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ABSTRACT This paper presents a design paradigm to implement convolutional neural networks (CNNs) on
low-power commercial microcontrollers for the detection of landing pads in small-size drone applications.
A neural architecture search (NAS) strategy generates and selects CNN architectures automatically;
candidate networks are compared in terms of their computing costs and representation capabilities. The
proposed NAS procedure adopts a teacher-student learning paradigm, in which the ‘student’ network
should mimic the ‘teacher’s’ intermediate representation. The associate selection strategy aims to attain
an efficient feature representation that can take into account the peculiarities of the problem at hand. This
approach allowed the generation of tiny networks capable of real-time execution on commercial micro-
controllers (STM32 family). Experimental results confirmed that the resulting architectures could trade off
generalization capabilities and computing costs effectively, and outperformed state-of-the-art solutions for
landing-pad detection in small-size drones.

INDEX TERMS Embedded systems, landing pad detection, microcontrollers, tiny CNNs, UAVs.

I. INTRODUCTION
Landing pad detection is a crucial problem in the operation
of Unmanned Aerial Vehicles (UAV)s [1], [2]. Detecting safe
landing areas by using simple passive tags can be critical
for many applications [3], [4], [5], [6], [7], [8], including
smart farmmonitoring, rescue operations, home delivery, and
autonomous guidance.

The development of a framework for landing pad detection
in small-size UAVs poses two major issues. The first issue
concerns the localization of small, colored patterns within
a possibly complex background. Even if the target has a
basic pattern and is very visible, the operation environment
can make the detection goal quite challenging. Secondly,
small-size UAVs can typically only host compact, low-
power computing platforms, featuring limited computational
resources. Cloud-based approaches might represent a viable
solution for some applications. Nonetheless, two issues may
discourage their adoption: the assumption of a stable and
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low-latency connection and the energy consumption involved
for data transmission. Onboard landing pad detection in
particular is critical because, in case of lost connections, the
capability of locating a safe landing area is pivotal.

The approach presented in this paper tackles landing-pad
detection as a computer vision problem and exploits the
effectiveness of deep neural networks (DNNs). The main
contribution is a design strategy for the development of
lightweight neural architectures, that can fit the operational
constraints set by standard commercial low-power micro-
controllers. In the envisioned scenario, a reliable landing-pad
detector should a) spot the landing pad in medium/long-
distances images (e.g., 8 meters) and then b) trigger
fine-grained control operations entitled to manage UAV
landing. Hence, one wants the inference (forward) phase
of the detector to run on onboard edge devices without
power-demanding hardware accelerators or dedicated chips
like vision processing units or deep learning dedicated
processors, as latency requirements are not tight in this
phase. Accordingly, fine-grained control operations can be
implemented via standard computer vision methods, which
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can meet tight real-time requirements as they do not rely
on computationally-demanding artificial intelligence models.
In this paper, the target platform is the STM32F746NG1

micro-controller, which embeds an ARM Cortex-M7 32-bit
RISC core.

The deployment of DNNs on embedded devices has
become recently a crucial issue, especially in view of the con-
siderable computational resources required by DNN-based
computer vision. Thus, while custom architectures are
being developed to limit computational costs and memory
occupation, several strategies and solutions [9], [10], [11],
[12] aim to deploy trained DNNs on resource-constrained
devices. This includes, for instance, pruning, quantization,
and weight-sharing techniques. In combination with these
approaches, always more efficient low-power architecture
such as PULP and GAP8 allows low latency and low power
results [13], [14], [15]. However, nowadays, most commer-
cial small-size drones implement standard microcontrollers
that grant computing performance far away from the results
obtained by these dedicated processors. When targeting
target devices such as a family of microprocessors, post-
training strategies strictly depend on technology-specific
deployment tools. For example, quantization techniques take
into account the processor architecture and instruction set.
In critical applications, however, one also needs to consider
the training phase and the associate design of custom,
lightweight architectures.

