
Received 24 July 2024, accepted 15 August 2024, date of publication 4 September 2024, date of current version 12 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3454329

Adaptive Scaling Filter Pruning Method for Vision
Networks With Embedded Devices
HYUNJUN KO 1, (Graduate Student Member, IEEE), JIN-KU KANG 1, (Senior Member, IEEE),
AND YONGWOO KIM 2, (Member, IEEE)
1Department of Electrical and Computer Engineering, Inha University, Incheon 22212, Republic of Korea
2Department of Technology Education, Korea National University of Education, Cheongju 28173, Republic of Korea

Corresponding author: Yongwoo Kim (yongwoo.kim@knue.ac.kr)

This work was supported in part by the National Research Foundation of Korea (NRF) Grant funded by Korean Government through the
Ministry of Science and ICT (MSIT), South Korea, under Grant 2022R1G1A1007415; and in part by the MSIT through the Information
Technology Research Center (ITRC) Support Program supervised by the Institute for Information and Communications Technology
Planning and Evaluation (IITP) under Grant IITP-2021-0-02052.

ABSTRACT Owing to improvements in computing power, deep learning technology using convolutional
neural networks (CNNs) has recently been used in various fields. However, using CNNs on edge devices
is challenging because of the large computation required to achieve high performance. To solve this
problem, pruning, which reduces redundant parameters and computations, has beenwidely studied. However,
a conventional pruning method requires two learning processes, which are time-consuming and resource-
intensive, and it is difficult to reflect the redundancy in the pruned network because it only performs pruning
once on the unpruned network. Therefore, in this paper, we utilize a single learning process and propose an
adaptive scaling method that dynamically adjusts the size of the network to reflect the changing redundancy
in the pruned network. To verify the performance of each method, we compare the performance of the
proposed methods by conducting experiments on various datasets and networks. In our experiments using
the ImageNet dataset on ResNet-50, pruning FLOPs by 50.1% and 74.0% resulted in a decrease in top-1
accuracy by 0.92% and 3.38%, respectively, and improved inference time by 26.4% and 58.9%, respectively.
In addition, pruning FLOPs by 27.37%, 36.84% and 46.41% using the COCO dataset on YOLOv7, reduced
mAP(0.5-0.95) by 1.2%, 2.2% and 2.9%, respectively, and improved inference time by 12.9%, 16.9%
and19.3%.

INDEX TERMS Computer vision, convolutional neural network, inference time, network compression,
pruning.

I. INTRODUCTION
Recently, deep learning technologies have been used actively
in computer vision, speech recognition, natural language
processing, etc. [1], [2], because of the increasing availability
of training data and computing resources. In the field of
computer vision, classification networks [3], [4], [5], [6],
[7], detection networks [8], [9], [10] and segmentation
networks [11], [12], [13] using convolutional neural networks
(CNNs) are being actively researched. However, to achieve
high performance, networks are becoming deeper and wider,
and using many CNNs will require lots of computer

The associate editor coordinating the review of this manuscript and

approving it for publication was Siddhartha Bhattacharyya .

resources. In addition, the increasing need to run computer
vision networks on edge devices with limited computational
resources is driving the need for model compression research.
Therefore, lots of model compression research is being
conducted for real-time operation.

Pruning and quantization are common examples in model
compression research. Hybrid pruning [14] fuses two or more
network compression methods such as low-rank decomposi-
tion, quantization, and knowledge distillation for developing
the performance of compression models. Quantization con-
verts parameters stored as 32-bit floating-point to 8 or less-bit
integers of 16 or less floating-point. As a consequence,
quantization reduces memory and computation by reducing
data size and simplifies hardware using integer operations.

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 123771

https://orcid.org/0009-0005-8955-744X
https://orcid.org/0000-0002-3752-3740
https://orcid.org/0000-0002-1011-2319
https://orcid.org/0000-0003-0360-7919

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

Pruning removes redundant weights or filters from CNNs
with minimal performance degradation. In other words,
pruning reduces memory and computation by reducing the
amount of data. According to the target, pruning is separated
into weight and filter pruning. First, weight pruning methods
determine the importance of each weight and prune them
individually. This method could achieve a high compression
rate but creates a sparse matrix. Consequently, we cannot
expect the inference time acceleration in a typical GPU
environment without special software or hardware. On the
other hand, filter pruning methods prune each filter as a
group by comparing their importance. This method has
a relatively lower compression ratio than weight pruning
methods. However, it only reduces the network width while
maintaining the network structure so that it can achieve
inference time acceleration in a typical GPU environment.
This advantage is the reason why filter pruning [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34] is actively
researched.

There are two research approaches in filter pruning meth-
ods: predefined and automatic. Predefined methods [25],
[26], [27], [28] allow the user to set the sparsity of each
layer to obtain a compressed network with the desired
structure. However, it has the disadvantage that the sparsity
ratio of the optimal network is highly dependent on the
user’s experience because it is a hyper-parameter. On the
other hand, automatic methods [15], [16], [17], [18], [19]
compare the importance of filters in the entire network using
several criteria to obtain the target pruned network by setting
the pruning ratio automatically. The typical filter pruning
methods use sparsity learning to determine each filter’s
importance. The pruning stage removes unimportant filters.
Finally, Execute the fine-tuning stage to recover performance
degradation. However, this method requires two training
processes, sparsity learning and fine-tuning, which require a
long training time and lots of power. Therefore, several pieces
of research [16], [17], [31] are being conducted to simplify
these processes.

