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ABSTRACT This paper introduces two novel class-specific fuzzy clustering algorithms: Mean-based
Supervised Clustering (MSC) and Density-based Mean Supervised Clustering (DMSC). These algorithms
are designed to construct the hidden layer of the Fuzzy Hypersphere Neural Network (FHNN) classifier,
which is structured on the framework of the Radial Basis Function Neural Network (RBFNN). The FHNN
classifier utilizes fuzzy sets as labeled pattern clusters in its hidden layer, with classes represented in the
output layer formed by the aggregation of these fuzzy sets. An important characteristic of this classifier is
its independence from tuning parameters. It meticulously determines centroids and radii for labeled clusters,
consistently achieving 100% accuracy across any training set. The FHNN classifier effectively handles
outliers and is robust to variations in data presentation, ensuring clear data visualization for users. During
the creation of labeled clusters in the hidden layer, binary weight values are adjusted concurrently between
the hidden and output layers. This study proposes the formation of fuzzy clusters with varying dimensions
tailored to the dataset. The classifier architecture, rooted in the radial basis function neural network, achieves
100% training accuracy due to precise fuzzy cluster formation. Experimental comparisons with RBFNN and
similar classifiers using sixteen benchmark datasets demonstrate the superiority of the proposed classifier in
pattern recognition tasks.

INDEX TERMS Fuzzy neural network, fuzzy set hypersphere, pattern classification, radial basis function
neural networks, sep fuzzy membership function.

I. INTRODUCTION
Pattern recognition is a highly favored domain among
researchers, with Neural Network classifiers gaining

The associate editor coordinating the review of this manuscript and

approving it for publication was Mu-Yen Chen .

popularity over minimum distance classifiers [1]. In the last
few decades, Artificial Neural Networks (ANN) have been
widely used in pattern recognition. Error back-propagation
and RBFNN are basically used for pattern classification.
In RBFNN radial basis function is used to create clusters
in the hidden layer [2], [3]. Two heuristic clustering
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algorithms for RBFNN were proposed by Rouhani in the
year 2016 [4] while improvements to one of these algorithms
were suggested by [5]. Apart from understanding the role
of RBFNN, fuzzy neural networks are widely used in
pattern recognition. In 1992, there was considerable focus
on merging fuzzy logic with neural networks for pattern
recognition, leading to the proposal of the fuzzy min–max
neural network (FMNN) for classification by [6]. This
approach involved creating hyperboxes corresponding to
different classes using learning algorithms incorporating
expansion and contraction, with hyperboxes described by
minimum and maximum points. This concept was further
extended by [7] who considered labeled and unlabeled
data to create the hyperboxes. In 2004, a new concept
of compensatory neuron was introduced [8]. Various new
architectures and learning algorithms have been proposed to
enhance the performance of FMNN [9], [10], [11], [12].
Various clustering algorithms have been proposed to

determine the appropriate centroid and width of the
hidden neurons in the hidden layer, alongside Gaussian
functions, to enhance performance in terms of recog-
nition rate [4], [13], [14], [15]. Both supervised and
unsupervised clustering methods are utilized to ascertain
the centers and radii parameters of hidden nodes for
Radial Basis Function Neural Networks (RBFNN) [16].
Numerous clustering algorithms incorporate techniques such
as K-means clustering [17], subtractive clustering [18],
fuzzy clustering [15], [19], [20], [21], ART [22], scatter
based clustering [23], input-output clustering [24], artificial
fish swarm optimization (AFSO) [25], [26], [27], among
others, to illustrate how to create neurons in the hidden
layer of RBFNN. Similarly other methods are described
in [28], [29], [30], and [31].