This paper describes a novel design strategy to design
effective tiny networks for landing pad detection. The strategy
combines knowledge distillation and Neural Architecture
Search (NAS). An evolutionary algorithm procedure spawns
a generation of candidate architectures (the Students). The
neural training makes each Student adhere to a reference
feature representation, provided by the Teacher. Students
compete in terms of both recognition accuracy and com-
pliance with hardware constraints; the most promising
device-compatible architecture is the seed for the next gener-
ation of Students. This cyclic process progressively converges
to an effective, hardware-compatible neural system. The
competing architectures, generated via NAS, include Bottle-
neck Residual Blocks [16] as the network core components.
The lightweight, yet powerful DNN MobileNetV3 [16]
architecture supports the Teacher model, thanks to its known
effectiveness in computer vision applications.

The experimental session aimed to assess the design
capability of effective architectures, applied to landing-pad
detection supported by an STM32F746NG micro-controller.
The tests involved a dataset of aerial-like images. Experimen-
tal outcomes confirmed that the design strategy compared
favorably with state-of-the-art solutions, yet featured lower
computing requirements.

The contribution of the paper can be summarized as
follows:

1https://www.st.com/en/microcontrollers-
microprocessors/stm32f746ng.html

• an automatic strategy for the design of lightweight
DNNs for landing pad detection: the proposed approach
adjusts the network architecture based on the hardware
requirements of the target device and a reference
representation, ensuring a high level of robustness for
the generated detectors while meeting time and energy
constraints;

• the deployment on ARM Cortex M of the hardware-
aware DNN supporting landing pad detection proves
the capability of the proposed approach to generate
hardware-effective models with real-time performance
on commercial microcontrollers;

• a DNNmodel running on low-power commercial micro-
controller that canmeet latency requirements for landing
pad detection on UAV while maintaining the capability
of extracting robust features typically obtained by larger
models.

II. RELATED WORKS
A. DNNs FOR EMBEDDED DEVICES
Two main aspects support the effective implementation of
DNNs on embedded devices: 1) the architecture of the
deep network and 2) the deployment optimization tools. The
following analysis briefly reviews optimization tools and
focuses on techniques for the design of efficient architectures.

The architecture of a DNN sets the memory footprint
and the number of floating point operations (FLOPs) for
the inference phase. When targeting implementations on
resource-constrained embedded devices, one faces a crucial
structural choice. Relying on state-of-the-art architectures
allows transfer learning and can therefore lighten the training
process significantly; on the other hand, this might make
it challenging to fit the constraints imposed by the target
embedded device. Available solutions include pruning [17],
weights compression [10], quantization [18], low-rank
approximation [19] and quantization-aware training [20]. The
effectiveness of each strategy, though, depends on both the
deployment tools and the target device itself [21], [22].

Otherwise, one might consider the design of custom
architectures. Toward that end, one usually exploits con-
sistent methods that co-optimize accuracy and hardware
constraints [23], [24], such as Knowledge distillation [25],
Neural Architecture Search (NAS) [26], [27], and their
combination [28], [29]. These approaches led to the design
of efficient architectures for computer vision [30], [31],
[32]. Three main features characterize Hardware-Aware
(HW)-NAS strategies [24]. The search space is the first
issue, spanning the set of eligible networks, i.e. the set
of all admissible architectures. From among the several
proposals in the literature, Mobile (M)NAS space is a popular
solution [33] designed on the blocks of MobileNet, hence
the resulting candidate architectures only include computa-
tionally efficient building blocks. Secondly, the actual search
algorithm adopted is another crucial aspect, which considers
the various hypotheses by selecting architectures from the
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search space. Finally, the choice of an effective evaluation
criteria is of paramount importance, since hardware devices
can vary in latency performances even when they support the
same number of FLOPS and parameters [26]. Furthermore,
software implementations can heavily affect speed, as the
same device can score quite differently when it relies on either
general-purpose solutions (such as TfLite and TfMicro) or
optimized libraries [34], [35]. For that reason, the MCUnet
solution [23] integrates both the selection of the architecture
and the setup of the computing layer in one optimization
procedure, thus attaining excellent performances at the
expense of a ‘closed’ system [36].

Large-scale benchmarks offer a pre-computed evaluation
of huge search spaces in the presence of different hardware
setups. For example, the research presented in [37] compares
46k architectures deployed in 6 devices. A major issue in
the NAS paradigm lies in the cost of architecture search;
a popular approach consists in picking candidate networks
from a unique ‘super’ network, which contains all possible
architectures spanned by the search space at hand [38]. That
strategy sharply reduces training time at the expense of a bias
in the search procedure.