In this paper, we proposed an adaptive scaling method,
which dynamically adjusts the size of the network by
randomly regrowing some of the pruned filters to consider the
redundancy change of each filter. Finally, we propose a single
learning process to obtain a pruned network with maximally
preserved performance in a single training. The contributions
of this paper are as follows.

• To address the time-consuming disadvantage due to
two learning processes in existing studies [15], [19],
[20], [21], [22], [23], [24], [26], [29], [30], we propose
a single learning process that can quickly obtain a
lightweight model in one learning process.

• Inspired by the Channel exploration (CHEX) method
[16], we randomly recover some filters during the
pruning process to make the network have a flexible
size and use an adaptive scaling method that can
consider the changing dependency of the filter to obtain

FIGURE 1. Compare the workflow between the conventional pruning
method (a) and the proposed method (b).

a target pruned network with maximum performance
preservation with a short training time.

• Experiments using ResNet-56 [3] and VGG-16 [4] on
CIFAR-10 [35] with the proposed method have better
performance than other methods by up to 0.38% at
similar pruning ratios. Experiments using ResNet-50 [3]
on ImageNet [36] have better performance than others
by up to 2.27%. In addition, we demonstrated high
performance and fast inference time compared to
other methods using YOLOv7 [8] on COCO [37] and
VOC [38], proving the compatibility of our proposed
method in various environments.

The structure of the rest of the paper is organized
as follows. We review existing filter pruning methods In
Section II. Section III describes the details of our adaptive
scaling filter pruning method. In Section IV and Section V,
we present experimental results on different networks and
datasets. In Section VI, we conclude the paper.

II. RELATED WORKS
Unlike weight pruning, which prunes by measuring the
importance of individual weights, filter pruning removes
groups of weights in a single filter to accelerate inference
time. As mentioned in Section I, filter pruning has two
research approaches: predefined and automatic. The pre-
defined pruning method defines the sparsity of each layer
individually by the user to prune. For example, L1-norm
pruning [27] assumes that filters with higher L1-norms in
each convolutional layer are more important. This method
prunes filters in a small order to achieve the target pruning
ratio and compares the importance only within each layer.
Hrank [25] extracts feature maps from the network and
determines that the larger the rank of each feature map, the
more important it is. So Hrank prunes filters in a small
order of rank to achieve a target pruning ratio. EagleEye [18]
employs adaptive batch normalization to mitigate the impact
of performance loss from pruning and finds the optimal
pruned network by predicting the final accuracy across
different randomly pruned networks. CHIP [28] uses channel
independence to indicate the orthogonality of each channel;
therefore, CHIP prunes channels in a small order of channel
independence. These methods can obtain a network with the
desired structure easily. Still, discovering the optimal pruned
network is challenging because users must be involved in
selecting the pruning ratios for individual layers.

123772 VOLUME 12, 2024

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

FIGURE 2. The overview of proposed adaptive scaling filter pruning (ASFP) method.

On the other hand, automatic methods use floating point
operations (FLOPs) targets, parameters targets, or channel
sparsity to specify the pruning ratio for each layer by com-
paring the importance of each filter. For example, network
slimming [19] determines the importance of each feature map
channel by the γ parameter of the batch-normalization [39]
layer and prunes related filters in a smaller order. At this
time, sparsity learning ensures that the γ associated with
unimportant filters has a small value. CHEX [16] uses column
subset search to determine the importance of each filter and
set the unimportant parameters to zero. CHEX also uses
regrowing, which recovers important filters by measuring
the relationship between non-pruned and pruned filters as
importance sampling to re-evaluate the importance of pruned
filters. This method yields the same result as the last training
result with the target pruned network, as the output feature
map is zero, which means the result is unaffected. NISP [20]
uses the final layer’s ranking score to calculate the previous
layers’ neuron importance scores to remove unimportant
filters. The disadvantages of these automatic methods are that
they may choose unimportant filters without considering the
behavior of the entire network, and the size of the pruned
network cannot be predicted based on the criteria used as the
target pruning ratio.

Pruning usually uses train-based pruning, which uses
sparsity learning, pruning, and fine-tuning. The conventional
processes of train-based pruning are described in Fig. 1 (a).
First, sparsity learning uses various criteria to identify

redundant structures. Pruning prunes redundant structures
based on the results of sparsity learning. Finally, fine-tuning
recovers the performance degradation caused by pruning. The
conventional pruning method is time-consuming because it
requires training twice.

Based on the works mentioned above, this paper proposes
an adaptive scaling filter pruning (ASFP) that improves the
time efficiency of pruning by eliminating the fine-tuning
process andmakes it operatable on edge devices by using both
parameters and FLOPs target pruning ratio. Also,We conduct
experiments on both classification and detection networks to
verify our method on several computer vision networks.

III. PROPOSED METHOD
In this section, we describe ASFP in detail. First, we explain
equations. Next, we describe the detailed process of our
proposed method in Section III-B. An overall process of
ASFP is described in Fig. 2.