The Fuzzy Min-Max Neural Network (FMNN) faces
significant disadvantages such as the challenge of altering
the hyperbox size, its expansion, contraction, and the overlap
test [33]. In contrast, the proposed approach offers several
advantages over fuzzy classifiers and Radial Basis Function
Neural Networks (RBFNNs) [32]. Firstly, the proposed
algorithms, Mean-based Supervised Clustering (MSC) and
Density-based Mean Supervised Clustering (DMSC), are
utilized to create clusters, known as fuzzy set hyperspheres
(FSHs), in the hidden layer without overlap of classes,
ensuring 100 % efficiency for the training set. During cluster
formation using MSC and DMSC the binary weights are
assigned between hidden layer to output layer which is not the
case with RBFNN [1]. The training between the hidden layer
to output layer which is done by using the LMS algorithm
in RBFNN is avoided, and the output is determined by
using the fuzzy union operation. Another aspect is that FNN
guarantees the training and does not get stuck in local minima
which make arise in RBFNN. FMNN describes about the
hyperbox creation limited by size stated during initialization.
The process of resizing the hyperbox depends on the overlap
test. The training process is tedious and takes longer time
to form the appropriate number of hyper boxes [6]. RBFNN

FIGURE 1. Work flow of proposed classifier.

is a classifier which uses clustering algorithms to create
the hidden layer of multilayer network. Different traditional
clustering methods where used with constraints like Size of
cluster, number of clusters, and cover up of clustered patterns.
The training between the hidden layer to output layer which is
done by using the LMS algorithm in RBFNN is avoided, and
the output is determined by using the fuzzy union operation.
Thus FNN reduces the computation time, guarantees 100%
accuracy for any training set, and provides superior and
comparable recognition accuracy for the datasets with the
precise number of FSHs in the hidden layer.

The paper is arranged as follows. The FHNN architecture
and two learning algorithms are represented in sections II
and III, respectively. Under experimental results, four case
studies have been explained in section IV and the conclusion
is described in section V.

II. PROPOSED FHNN CLASSIFIER ARCHITECTURE
Here, we proposed the fuzzy cluster formation having
different dimensions in accordance with the dataset. The
architecture of the classifiers is based on a radial basis
function neural network having 100 % training due to precise
fuzzy cluster formation. There are no restrictions on fuzzy set
hyperspheres (FSHs) size and eliminates the need for overlap
tests of clusters, also its robustness extends to any training
dataset, leveraging fuzzy membership functions to obscure
patterns such that they remain unaffected by neighbouring
class patterns which is not the case in traditional clustering
methods [34].
Fig. 1 represented the work flow of proposed classifiers.

The initial step in the classification process involved
determining the inter-class distance between patterns in the
dataset, which entailed calculating the distance of one class
from the others. This step was essential for deciding the
cluster radius. Subsequently, the intra-class distance to the
cluster of the same class was computed. Once both inter-class
and intra-class distances were determined, clusters were
created for each specific class. During this process, the class
patterns were systematically clustered until all class patterns
were separated into distinct clusters. These clusters were
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FIGURE 2. Architecture of FHNN.

governed by a fuzzy membership function that determined
the output. Ultimately, these clusters formed the hidden layer
of the FHSNN for pattern classification. Performance was
evaluated using various standard datasets.

This classifier, employing a fuzzy approach, ensures the
training of any dataset while providing a clear view of dif-
ferent classes and their outliers. Unlike traditional methods,
this classifier does not require parameter adjustments, as it
learns autonomously, akin to generative AI [20]. Moreover,
this model is well-suited for datasets of any dimensionality
and demonstrates improved accuracy for the testing dataset,
achieving 100% accuracy for the training dataset.

Fig. 2 represents the proposed FHNN classifier architec-
ture. The input layer is designated as the FI layer. It consists
of N + 1 nodes. However, as shown, the N nodes in the FI
layer acceptN dimensional pattern. The input to the (N+1)th

node is fixed to 1. The nodes in this layer do not perform any
processing. Therefore, the transfer function of these nodes is
output equal to the input. The next layer is a hidden layer. It is
designated as the FH layer and consists of J nodes. Each node
in this layer represents a fuzzy set hypersphere (FSH). There
is no need to initialize the parameters. The fuzzy membership
function for FSH has been stated in equation 1 and equation 2
and described so as to camouflage the clustered patterns. Two
learning algorithms which are described in section III are
proposed to construct the FHNN classifier.