As compared with the approach presented in [39],
the design strategy presented in this paper introduces a
teacher network that simplifies the overall procedure, while
measurements of FLOPS drive the architecture-selection
process.

B. DNNs FOR THE NAVIGATION OF UAVs
Bringing intelligence to small-size UAVs is a challenging
task due to the limited hardware resources [40]. Popular,
cloud-based solutions delegate expensive computations to
remote servers [41]; the literature offers cloud-based, object-
detecting neural systems for UAVs [42], [43].

When one cannot rely on stable connections or is subject to
low-latency inference timings, a platform featuring on-board
intelligent behavior seems the preferred approach. Embedded
solutions hosting hardware accelerators [44], such as the
Jetson TX2 board [45], [46] or Raspberry SBCs, have been
presented [47], but physical occupation, power consumption,
and timing constraints still remain crucial issues in the overall
design process. This is even more important in the presence
of multiple smart sensors [48], [49].

Cameras represent the primary input sources to support
the autonomous navigation of UAVs [50], [51], [52], [53],
[54], also including the detection of a safe landing area.
The method described in [55] and [47] applies conventional
computer vision algorithms to extract relevant features and
feed Deep Neural Networks (DNN) accordingly. In [56],
a Convolutional Neural Network cooperates with a Kalman
filter to control landing operations.

In the specific landing-pad detection context [57], the
application domain and a simplified version of MobileNetV3
[16] allowed to overcome the (otherwise) computationally
demanding requirements of the network. That research
confirmed that the adoption of a segmentation network for

the detection problem could sharply reduce computational
costs.

Several approaches tackled landing-pad detection either by
using a variety of additional sensors or by adopting specific
landing pads. Tran et al. [58] proposed a design based on
multiple markers. The method recently described in [59]
relied on a custom landing pad containing specific RGB
colors. That paper also reviewed a variety of landing systems
based on traditional computer vision techniques, including
edge detection [60], geometry-based template matching [61],
and ArUco Markers [62], [63]. That comparative analysis
confirmed that the use of DNNs for landing-pad detection
could deserve further investigation.

III. AUTOMATED DESIGN OF EFFICIENT DNNs FOR
LANDING-PAD DETECTION
The design approach presented in this paper yields a
lightweight DNN architecture, which processes the frames
captured by the UAV’s onboard camera and prompts the
coordinates of the landing pad in the image plane. The
iterative design strategy embeds the Knowledge Distillation
paradigm within a Neural Architecture Search process. The
idea is to start from a reference ‘‘Teacher’’ model, which
is indeed best performing but typically proves cumbersome
to implement on low-performance microcontrollers. The
method progressively searches for the best ‘‘Student’’
architecture that replicates the Teacher’s behavior and, at the
same time, satisfies computational constraints.

The search space is a refined version of MNAS. The
overall process relies on a straightforward evolutionary
algorithm, which combines simplicity and effectiveness.
Empirical evidence justifies the adoption of FLOPS as the
basic evaluation parameter because the target device exhibits
a quasi-linear correlation between FLOPS and run-time
inference timings [32]. This is due to the single computing
core within the device, which forces a sequential flow of
operations, making FLOPS a reliable estimator for this
specific case.

A. KNOWLEDGE DISTILLATION
In knowledge distillation, a ‘Student’ architecture is opti-
mized to replicate the behavior of a ‘Teacher’ model.
In the target application, a Teacher’s architecture includes a
backbone to carry out feature extraction, and a head.

In the specific case of landing-pad detection, the head com-
ponent processes those features and prompts the coordinates
of the object of interest. The Teacher model looks for a simple
pattern, and high-level semantic information (usually residing
in the head section) is less critical. As a consequence, the
intermediate layers in the backbone may already work out the
relevant features. The overall strategy, therefore, is to select
the Student that best replicates the behavior of the Teacher’s
backbone.