A. NOTATIONS
Suppose a CNN has N number of convolutional layers and
Ci means i-th convolutional layer. The filter, which is the
parameter located in Ci, is Ki ⊆ RKCi×KCi−1×KHi×KWi .
KCi means the number of filters and is equal to the channel
of the output feature map. KCi−1 is the number of filters in
the (i-1)-th convolutional layer and also means the number
of channels in the input feature map. KHi and KWi means
height and width of the filter Ci, respectively. The parameters

VOLUME 12, 2024 123773

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

Algorithm 1 Overview of the ASFP Method
Input: Pre-trained network M

Total training epochs Etotal
Training epochs between pruning steps Estep
Max training epochs using pruning step Eprune

Output: Pruned network M ′

1: for each epoch Etotal do
2: if e < Eprune then
3: if Mod(e,Estep) = 0 then
4: Find redundant filters k iprune={k i||γ i| < t}
5: Make ’Zero’ k iprune and its corresponding param-

eters
6: Compute regrowing ratio δ using (5)
7: Compute the number of regrowing filters

niregrow=(# of k
i
prune) × δ

8: Randomly find regrowing filters
k iregrow={k iprune∥choose n

i
refrow filters}

9: Regrow k iregrow and its corresponding parameters
by using recently used parameters

10: Get set of pruning target filters
k itarget=k

i
prune-k

i
regrow

11: end if
12: Generate Loss using (4)
13: end if
14: Make ’Zero’ k itarget and its corresponding parameters
15: Update network
16: end for
17: Build pruned network M ′

18: Return M ′

of the batch normalization layer are γn ⊆ RCn and βn ⊆

RCn . The convolutional and batch normalization layers are
iterated over, and the output of the i-th layer is FMi ⊆

RB×Ci×Hi×Wi . B is the batch size and Hi and Wi is the
height and width of FMi, respectively. Fig. 3 shows the
feature map of CNN and the parameters of the convolutional
and batch normalization layers. In the convolutional layer
parameters, each row represents a channel in the filter and
each column represents a channel in the output feature map.
In Algorithm 1, e denotes the current epoch, Estep denotes the
epoch interval between the pruning stage. Eprune denotes the
maximum epoch to use the pruning stage. Etotal denotes
the number of total epochs until a pruned network is obtained.
These values are determined experimentally.

B. ADAPTIVE SCALING FILTER PRUNING
Fig. 2 describes the overall structure of the adaptive
scaling filter pruning (ASFP) method. There are mainly
two differences compared to the conventional method. First,
as shown in (a) of Fig. 1, the conventional method requires
re-training or fine-tuning to recover the lost performance
after obtaining the pruned network. Otherwise, ASFP does
not require additional training after obtaining the pruned
network, as shown in (b) of Fig. 1. Second, since we iterate

pruning and regrowing every Estep until Eprune in Fig. 2,
we can consider the change of each filter redundancy due to
pruning and use the regrowing ratio δ to achieve the target
pruning ratio gradually. After Eprune, we train the network
and fix pruning target filters k itarget until Etotal . The following
shows the details of each step, and the complete method is
described in Algorithm 1.

1) PARAMETERS AND FLOPS SPARSITY
We use both parameters sparsity and FLOPs sparsity to
set the target pruned network. So, we generate pruning
loss in (3) introduced in target capacity filter pruning [15].
We use γ , a parameter of the batch normalization layer [39],
as a criterion for distinguishing important filters. The batch
normalization layer is applied between the convolutional
layer and the activation function for scaling through γ and
shifting through β to prevent internal covariance shifts. The
feature map is associated with the γ , which eventually leads
to an unimportant feature map if γ is small. Also, since each
γ corresponds to one channel in the feature map, and each
channel is generated by the filter operation of the KCn in the
previous n-th convolutional layer, we can determine that the
filter KCn is unimportant.

θ (γ, t) =

{
0, if |γ | ≦ t
1, if |γ | > t

(1)

∂θ (γ, t)
∂γ

=

{
−1, if γ ≦ 0
1, if γ > 0

(2)

The Lprune is obtained by applying the computational
amount and the number of parameters of the original
network(Foriginal , Poriginal), the computational amount and
the number of parameters of the current network(Fprune,
Pprune) being trained by applying loss, and the computational
amount and the number of parameters of the target pruned
network(Ftarget , Ptarget) as shown in (3). In particular,
to obtain the computational amount and the number of
parameters of the current network, γ , the parameter of the
batch normalization layer, is used as an indicator function as
shown in (1). Since the indicator function is discontinuous,
backpropagation is impossible, so it is backpropagated using
STE as shown in (2).

Lprune =

(Fprune − Ftarget
Foriginal

)2
+

(Pprune − Ptarget
Poriginal

)2
(3)

Ltotal = Loriginal + αLprune (4)

By using the pruning loss function in (3) to generate the
loss function in (4) and proceed with training, we can induce
γ to be less than threshold t through training to have the target
pruning network computation and the number of parameters.
At this time, if the pruning loss function is too large, it will
cause the performance of the final network to be adversely
affected, so use α to adjust the ratio of network loss(Loriginal)
and pruning loss(Lprune) to maintain the performance of the
target network as much as possible.