In the FH layer, FSHs are created during learning. The
fuzzy membership function, which is defined as:

mj(Xh,Cj, rj) = f (l, rj) (1)

characterizes these FSHs.
where input pattern is represented by Xh = (xh1 ,

xh2 , . . . , xhN ), with radius and cenroid of Hj is rj and Cj =

(cj1 , cj2 , . . . , cjN ).

The function f () is described as:

f (len, radj) =

{
1 len ≤ radj
radj/len if not

(2)

where len is an euclidean distance between Xh and Cj.
The centroid of FSHs is stored in the matrix C which are

weights between FI and FH along with the radii stored in r.
The connections between (N + 1)th node and FSHs represent
respective radii whereas the remaining connections represent
centroids. UsingMSC or DMSC algorithm the FSH is created
in FH layer with appropriate centroid and radii.

The output layer is designated as the FO layer. It consists of
K nodes which are created during learning representing the
class node. ThematrixU contains the binary weights between
FH and FO.

These weights are assigned as

U(k, j) =

{
1 if Hj belongs to class Ck
0 if not,

(3)

where k = 1, 2, . . . ..,K and j = 1, 2, . . . .., J . The
processing of nodes in the FO layer is defined as

Ck =
J

max
j=1

U(k, j) mj, k = 1, 2, . . . ..,K . (4)

The C, r and U change during learning as FSH and output
class nodes are created

III. LEARNING ALGORITHMS
Two mean-based supervised clustering algorithms have been
proposed to construct the FHNN classifier. The detailed
description of these two algorithms is given below.

A. MEAN-BASED SUPERVISED CLUSTERING (MSC)
ALGORITHM
A training set Z containing P training pairs is described as{
Xj, dj

}
for jth input pattern where dj ∈ {1, 2, . . . .,K } is a

desired output for Xj.

Let the k th subset of set Z contain αk patterns of class Ck
where k = 1, 2, . . . ,K . For K classes following steps (1-11)
are executed with tk = P − αk , where tk is the total number
of patterns that do not belong to class Ck .

1) Calculate the inter-class matrix Ak

Ak
=

[∥∥Xi − Xj
∥∥]

αk×tk
,

j = 1, 2, . . . , tk andi = 1, 2, . . . , αk . (5)

where Xj /∈ Ck , Xi ∈ Ck .
2) Calculate the intra-class distance matrix Bk as

Bk =
[∥∥Xi − Xj

∥∥]
αk×αk

, i, j = 1, 2, . . . , αk (6)

where Xi and Xj ∈ Ck .
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3) Determine the mean for each pattern using the
intra-class distance matrix as

Mki = (
1
αk

) ∗
αk∑
j=1

Bk (i, j) (7)

in which i = 1, 2, . . . , αk .
4) Determine the pattern Xk

c with minimum mean in M k .
Let lkc is the location of Xk

c in the k th subset.
5) Determine minimum inter-class distance dkc for this

pattern Xk
c using A

k as

dkc = min
j=1,2,....,tk

Ak (lkc , j) (8)

6) Create a labeled cluster i.e. FSH
with the pattern Xk

c as a centroid and radius equal to d
k
c

in hidden layer of FHNN.
Determine the total number of patterns clustered by this
FSH using algorithm 1.

7) If n > 1 then the revised radius rkc is computed as

rkc =
n

max
i=1

di, (9)

where Euclidean distance di is between ith clustered
pattern and centroid Xk

c .
Else If n = 1, then to accommodate this outlier,
the radius of created FSH is assigned half of dkc for
good generalization and to minimize the possibility of
overlap with clusters belonging to other classes.

8) Create a output node if not created earlier in FO layer
for classCk and adjust weights linkingFH andFO layer
using (3).

9) Recompute αk as αk ← αk − n, if αk ̸= 0 . Delete
corresponding rows of grouped patterns from Ak and
Bk and go to step 3. If k ̸= K then go to step 1.

10) If k = K then stop.