To optimize the weights of the Student one measures
the discrepancy between the Teacher’s and the Student’s
responses to the same input. The associate cost compares
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the internal feature representations of the Teacher and of the
Student at selected corresponding locations of the networks.
The Teacher’s backbone relies on a fixed architecture;
one denotes, for the i − th input, as FT

Ii and FT
Hi the

representations at some intermediate level and at the higher
level, respectively. Those values are compared with the
corresponding feature values, FS

Ii and FS
Hi in the Student

model. Figure 1 exemplifies the comparative approach.

FIGURE 1. Block-wise representation of the CNNs with the features
maps. On the left is the Teacher’s backbone which produces two
representations (tensors). On the right is the Student network that aims
to provide the same feature sets, using different building blocks.

The following notation helps formalize the cost D:
• X i ∈ RH×W×3 is the tensor representation of the i-th
input image (having size H ×W ).

• F li ∈ RHl×Wl×Cl is the tensor that holds the output
feature representations at the l-th layer of the neural
network, where Hl,Wl,Cl are the height, width and
number of channels of the tensor, respectively.

• V= {(X i, yi); i = 1, ..,Z } is the dataset, i.e.,
a collection of images and labels that are never involved
in the training of both the Teacher and the Students.

The overall distillation loss, LD, is the expected dis-
crepancy value, measured at the selected positions in the
networks:

LD = AD(|FT
Ii − FS

Ii| + |FT
Hi − FS

Hi|) (1)

where AD() denotes the average over a validation set.
Figure 2 outlines the knowledge-distillation approach. The
distillation loss function (1) makes the Student’s intermediate
representation match the Teacher model’s backbone.

B. NEURAL ARCHITECTURE SEARCH
The NAS process gathers a set of lightweight, candidate
architectures that should replace the Teacher’s backbone. For
its definition, one should consider the search space, the search
strategy, and the selection criteria.

The search space is in fact vast, as one (mild) constraint
simply admits any architecture that includes a pair of main
blocks (i.e., lower and upper layers, respectively). To shrink

FIGURE 2. Proposed teacher/student learning schemata.

that space, the design strategy only considers a sequen-
tial combination of parametric building blocks, made by
single-branch neural networks. This conventional setup [26],
however, cannot by itself support an extensive search, since
typical building blocks involve up to 6 parameters.

The search strategy selects the best Student architecture
and embeds a basic evolutionary algorithm (Figure 3).
Given a ‘parent’ architecture, the process yields a set
of N ‘child’ networks by applying random mutations to
the parent. Admissible mutations include changes in the
parameters of the blocks or in the number of blocks itself.
Child architectures all undergo a distillation-based training
procedure. The selection criteria highlights the best Student
from among the N children. The selected candidate now
plays as the new parent architecture, and the whole selection
strategy iterates until a stop condition is fulfilled (that
condition will be detailed in the following).

FIGURE 3. Block scheme of the evolutionary algorithm.

The adoption of a straightforward evolutionary algorithm
stems from several reasons. First, the training of a child
network is fast as lightweight models are involved. Secondly,
an evolutionary algorithm supports any kind of mutation in
the network architecture and is not subject to the optimization
procedure. In addition, random mutations allow a wider,
unbiased exploration of the search space as compared
with other NAS approaches [64]. Fourth, the evolutionary
algorithm can admit a non-differentiable cost criterion for
the child-comparison task. This is a major advantage when
considering that formalizing hardware constraints explicitly
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FIGURE 4. The integrated design strategy.

may prove quite difficult: for instance, the relationship
between the network architecture and the corresponding
RAM occupation might also depend on the optimization
tool used to deploy the overall architecture itself. Finally,
an independent selection process can indirectly help the
children-training procedure. Common practice suggests that
child networks are trained for a limited number of epochs,
mostly to speed up the search procedure; widening the
search area in the space of architectures can integrate
the basic weight-adjustment process. Eventually, a large
set of strategies has been proposed to speed up search
procedures [65], which could be useful for increasing the
number of tested models or reducing the time required for
the selection process.

The selection criteria is the last issue to consider to define
the overall NAS process. It relies on a cost function that
integrates the Teacher-Student representation mismatch and
the associate computational cost, measured in Floating Point
Operations per Second (FLOPS). The resulting overall cost
function, S, for the n− th model is therefore written as:

Sn = LDn, +βCn (2)

where LDn measures the discrepancy between the Teacher
and the n-th candidate Student as per (1), Cn is the
computational cost in FLOPS associated with that candidate,
and β is a parameter that rules the relative weights of the two
terms.