123774 VOLUME 12, 2024

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

FIGURE 3. Structure of parameters in convolutional neuron network and indicate an example of corresponding parameters(green).

FIGURE 4. Regrowing ratio according to initial value and function.

2) PRUNING TO ZERO
In our proposed method, we set the redundant filters and their
corresponding parameters to zero in the pruning stage for a
single learning process so that they do not affect the feature
maps and hence do not affect the final result. This ensures that
there is no performance degradation when removing those
parameters to get a pruned network. Looking on Line 4 in
Algorithm 1, we first get the set of corresponding filters k iprune
where |γ | is less than a threshold t . Based on this, we remove
those filters and their corresponding parameters on Line 5.
The corresponding parameters can be determined as follows.

The associated parameters can be found in the convolu-
tional and batch-normalization layers. If we determine that a
particular filter in the convolutional layer, shown in Fig. 3
as green, is redundant, we set it to zero and also set the
associated parameters in the subsequent batch normalization
layer γ and β to zero, and one channel of output feature
map generated by the zero parameters will also have a zero
matrix. Also, setting the channel of one of the filters in the
(n+1)-th convolutional layer, which operates on the channel
of the corresponding feature map as input, to zero. By finding
the redundant filters and setting the corresponding parameters

to zero, ASFP can improve the existing two training sessions
into one training session. Sowe could reduce the training time
and power consumption.

3) REGROWING FOR ADAPTIVE SCALING
The adaptive scaling method considers the changing impor-
tance of filters as learning progresses, and utilizes regrowing
to randomly select some of the pruned filters to recover
to the value just before pruning, and reduces the number
of recovered filters using cos decay to make the size of
the model variable to obtain the target pruning network
while maintaining maximum accuracy. The overall method is
mentioned in Algorithm 1, Lines 6 to 9. In line 6, we compute
the regrowing ratio δ, which controls the number of filters
that are regrown to achieve the target pruning ratio. This is
done in the form of a cos decay like (5), setting an initial
regrowing ratio, δinitial , and configuring it to go to zero
when the current epoch(e) reaches Eprune. Depending on the
relationship between e and Eprune, the case of δinitial for
0.3 and 0.5 with cos decay and the case of linear decay are
shown in Fig. 4. In this paper, we use cos decay because it
has been shown experimentally to perform better than linear.

δ =
1
2

(
1 + cos

(e
Eprune

π
))

× δinitial (5)

The adaptive scaling method has two goals. The first is to
regrow and re-evaluate the importance of each filter because
the importance of each filter is not accurately determined at
the beginning of training. Second, it allows the model size
to be flexible, leading to better performance. To summarize,
the conventional method using the one-shot pruning method
uses sparsity learning to determine filter redundancy and fixes
the size of the model through a single pruning to obtain a
pruned network. However, redundancy in a situation where
redundant filters affect the results and interconnections exist
can be judged to be different from the filter redundancy for
an optimal pruned network. Therefore, to account for the
change in filter importance caused by pruning, regrowing
for adaptive scaling can be used to gradually prune the
model size to the target pruned network to account for the
changing redundancy caused by pruning, resulting in higher
performance.

In CHEX [16], the value of the filter that is recovered when
regrowing is Most recently used(MRU). The reason for this

VOLUME 12, 2024 123775

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

is that the performance of MRU is 0.5% to 1.9% higher than
randomly recovering to 0. Therefore, we use MRU in this
paper, and since the filters subject to regrowing include not
only the filters pruned in the immediately preceding pruning
stage but also the filters pruned several steps earlier, we save
the last learned parameters in every iteration so that they can
be used in regrowing.

As a way to select the regrowing filter, the CHEX
method uses an importance sampling method based on
channel orthogonality. The reason for this is to consider
the inter-channel dependency of the pruned filter and the
active filter. However, this method considers the relationship
between all filters, contrary to one of the goals of regrowing,
which is to consider the change in filter redundancy caused by
gradually reducing the model size by pruning. In other words,
the regrowing target obtained by the relationship of all filters
does not represent the importance of the pruned network.
Therefore, in this paper, the regrowing target is selected by
random selection instead of importance sampling, and it is
shown in Section V that higher performance can be obtained
experimentally.

4) FIX REDUNDANT FILTERS TO ZERO
After pruning and regrowing are completed, the zero param-
eters will change to non-zero values as learning progresses.
This means that the redundant parameters will affect the
output feature map and a single learning process cannot
be satisfied. Therefore, redundant filters are excluded from
learning in the proposed method by fixing them to 0 at each
iteration. The method is as follows.

Once the pruning and regrowing stages are completed,
we can obtain k itarget , the set of pruned filters as shown
in Algorithm1 Line 10, by substrate k iregrow from k iprune.
Therefore, we set k itarget to zero at each iteration so that it
does not affect the output feature map, as shown on Line 14.

IV. EXPERIMENTS
This section compares ASFP results of several classification
and object detection networks with different datasets using
the Pytorch framework.

A. IMAGE CLASSIFICATION
In Table. 1, we evaluate the results after pruning on
ResNet-56 [3] and VGG-16 [4] using the CIFAR-10 [35]
dataset. In Table. 2. we evaluate the accuracy after pruning
ResNet-50 [3] using the ImageNet [36] dataset. We also
compare the accuracy according to the FLOPs reduction ratio
in Fig. 5.