Algorithm 1 To Determine Patterns Clustered by FSHs

Input: Bk , lkc , d
k
c

Output: n
n← 0
for j = 1 to αk do
if f (Bk (lkc , j), d

k
c ) <= 1 then

n← n+ 1
end if

end for

B. DENSITY-BASED MEAN SUPERVISED CLUSTERING
(DMSC) ALGORITHM
Considering the similar data notations from MSC the
execution of the following steps is done for K classes.
1) Calculate Ak , Bk and Mk as described by steps 1-3 in

MSC.
2) Sort mean vector Mk in ascending order to determine

s = ceiling (
√

αk ) patterns which have minimum

means. Let Xk
1,X

k
2, . . . . . . . . . ,X

k
s are these patterns

with corresponding locations lk1 , lk2 , . . . . . . . . . , lks .
3) Determine minimum inter-class distance for each

pattern using Ak as

dki = min
j=1,2,.......,tk

(Ak (lki , j)), where i = 1, 2, . . . , s.

(10)

4) Count the number of patterns clustered by s possible
clusters i.e. FSHs with Xk

1,X
k
2, . . . . . . . . . ,X

k
s as cen-

troids and corresponding radii dk1 , dk2 , . . . . . . . . . dks
using algorithm 2.

5) If cth cluster out of s clusters has clustered more
patterns then the FSH is created in the hidden layer of
FHNN with the centroid Xk

c and radius dkc .
6) Assign n = nc
7) Steps 7-10, same as MSC.

Algorithm 2 To Determine Patterns Clustered by FSHs

Input: Bk , locations - lk1 , lk2 , . . . . . . . . . lks and radii -
dk1 , dk2 , . . . .., dks

Output: Number of patterns clustered n = (n1, n2, . . . ., ns)

for i = 1→ s do
n← 0
for j = 1→ αk do
if f (Bk (lki , j), d

k
i ) <= 1 then

n← n+ 1
end if

end for
ni← n

end for

Therefore, the FHNN classifier is constructed with the
number of FSHs, which equals the number of clusters created
for each class by the above algorithms, forming a hidden
layer. Appropriate binary weights are assigned to the links
between the hidden layer and the output class neuron. Thus in
traditional clustering, the clusters size and number of clusters
where restricted by initializing the parameters. Where as
in MSC and DMSC, there is no restrictions on fuzzy set
hyperspheres (FSHs) that is on cluster size and number of
clusters. Even there is no need of overlap tests of clusters as
the formed clusters camouflage the clustered patterns. The
cluster formation is done based on the appropriate density
of patterns which is not the case in the traditional clustering.
The MSC and DMSC algorithms are data dependent and to
avoid typical traditional clustering no tuning parameter are
used because of which there is no restriction of size in cluster
formation [1]. Both the MSC and DMSC algorithms do not
impose any restriction on number of clusters so no tunning
of hyperparameters is required in the hidden layer. Since
each FSHs is govern by fuzzy membership functions which
obscures cluster patterns such that they remain unaffected by
neighboring class patterns so training result for all dataset
is 100 %.
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TABLE 1. UCI dataset.

IV. EXPERIMENTAL RESULTS
The performance of the FHNN regarding training accuracy,
testing accuracy, and the number of hidden neurons was
evaluated [35] using Matlab 2016a and the same system
configuration discussed in [36]. The following subsections
provide detailed explanations of the experimental results.

A. CASE STUDY I
To gain a proper understanding of the MSC and DMSC
learning algorithms, a three-class, two-dimensional example
is provided. Twenty-four patterns are included in the training
set, with Class 1 consisting of the following patterns:: (1, 5),
(1, 7.5), (1.5, 7),(2, 4.5), (0.75, 6), (1.5, 8.5), (1, 9), (0.75,
8). Class 2 has the following patterns: (1, 1), (0.75, 3), (1.5,
2.5), (2, 3.5), (3.25, 4), (4, 1),(2, 1.5), (3, 1.5) and finally class
3 has the following pattern (3.7, 6), (3.75, 8), (3.5, 8.5),(4, 5),
(4, 7),(3.75, 9), (3, 9),(3, 8).