Measuring the computational cost in FLOPSmight appear,
in general, insufficient to characterize the hardware aware-
ness of a Student model. In the present context, however, it is
a significant indicator when considering the architectures of
basic micro-controllers, which support limited or null parallel
computation.

C. INTEGRATED NEURAL ARCHITECTURE SEARCH WITH
KNOWLEDGE DISTILLATION
A cyclic process combines the paradigms discussed above,
and supports the progressive performance-driven neural
architecture search; the overall approach is depicted in
figure 4 and evolves as follows:

1) The next generation block generates a set of candidate
children networks introducing a mutation into a parent
architecture;

2) In compliance with the Knowledge-Distillation
paradigm, the set of candidate Student architectures are
trained (as per function 1) to approximate the Teacher’s
behavior; in figure 4 the dashed boxes identify the
training procedures of the children;

3) The trained children are compared, by also taking
into account the computational complexity of each
candidate as per expression 2 by the selection block;

4) The resulting ‘best’ child architecture is used to spawn
the next generation of candidates as per step 1, which
undergoes the same selection process.

For simplicity, the stopping condition in the above cyclic
procedure just relies on a preset number of iterations. The
procedure yields a lightweight backbone that can work out
similar features with respect to those extracted by a large
network. The backbone is finally retrained in an end-to-
end fashion together with a head on the target landing-pad
detection problem.

IV. DEPLOYMENT OF THE LANDING PAD DETECTOR
A. EDGE DEVICES
The reference platform for the deployment of the landing
pad detector is the STM32F746NG microcontroller, which
features an ARM® Cortex-M7 32-bit RISC core. The
microcontroller unit (MCU) operates at up to 216 MHz and
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includes a single-precision floating point unit that supports
all ARM® single-precision data-processing instructions.
It holds 1 Mbyte of Flash memory and 320 Kbytes of SRAM.
The device also supports external memory access, which can
be efficiently used via a Flexible Memory Controller (FMC)
and either standard or advanced communication channels.
The device extends on an area of 13.15mm × 13.15mm.
To copewithmemory requirements, an 8Mbyte SDRAMwas
added.

The ARM® Cortex-M7 is a member of the energy-
efficient Cortex-M processor family. Cortex-M targets
low-power applications featuring reduced clock frequencies
(up to a few hundreds of MHz) and supporting the indexing
of small-size memories (up to a few MB). Hence, the
deployment of DNN-based computer-vision solutions on
such processors represented a challenge. ST’s software tool
to optimize artificial neural networks on STM32 (STM32
X-Cube-AI) only supports the deployment of very tiny
architectures; this also holds true in the case of TensorFlow
Lite for microcontrollers.

In the experimental session (Sec. V) the landing pad
detector was also deployed on a processor of the ARM
Cortex-A family, to provide a baseline for comparison.
The processors of the A (Application level) family feature
high clock frequencies and support the indexing of large
memories in the range of GB. Those processors are typically
hosted in microcomputers and smartphones. The specific
device used for the experiments was the 1.5 GHz quad-core
Arm® Cortex®-A72 CPU that supports the Raspberry Pi 4.

B. HARDWARE-AWARE LANDING PAD DETECTOR
To copewith the tight constraints imposed byARM®Cortex-
M7 MCUs the Teacher model was inherited from [57].
In [57], the detection task was suitably approached as
a pixel-wise problem. The network’s output was a mask
that marked the pixels belonging to the landing pad. That
approach allowed us to rely on the lightweight LR-ASPP
head for image segmentation and to avoid the popular,
yet computationally hungry single-shot detectors (SSDs).
Eventually, applying simple heuristics on the output mask
provided the coordinates of the landing pad [57].

This architecture was selected as a reference for the
Teacher model as the empirical evidence suggested that
the network can detect landing pads with high accuracy
while restraining computing requirements [57]. The ablation
study presented in [57] showed that, given the small set of
bottleneck layers, the squeeze and excite layers could be
removed without significant loss in accuracy. The landing
pad detector was implemented with a network with 60,612
parameters that required 1.289 GFlops to process an input
image of size 320 × 320 pixels. In the approach presented
here, the candidate Student models only involved Bottleneck
Residual Blocks, which admitted different settings for the
number of filters, the kernel size, the expansion value, the
stride, and the non-linear component. The loss function 2
drove the distillation process.