1) CIFAR-10
The CIFAR-10 dataset has 60,000 images with ten classes
divided into 50,000 training images and 10,000 validation
images. For training, image size and batch size are 32 and
128, respectively. The learning rate is 0.01, and the

TABLE 1. The comparison results of conventional and proposed ASFP
methods on ResNet-56/VGG-16 networks using the CIFAR-10 dataset.

momentum is 0.9. We train for Etotal of 150 epochs with
Eprune of 80 and Estep of 2.

First, the experimental results on ResNet-56 show ASFP
achieves 0.13% accuracy improvement even though 50.3%
and 50.6% FLOPs and parameters are pruned compared to
the baseline, respectively. It also improves the accuracy by
0.22% compared to HRank [25] with a similar pruning ratio.
In particular, compared to GAL [21], ASFP helped to find
the optimal pruned network with 12.7% fewer FLOPs and
38.8% fewer parameters but 0.01% higher accuracy. On the
other hand, compared to ASFP, CHIP [28] outperforms by
0.77%. Still, it has the disadvantage that it uses a pre-defined
method, which requires performingmany combinations to get
the optimal network. On the other hand, ASFP specifies the
sparsity of each layer with an automatic method, so it is more
simple to obtain the optimal network.

123776 VOLUME 12, 2024

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

TABLE 2. The comparison results of conventional and proposed ASFP methods on the ResNet-50 network using the ImageNet dataset.

FIGURE 5. The comparison results of conventional and proposed ASFP methods using various classification networks and datasets.

The results for VGG-16 show that ASFP has a 1.55%
decrease in accuracy compared to baseline with 85.4% and
87.2% pruning of FLOPs and parameters, respectively, which
is a 1.18% increase in accuracy compared to HRank with
a similar pruning ratio and a 0.07% increase in accuracy
compared to network with a smaller pruning ratio. In the
case of SOSP, its performance is 0.3% higher than Ours-2.
But Ours-2 can obtain a pruned network faster than SOSP
because Ours-2 uses one training process and SOSP uses
two training processes. In Ours-1, The results with 52.7%
and 84.2% pruning of FLOPs and parameters, respectively,
showed a 0.52% accuracy decrease. This is 0.02% to 0.42%
more accurate than other methods with similar pruning ratios.
Thus, the experimental results of ASFP on ResNet-56 and
VGG-16 using CIFAR-10 perform well on various networks.

2) ImageNet
The ImageNet dataset has 1,200,000 training images and
50,000 validation images with 1,000 classes. The training

image size and batch size are 224 and 256, respectively.
For inference time, we utilize a pruned network whose
code is publicly available and executable. We train for
Etotal of 150 epochs, assigning 80 epochs to Eprune and
5 epochs to Estep. We set the image size and batch size to
224 and 1, respectively, and measured it on NVIDIA Jetson
Nano.

In Table. 2, we evaluate the results of ASFP with previous
studies using ResNet-50 and ImageNet datasets. We execute
experiments with various FLOPs and parameters pruning
ratios and find that Ours-1 achieves a 4.78% reduction
from baseline when FLOPs and parameters are pruned by
77.72% and 69.09%, respectively. In Ours-2, parameters and
FLOPs are pruned by 64.55% and 74.09%, respectively,
which is a reduction of 3.83% from baseline, which is an
improvement of up to 0.84% compared to other methods with
higher pruning ratios. These results show that the proposed
method works appropriately on various networks and various
datasets.

VOLUME 12, 2024 123777

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

TABLE 3. The comparison results of conventional and proposed ASFP methods on YOLOv7 network using PASCAL VOC and COCO datasets with different
pruning ratios.

In the case of CHEX and CHIP, their performance is higher
than Ours-2, but Ours-2 has a faster inference time than
experiments of CHEX and CHIP with a similar pruning ratio
to Ours-2. In particular, the comparison with Hrank shows an
improvement of 1.39 times. In particular, when compared to
CHEX, the accuracy is 3.68% lower, but the inference time is
2.43 times faster. The reason for this is that the code provided
in CHEX [40] does not provide code to remove redundant
filters from the pruned network, and in particular, it does not
consider the skip connections present in ResNet-50, resulting
in an unworkable network if all filters with zero are removed
as suggested in the paper.

B. OBJECT DETECTION
In Table. 3, we experiment and compare the performance after
pruning onYOLOv7 [8] using the PASCALVOC [38] dataset
and COCO [37] dataset. In the inference time, the network is
the time it takes to get the output from the pruned network,
and NMS is the time it takes to perform non-maximum
suppression, and these two times are summed and expressed
as the total and the difference between the total time and the
inference time of the baseline is shown as1.We also compare
the accuracy according to the inference time improvements
in Fig. 6.

1) PASCAL VOC
The PASCAL VOC dataset has 20 classes and consists of
about 16,000 training images and 5,000 validation images.
The image size and batch size are set to 640 and 64,
respectively, and 300 epochs of training were performed. The
other settings are the same as the default settings of YOLOv7.
Inference time is measured on NVIDIA Jetson Xavier NX
with the same image size and batch size set to 1. The training
process spans 300 epochs, including 200 epochs for Eprune
and five epochs for Estep.