1) 2-DIMENSIONAL EXAMPLE USING MSC ALGORITHM
When the FHNN is trained using the MSC algorithm,
it constructs seven FSHs in the middle layer. The detailed
process of constructing the FHNN classifier using the MSC
algorithm is shown in Fig.3(a-f). A scatter plot for the dataset
mentioned above is shown in Fig.3(a).

Initially, the training data from class one is used to create
the FSHs. After calculating the inter-class and intra-class
distance matrices (steps 1 and 2), steps 3 and 4 compute
the centroid pattern (1, 7.5) as it has the minimum mean
distance with respect to the remaining patterns of class 1.
According to step 5, among all the patterns of the other
classes (i.e., classes 2 and 3), the pattern (3.5, 8) of class
3 is the nearest to the centroid (1, 7.5), with a distance of
2.6. Step 6 creates the first FSH with this distance as the
initial radius and the pattern (1, 7.5) as the centroid. The
created FSH as per algorithm 1 clusters the patterns, (.75,
6), (1, 7.5), (1.5, 7), (.75, 8), (1.5, 8.5), (1, 9), of class 1.
Since n > 1, step 7 assigns the final radius to the created
FSH by computing the maximum distance between clustered
patterns and centroid which is 1.52. The centroid and final
radius of this FSH are stored in C and r, respectively. As the

first FSH of class one is created, according to step nine, the
corresponding class node is constructed in the output layer
and the matrix U is updated accordingly. As per step 10,
since αk ̸= 0, learning continues further from step 3 and the
remaining patterns i.e.(1, 5), (2, 4.5) of class 1 are included
in the second FSH with the centroid (1, 5) and radius 1.11.
Fig.3(b) shows the class 1 FSHs constructed during learning.
Since all patterns of class one are clustered, learning of
patterns for class 2 is initiated according to step 10.

Using the same steps, three FSHs were created for class
2 with centroids (1.5, 2.5), (3.25, 4), and (4, 1) with radii
1.0828, 2, and 0.625 respectively as shown in Fig.3(c).

Similarly, for class 3 two FSHs with centroids (3.75, 8)
and (4, 5), and with radii 2.0156 and 0.625 respectively, are
created as shown in Fig.3(d). The learning also creates the
class nodes for these classes and C, r and U are updated
accordingly. Since the learning for all 3 classes is over the
process stops as per step 11.

So overall created seven FSHs i.e. 02 for class one, 03 for
class two, and 02 for class three are shown in Fig.3(e). The
architecture of the FHNN classifier with these seven FSHs
and 3 class nodes, is shown in Fig.3(f). The Fig.3(f) also
depicts the final status of C, r and U.

2) 2-DIMENSIONAL EXAMPLE USING DMSC ALGORITHM
The implementation of the DMSC algorithm using above-
mentioned data, constructed five FSHs i.e. 02 FSHs for class
one, 01 FSH for class two, and 02 FSHs for class three. The
radii and centroids of class one FSHs were the same as the
MSC learning algorithm. The centroid of class 2 FSH is (2,
1.5) with a radius of 2.79 and the centroid of class three FSHs
are (3.75, 8), (4, 5) with radii 2.01 and 0.625, respectively.

Fig.4(a-f) shows the whole process of construction of the
FHNN classifier using the DMSC algorithm. With the same
scatter plot as shown in Fig.3(a), Fig.4(a) shows the created
first FSH with centroid (1, 7.5) and radius equal to 1.52 for
class 1 which clusters the six patterns. Fig.4(b) shows both
FSHs of class 1. The second FSH with centroid (1, 5) and
radius equal to 1.11 clusters the remaining patterns.

For class 2, there are eight patterns to be clustered.
According to the DMSC algorithm, three patterns (1.5, 2.5),
(3, 1.5), and (2, 1.5) with the minimum means in ascending
order are selected as the initial centroids in step 2. After
performing steps 3, 4, and 5, the pattern (2, 1.5) is selected
as the centroid instead of the first two patterns, even though
their mean values are lower. Fig. 4(c) shows the FSH created
for class 2 with centroid (2, 1.5) and a radius of 2.79.

