presents the results
of the MobileNet model after applying OTSU. The batch
size was 16 and the input image size was 300 by 300. The
results were documented with three image normalization
techniques specified earlier. We also tried OTSU without any
normalization as well as only image sharpening.
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TABLE 11. Results of image normalization techniques with sharpening (300 * 300 image resolution and 16 batch size).

TABLE 12. Results after applying OTSU Thresholding with 300 * 300 image resolution and 16 batch size.

Observation 3: We can conclude from this experiment
that the best normalization technique for this project is to
keep pixel values between -1 and 1 or 0 and 1. Threshold
segmentation does not aid lung disease classification
significantly. Hence, semantic segmentation might be a
better option.

10) RESULTS AFTER FINE TUNING
In addition, we’ve investigated the process of further
optimizing the top-performing model through fine-tuning
as part of our research. The following section shows the
results after we froze the convolutional layers of the model.
MobileNet’s convolutional part which is used for feature
extraction, was frozen and only the custom classifier was
trained on different epochs. The batch size was kept at 16.
It seems an increasing number of epochs do increase the
values of evaluation measures. The increase in the results
was minor and the higher epochs were taking too long to
be continued in the research’s limited time frame. Table 13
shows a comparative summary of the results. MobileNet
model has trained with a batch of 16 on 10, 20, 30, 40, and
70 epochs. Different values were tried for the batch size but
it did not seem to have any significant effect.

TABLE 13. MobileNetV1 results after fine tuning (frozen CNN & trained
classifier) with 300 * 300 image resolution and 16 batch size.

Observation 4: Fine-tuning the fully connected layer and
freezing convolutional layers of the model slows down the
convergence of the algorithm significantly.

11) RESULTS AFTER USING SYNTHETIC SAMPLES
PRODUCED BY GAN
Table 14 presents the results of different models, trained
on original as well as synthetic samples. Specifically,
MobileNetV1 model was utilized. Images of approximately
224 * 224 in size were fed, and the results are documented.

TABLE 14. MobileNetV1 results after using GAN samples with 224 *
224 image resolution.

Observation 5: Synthetic samples generated with GAN
have not proved to be fruitful. Recall and AUC decreased
after training the model with merged samples. However,
if the quality of synthetic samples can be improved, the
results might get better.

E. FINAL COMPARISON OF RESULTS OF EXISTING BEST
MODEL (MOBILENETV2) AND SUGGESTED MODEL
(MOBILENETV1)
Table 15 shows a summary of base papers and our project’s
results including Recall, Precision, F1-Score, average
AUC, etc.

V. DISCUSSION
Lung diseases are one of the most common causes of death
in the world. The diagnosis and management of lung diseases
are a challenge for radiologists, especially in environments
with scarce resources. The use of deep learning techniques
in the fields of medical imaging, on large datasets, has
allowed computer algorithms to produce as effective results
as medical professionals. In this research work, we have
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TABLE 15. Final comparison of results of existing and proposed
approach.

proposed a deep learning-based system for the classification
of lung diseases from chest X-ray images. The system
uses a MobileNetV1 and neural network classifier with
geometric image augmentation. We have experimented with
various aspects related to deep learning for the multi-label
classification of lung disease. The results of our experiments
show that deep learning models can be used to effectively
classify lung diseases from chest X-ray images.

Following are some of the observations from this research:
• Our experiments have shown that MobileNet (version
1 and 2) models produce slightly better results than
other CNN-based models such as VGG-16, DenseNet,
InceptionNet, etc. MobileNet models are lightweight
and efficient, which makes them well-suited for mobile
and embedded devices. They also have a relatively small
number of parameters, which makes them easier to train
and deploy.

• Using a small batch size of 16, keeping the resolution
around 300 by 300, and using BCE as a loss function
produced the best overall results. The mentioned reso-
lution provides a good balance between classification
accuracy and computational cost. Furthermore, the best
normalization technique for this project is to keep pixel
values between -1 and 1 or 0 and 1.

• Threshold segmentation is a simple but effective tech-
nique for segmenting images. However, it may not
be sufficient for lung disease classification, as it does
not take into account the spatial relationships between
pixels. Semantic segmentation is a more advanced tech-
nique that can take into account these relationships, and
it may be a better option for lung X-ray segmentation.

• Fine-tuning the fully connected layer and freezing
convolutional layers of the model slows down the
convergence of the algorithm significantly.

VI. CONCLUSION
MobileNetV1 model with geometric image augmentation
produced the best results, with a recall of 57%, a binary
accuracy of 93.4%, an F1-score of 55.3%, and an AUC
of 81%. Synthetic samples generated with GAN can help
to improve the diversity of the training data and help with
class imbalance in large datasets. We have implemented a
DCGAN model to generate synthetic X-ray images, but we
found that these images did not improve the performance
of the MobileNetV1 model. After the inclusion of generated
synthetic samples, the values for Recall, Precision, F1-Score,

and AUC were 50, 58.2, 54.1, and 78.4, respectively. There
are a few possible explanations for why the DCGAN model
did not improve the performance of the MobileNetV1 model.
First, the DCGAN model was trained on a relatively small
number of samples for each class, which may not have been
enough to capture the diversity of lung diseases in the NIH
Chest X-ray 14 dataset. Second, the DCGAN model may
have been overfitting to the training data, and so did we
notice, which would have led to poor classification accuracy.
Overall, the results of our experiments suggest that deep
learning models can be used to classify lung diseases from
chest X-ray images effectively. We believe that our system
has the potential to be used as a clinical decision support
tool for the early detection of lung diseases. However, more
research is needed to improve the performance of such
models, especially on large and imbalanced datasets. In future
work, we plan to improve the performance of our system by
using a larger andmore diverse dataset of chest X-ray images.
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