FIGURE 6. The experimental results comparing inference time of
TCFP [15] and proposed ASFP methods on YOLOv7 networks using the
PASCAL VOC and COCO datasets.

In Table. 3, we compare TCFP [15] and ASFP by
obtaining pruned networks with three different pruning ratios.
Compared to baseline, ASFP has 36.14%, 45.41%, and
50.82% fewer FLOPs, 32.95%, 42.81%, and 50.74% fewer
parameters, and 3.8%, 4.9%, and 5.3% less accuracy on
mAP(0.5-0.95). This is 0.9%, 1.2%, and 0.9% more accurate
than TCFP, respectively. In addition, inference time shows
that non maximum suppression(NMS) is similar between
networks with similar pruning ratios, but significantly
improves in network time, with total time improvements
of 12.0ms, 13.9ms, and 14.6ms over baseline, respectively,
which is up to 44.6% better than TCFP.

2) MS COCO
The MS COCO dataset has 80 classes and consists of about
11.5k training images and 5k validation images. The image
size and batch size are set to 640 and 64, respectively, and
300 epochs of training are performed. The other settings are
the same as the default settings of YOLOv7. Inference time
is measured on NVIDIA Jetson Xavier NX with the same
image size and batch size set to 1. Our training consists of

123778 VOLUME 12, 2024

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

TABLE 4. The comparison results of regrowing ratio decision criterion
with 50% target pruned ResNet-56 using CIFAR-10 dataset.

300 epochs in Etotal , with 200 epochs allocated to Eprune and
five epochs to Estep.
In Table. 3, we compare TCFP and ASFP by obtaining

pruned networks with three different pruning ratios. Com-
pared to the baseline, ASFP reduces FLOPs by 27.37%,
46.41% parameters by 27.92%, and 47.40% with only 1.2%
and 2.9% mAP(0.5-0.95) reduction, while TCFP reduced
FLOPs by 27.27%, 46.99% parameters by 29.25%, and
48.72% with 2.1% and 3.2% mAP (0.5-0.95) degradation.
It shows that the proposed method has higher accuracy
with a smaller model size than TCFP. In addition, the
inference time shows a slight improvement in NMS and
a significant improvement in network time, resulting in a
total time improvement of 8.8ms - 13.1ms over baseline
and up to 62.9% improvement over TCFP. These results
show that the proposed ASFP obtains a higher-performance
pruned network with one-step training without retraining,
and the optimal pruned network can be obtained by pruning
redundant filters through adaptive scaling.

V. ABLATION ANALYSIS
We demonstrate the effectiveness of ASFP on key features
through ablation studies. All experiments are compared using
the ResNet-56 and CIFAR-10 datasets with FLOPs and
parameters pruned at a 50% pruning target ratio. Other
settings are the same as in the previous experiments.

A. REGROWING RATIO DECISION CRITERION
Table. 4 compares the results according to the method
of determining the regrowing ratio and the initial value.
We compare the accuracy of the pruned network by setting the
initial value as 0.3, 0.4, and 0.5 while comparing the cos and
Linear methods shown in Fig. 4. As a result, the accuracy of
the cos method is 93.39% when the initial value is 0.5, while
the accuracy of the Linear method is 93.16% when the initial
value is 0.3. Therefore, using (5) and using δinitial as 0.5 can
achieve at least 0.23% higher performance than using Linear.

B. TRAINING CRITERION
Table. 5 shows the difference in accuracy between the
pruning method and the regrowing method. The conventional
pruning method shown in (a) of Fig. 1 is used in the case
of the retraining method, and the experiment is conducted
according to whether the regrowing method is used or not

TABLE 5. The Comparison results of training criterion with 50% target
pruned ResNet-56 using CIFAR-10 dataset.

TABLE 6. The comparison results of regrowing criterion with 50% target
pruned ResNet-56 using CIFAR-10 dataset.

in the sparsity learning stage. If using the re-training method,
the regrowing method improved by 0.15% than without the
regrowing method. The performance of ASFP with the
regrowing method was improved by 0.19% compared to
the conventional method with regrowing. Therefore, we can
analyze that the regrowing method contributes to finding the
optimal pruned network and that the method of fixing the
redundant parameters to zero when pruning in the proposed
method helps preserve the pruned network’s performance as
much as possible.

C. TARGET REGROWING FILTER DECISION CRITERION
Table. 6 shows the difference in accuracy based on how
the target regrowing filter is defined. We trained using the
same target pruning ratio and the same hyperparameters.
First, using the importance sampling method as CHEX,
the accuracy is 93.04%, but using the random selection
method used in our proposed method, the performance is
93.39%, which is an improvement of 0.35%. Therefore,
we can conclude that the proposed random selection is
more helpful in obtaining a pruned network with high
performance.

D. LIMITATIONS
ASFP has been experimented only in classification and object
detection tasks among vision networks using CNN, so it
is difficult to guarantee its performance in tracking and
segmentation. Also, since it analyzes the gamma of each
batch normalization layer, it has the disadvantage that it
must be modified according to the structure of each network
such as residual connections. This is a problem for quickly
applying to various networks, but it has the advantage that it
is easy to adjust the pruning range to suit the characteristics
of each network. In particular, in the case of YOLOv7, the
last layer for detection was not pruned to maintain high
performance in order to maximize accuracy.