Fig. 4(d) shows the formation of two clusters for class
3 with centroids at (3.75, 8.00) and (4.00, 5.00) and respective
radii of 2.01 and 0.62. The overall FSHs created for all three
classes are shown in Fig. 4(e).

A class node is createdwhenever the first FSH for that class
is created and accordingly upadation of r, C, and U is done.
The architecture of FHNN classifier with centroids in C,

radius in r for FSHs and the weight matrixU for 2-D problem
using DMSC algorithm is shown in Fig.4(f).
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TABLE 2. Comparison of average % test accuracy with 5-fold validation with existing algorithms.

TABLE 3. Comparison of % recognition error.

TABLE 4. Average number of hidden neurons.

The comparison shows that the DMSC algorithm con-
structs fewer FSHs than MSC.

B. CASE STUDY II
To evaluate the performance of FHNN, it was compared with
other algorithms using sixteen UCI datasets [37], as shown
in Table 1. During experimentation, the selected data was
divided into 5-fold sequences to facilitate researchers in
comparing their results with the FHNN classifier. Table 2
presents the average percentages of 5-fold validation test
accuracies of the FHNN classifier and other specified
classifiers [4]. Proposed MSC and DMSC experiment results
are compared with existing state of the art method like RBF-
R, RBF-N, RBF-WTA in Table 2. For dataset Hepatitis,
Glass, Ecoli, Liver, ionosphere and Pima are better than
existing state of the art methods, while results for other
datasets are comparable.

C. CASE STUDY III
The primary concern with the RBFNN lies in the number
of hidden neurons formed within its hidden layer [38].
The FHNN classifier’s performance, in terms of both the
average number of FSHs and relative recognition error,
is compared with various classifiers. Tables 3 and 4 present
the comparison of FHNN with other classifiers as detailed
in [5]. Despite potentially having a greater total number
of FSHs for certain datasets compared to other algorithms,
the computation time for FHNN is generally lower. Table 4
indicates that FHNN is a swift pattern classifier in terms of
retrieval.

TABLE 5. Comparison table for accuracy in training and testing.

D. CASE STUDY IV
The FSHs in FHNN are characterized by membership
functions that accommodate clustered patterns, providing
100% accuracy for any training dataset. In this case study,
the performance of the FHNN classifier is compared with the
fuzzy neural network proposed by [39] in terms of training
and testing accuracy. Table 5 presents the training and testing
results. As shown in the comparison table, the training results
of the FHNN classifier are 100% for all datasets, whereas the
testing results are superior for three datasets and comparable
for others. However, averaging the training and testing results
reveals that FHNN performs better across all datasets, except
for the wine dataset.

In summary, the simulation results clearly indicate that
the FHNN classifier outperforms other algorithms in terms
of 5-fold validation test accuracy, number of neurons with
recognition rate, and training with testing accuracy, both in
superiority and comparability. Additionally, it is observed
that the FHNN classifier learns faster and requires less
retrieval time compared to other algorithms. The FHNN
classifier can be trained on any training dataset without falling
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FIGURE 3. Process in creation of FHNN classifier using MSC algorithm.
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FIGURE 4. Process in creation of FHNN classifier using DMSC algoritham.
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into local minima. Therefore, the FHNN classifier is highly
efficient for pattern recognition, as previously discussed
in [40].

V. DISCUSSION
The cluster formation in the hidden layer of the FHNN
classifier is refined by the MSC and DMSC algorithms.
These algorithms utilize density-based clustering [41] and
measure inter-class and intra-class distances [42]. Average
percentage test accuracy with five-fold validation for various
datasets was reported in recent research papers. Table 2 shows
that the test accuracy is higher for Hepatitis, Glass, E. coli,
Liver, Ionosphere, and Pima compared to other classifiers.
For the remaining datasets, results are comparable. Table 3
indicates that the recognition error for these five datasets is
also comparable.