VOLUME 12, 2024 123779

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

VI. CONCLUSION
In this paper, we proposed adaptive scaling filter pruning
(ASFP) as a network compressionmethod for running various
computer vision networks on edge devices. This method
utilizes a single learning process that reduces two learning
processes to a single learning process and proposes adaptive
scaling to consider the redundancy difference due to pruning.
By using this method, we could obtain pruned networks with
less accuracy degradation than other methods on ResNet-56,
ResNet-50, and VGG-16 classification networks using
CIFAR-10 and ImageNet datasets. In particular, we obtained
pruned networks with up to 0.84% higher accuracy in
experiments using ImageNet and ResNet-50. In the YOLOv7
object detection network, we also achieved a high pruning
ratio on PASCAL VOC and MS COCO datasets with less
accuracy loss than other methods and achieved up to 21.0%
improvement in inference time on embedded systems using
NVIDIA Jetson Xavier NX. These experiments demonstrate
that the proposedASFP can be used in classification networks
and object detection networks. To overcome the limitations
mentioned in Section V-D, we will apply ASFP on object
tracking networks and segmentation networks.

ACKNOWLEDGMENT
The EDA tool was supported by the IC Design Education
Center (IDEC), Korea.

REFERENCES
[1] S. Naoumi, A. Bazzi, R. Bomfin, and M. Chafii, ‘‘Complex neural

network based joint AoA and AoD estimation for bistatic ISAC,’’
IEEE J. Sel. Topics Signal Process., early access, Apr. 10, 2024, doi:
10.1109/JSTSP.2024.3387299.

[2] M. Delamou, A. Bazzi, M. Chafii, and E. M. Amhoud, ‘‘Deep
learning-based estimation for multitarget radar detection,’’ in Proc.
IEEE 97th Veh. Technol. Conf. (VTC-Spring), vol. 32, Jun. 2023,
pp. 1–5.

[3] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[4] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ 2014, arXiv:1409.1556.

[5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1–9.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based
learning applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Jan. 1998.

[8] C.-Y. Wang, A. Bochkovskiy, and H.-Y.-M. Liao, ‘‘YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2023,
pp. 7464–7475.

[9] W. Liu, ‘‘SSD: Single shot multibox detector,’’ in Proc. 14th Eur. Conf.
Comput. Vis. Amsterdam, The Netherlands: Cham, Switzerland: Springer,
Oct. 2016, pp. 21–37.

[10] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards
real-time object detection with region proposal networks,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149,
Jun. 2017.

[11] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. 18th Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent., vol. 9351, Munich, Germany. Cham,
Switzerland: Springer, 2015, pp. 234–241.

[12] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
‘‘Encoder–decoder with atrous separable convolution for semantic
image segmentation,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 801–818.

[13] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[14] X. Xu,M. S. Park, and C. Brick, ‘‘Hybrid pruning: Thinner sparse networks
for fast inference on edge devices,’’ 2018, arXiv:1811.00482.

[15] J. Jeon, J. Kim, J.-K. Kang, S. Moon, and Y. Kim, ‘‘Target capac-
ity filter pruning method for optimized inference time based on
YOLOv5 in embedded systems,’’ IEEE Access, vol. 10, pp. 70840–70849,
2022.

[16] Z. Hou, M. Qin, F. Sun, X. Ma, K. Yuan, Y. Xu, Y.-K. Chen, R. Jin,
Y. Xie, and S.-Y. Kung, ‘‘CHEX: CHannel EXploration for CNN model
compression,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 12277–12288.

[17] T. Chen, B. Ji, T. Ding, B. Fang, G. Wang, Z. Zhu, L. Liang, Y. Shi,
S. Yi, and X. Tu, ‘‘Only train once: A one-shot neural network training
and pruning framework,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34,
2021, pp. 19637–19651.

[18] B. Li, B. Wu, J. Su, and G. Wang, ‘‘EagleEye: Fast sub-net eval-
uation for efficient neural network pruning,’’ in Proc. 16th Eur.
Conf. Comput. Vis., Glasgow, U.K. Cham, Switzerland: Springer, 2020,
pp. 639–654.

[19] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, ‘‘Learning efficient
convolutional networks through network slimming,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2755–2763.

[20] R. Yu, A. Li, C.-F. Chen, J.-H. Lai, V. I. Morariu, X. Han, M. Gao,
C.-Y. Lin, and L. S. Davis, ‘‘NISP: Pruning networks using neuron
importance score propagation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 9194–9203.

[21] S. Lin, R. Ji, C. Yan, B. Zhang, L. Cao, Q. Ye, F. Huang, and D. Doermann,
‘‘Towards optimal structured CNN pruning via generative adversarial
learning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2785–2794.

[22] Z. Huang and N. Wang, ‘‘Data-driven sparse structure selection for
deep neural networks,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 304–320.

[23] J.-H. Luo and J. Wu, ‘‘AutoPruner: An end-to-end trainable filter pruning
method for efficient deep model inference,’’ Pattern Recognit., vol. 107,
Nov. 2020, Art. no. 107461.

[24] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, ‘‘Importance
estimation for neural network pruning,’’ in Proc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 11256–11264.

[25] M. Lin, R. Ji, Y.Wang, Y. Zhang, B. Zhang, Y. Tian, and L. Shao, ‘‘HRank:
Filter pruning using high-rank feature map,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1526–1535.

[26] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang, ‘‘Soft filter pruning for accel-
erating deep convolutional neural networks,’’ 2018, arXiv:1808.06866.

[27] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, ‘‘Pruning filters
for efficient convnets,’’ 2016, arXiv:1608.08710.

[28] Y. Sui,M.Yin, Y. Xie, H. Phan, S. A. Zonouz, and B. Yuan, ‘‘Chip: Channel
independence-based pruning for compact neural networks,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 34, 2021, pp. 24604–24616.

[29] M. Nonnenmacher, T. Pfeil, I. Steinwart, and D. Reeb, ‘‘SOSP: Efficiently
capturing global correlations by second-order structured pruning,’’ 2021,
arXiv:2110.11395.

[30] M. Kang and B. Han, ‘‘Operation-aware soft channel pruning using
differentiable masks,’’ in Proc. Int. Conf. Mach. Learn., 2020,
pp. 5122–5131.

[31] G. Fang, X. Ma, M. Song, M. Bi Mi, and X. Wang, ‘‘DepGraph: Towards
any structural pruning,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2023, pp. 16091–16101.

[32] Y. Li, K. Adamczewski, W. Li, S. Gu, R. Timofte, and L. Van Gool,
‘‘Revisiting random channel pruning for neural network compression,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 191–201.

123780 VOLUME 12, 2024

http://dx.doi.org/10.1109/JSTSP.2024.3387299

H. Ko et al.: Adaptive Scaling Filter Pruning Method for Vision Networks With Embedded Devices

[33] X. Ding, T. Hao, J. Tan, J. Liu, J. Han, Y. Guo, and G. Ding,
‘‘ResRep: Lossless CNN pruning via decoupling remembering and
forgetting,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 4490–4500.

[34] H. Wang and Y. Fu, ‘‘Trainability preserving neural pruning,’’ 2022,
arXiv:2207.12534.

[35] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Comput. Sci. Univ. Toronto, Toronto, ON, Canada, 2009.

[36] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[37] T. Lin, ‘‘Microsoft COCO: Common objects in context,’’ in Proc. Eur.
Conf. Comput. Vis., Zurich, Switzerland. Cham, Switzerland: Springer,
2014, pp. 740–755.

[38] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, ‘‘The PASCAL visual object classes challenge: A
retrospective,’’ Int. J. Comput. Vis., vol. 111, no. 1, pp. 98–136, Jan. 2015.

[39] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep
network training by reducing internal covariate shift,’’ in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448–456.

[40] zejiangh. (2022). Filter-Gap. [Online]. Available: https://github.com/
zejiangh/Filter-GaP

HYUNJUN KO (Graduate Student Member,
IEEE) received the B.S. degree in electronics
engineering from Inha University, Incheon,
South Korea, in 2023, where he is currently pur-
suing the M.S. degree in electrical and computer
engineering. His current research interests include
deep learning and computer vision.

JIN-KU KANG (Senior Member, IEEE) received
the B.S. degree from Seoul National University,
Seoul, South Korea, in 1983, the M.S. degree in
electrical engineering fromNew Jersey Institute of
Technology, Newark, NJ, USA, in 1990, and the
Ph.D. degree in electrical and computer engineer-
ing from North Carolina State University, Raleigh,
NC, USA, in 1996. From 1983 to 1988, he was
with Samsung Electronics, Inc., South Korea,
where he was involved in memory design. In 1988,

he was with Texas Instruments, South Korea. From 1996 to 1997, he was a
Senior Design Engineer with Intel Corporation, Portland, OR, USA, where
he was involved in high-speed I/O and timing circuits for processors. Since
1997, he has been with Inha University, Incheon, South Korea, where
he is currently a Professor and leads the System IC Design Laboratory,
Department of Electronics Engineering. His research interest includes high-
speed/low-power mixed-mode circuit design for high-speed serial interfaces.

YONGWOO KIM (Member, IEEE) received the
B.S. and M.S. degrees from Inha University,
Incheon, South Korea, in 2007 and 2009, respec-
tively and the Ph.D. degree in electrical engineer-
ing from Korea Advanced Institute of Science
and Technology, Daejeon, South Korea, in 2019.
From 2009 to 2017, he was a Senior Engineer
with Silicon Works Company Ltd., Daejeon.
From 2019 to 2020, he was a Senior Researcher
with the Artificial Intelligence Research Division,

Korea Aerospace Research Institute, Daejeon. From 2020 to 2024, he was
an Assistant Professor with the Department of System Semiconductor
Engineering, Sangmyung University, Cheonan, South Korea. Since 2024,
he has been with Korea National University of Education, Cheongju,
South Korea, where he is currently an Assistant Professor with the
Department of Technology Education. His current research interests include
image/video processing algorithm, super-resolution, and deep learning
hardware architecture for vision processing.

VOLUME 12, 2024 123781