Table 4 demonstrates that both proposed algorithms, MSC
and DMSC, exhibit robustness in terms of training and testing
time complexity. Table 5 reveals that both algorithms achieve
100% training and testing accuracy for Hepatitis, Zoo, and
Iris datasets, outperforming other algorithms. The primary
goal of developing these algorithms was to achieve 100%
training accuracy with minimal cluster overlap to enhance
testing accuracy.

Figure 3 illustrates that for a 2D dataset, seven clusters are
formed in the hidden layer due to centroid selection based
on cluster density. In contrast, Figure 4 shows that for the
same 2D dataset, five clusters are formed in the hidden layer
due to centroid selection based on both cluster density and
inter-class distance. Comparing Figure 3 and Figure 4, for
class 2, MSC creates three clusters while DMSC creates only
one cluster. The proposed classifier based on the MSC and
DMSC algorithms presents several compelling advantages
over traditional classifiers, positioning it as a robust choice
in the field of pattern recognition. One of its primary
strengths lies in its parameter independence, requiring no
tuning parameters yet consistently achieving 100% training
accuracy across diverse datasets. This feature not only
simplifies implementation but also enhances the algorithm’s
adaptability to various training scenarios. By employing
strategies that circumvent the local minima problem, the
algorithms effectively determine an optimal number of
clusters suited to each dataset’s unique characteristics,
thereby ensuring efficient and thorough training.

Furthermore, the algorithms’ insensitivity to the order of
data presentation ensures stability in clustering outcomes,
fostering reliable and reproducible results crucial for data
visualization and interpretation. This attribute is particularly
advantageous in exploratory data analysis and understanding
complex dataset structures. In terms of computational
efficiency, the MSC and DMSC algorithms demonstrate
competitive performance, achieving minimal training and
testing times, especially beneficial for smaller datasets where
rapid processing is pivotal.

A distinctive feature of the proposed approach is the incor-
poration of fuzzy neurons in the hidden layer, characterized

by fuzzy membership functions. This design choice enhances
the classifier’s ability to accurately model and categorize
complex patterns within data, contributing to its high training
accuracy.

In summary, the MSC and DMSC algorithms represent a
significant advancement in pattern recognition due to their
robust performance across various metrics including accu-
racy, computational efficiency, and flexibility in handling
different dataset characteristics. These attributes make them
well-suited for applications requiring precise and reliable
classification, contributing to advancements in fields ranging
from biomedical research to industrial automation. Future
research could involve optimizing these methods for the
number of clusters. Large datasets with a higher prevalence
of outliers may result in a larger number of clusters, thus
increasing the processing overhead during training, hence
a strategy for removing outliers must be formed. The next
goal should be to increase dataset accuracy by avoiding
overfitting, and experimentation should encompass use of
parameters for cluster size and cluster number. Finally,
an approach would be to change the fuzzy membership
function.

VI. CONCLUSION
The proposed FHNN classifier, utilizing the MSC and
DMSC algorithms, constructs FSHs in the hidden layer based
on intra-class and inter-class metrics, incorporating fuzzy
membership functions within the framework of RBFNN.
Unlike traditional RBFNNs that use Gaussian neurons, the
FHNN achieves 100% training efficiency across all datasets
by employing FSHs. The weights between the hidden and
output layers are binary and adapt in real-time during
node construction, reducing both training and retrieval time
complexities. The MSC and DMSC algorithms effectively
select centroids, minimizing the influence of outliers and
optimizing cluster width. DMSC, specifically, generates
fewer FSHs compared to MSC.

The FHNN classifier imposes no restrictions on FSH
size and eliminates the need for overlap tests typical in
FMNN classifiers. Its robustness extends to any training
dataset, leveraging fuzzy membership functions to obscure
patterns such that they remain unaffected by neighboring
class patterns. Future research directions could explore
limiting FSH size and altering the order of classwise data
to further enhance performance. Simulation results using
standard datasets demonstrate that the FHNN classifier excels
in pattern recognition tasks, affirming its suitability and
effectiveness in practical applications.
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