The severe constraints set by the STM32F746NG micro-
controller imposed to customize also the segmentation head
of the final detector, which in principle should inherit
the LR-ASSP architecture. This simple segmentation head
involved a few convolutional layers and upper sampling
layers. The overall architecture is presented in Fig. 5: green
blocks refer to the input tensors coming from the backbone,
while the red block refers to the output mask. Input images
have a size of 320 × 320. From a computational viewpoint,
the scheme highlights three main bottlenecks:

• The number of filters in the lowest convolutional layers
(marked in red); this quantity not only sets the number
of parameters and operations for the two layers but also
impacts the size of tensors in the following layer.

• The size of the output mask (marked in yellow), which in
the original implementation halves the size of the input
image. In principle, one can use a smaller output mask
to cut the number of operations.

• The size of the input image, which heavily affects the
number of floating point operations.

FIGURE 5. Block scheme of the teacher segmentation head [30].

In the proposed implementation, input images held
160 × 160 pixels; the number of filters was set to 8 (instead
of 128), as the landing pad had a simple shape. The size of
the output mask was four times smaller than the size of the
input image.

V. EXPERIMENTS
The experimental dataset included 21 videos of landing
pads and featured a total of 29,415 frames. The videos
were grabbed at two different heights, approximately 4 and
8 meters from the rooftop of two buildings using a GoPro
camera. The dataset covered the same three landing pads
tested in [57], two in color (orange and blue), and one in
grayscale, all with a black ‘H’ mark printed on a standard
A4 sheet (sample images of the landing pads are available
in [57]). A collection of 9,200 frames (drawn from 9 of
those videos) formed the training sets. The images from the
remaining 12 videos composed the test set.
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The labeling procedure was divided into two phases.
First, a proposed mask was generated using computer vision
algorithms and large-scale networks. Then, the obtained
labels were reviewed and corrected by the authors when
necessary.

A. DISTILLATION
The distillation procedure was implemented by using
Keras. The Teacher network was trained on the dataset for
20 epochs. The candidate children networks were trained
for 4 epochs, following the early stopping paradigm to
speed up NAS procedure [33]; batch size was set to 4, and
the learning rate was 1e-4. Every pool of child networks
included 6 candidates; each candidate stemmed from two
mutations of the parent network. The distillation procedure
was performed considering images having size 320 × 320;
the original segmentation head of the teacher networks relied
on a 160 × 160 segmentationmask. The number of filters was
128 as per the original implementation.

TABLE 1. Architecture summary of the first parent architecture in the NAS
procedure.

The first parent network featured a tiny architecture
holding a pair of Bottleneck Residual Blocks. Table 1 gives
the settings of the two layers; the columns give, for each layer,
the size of the input tensor, the kernel size, the number of
filters, the expansion factor (Expsize), the activation function,
and the stride. Using a tiny architecture at the beginning of
the procedure is a popular approach called hot start [66].
In practice, the search process is expected to progressively
increase the complexity of the architecture while targeting a
higher accuracy.

The parameter β trades off the quantities Dn and Cn in the
cost function 2. Those terms typically differ significantly in
their orders of magnitude: Dn varies in the order of units,
whereas Cn may range from millions to billions. In the
experiments, β was set using the following equation:

β =
D0

C0
βE (3)

where βE sets the actual trade-off between the two terms in
eq. 2, D0 and C0 are two normalization terms: when β =
D0
C0

the contributions of the two terms are equal. The values
D0 and C0 are the respective cost terms in 2 worked out for
the Teacher architecture computed after 4 epochs of training,
i.e. the training epochs used for Students architectures.

Two distillation experiments were conducted for as many
different settings of the parameter βE in the loss function 2:

• Balanced configuration (βE = 1). In this experiment,
the stopping criterion for the distillation process was
set to 50 iterations. Therefore, a total of 300 children
architectures were evaluated. Eventually, the selected

Student network included three Bottleneck Residual
Blocks; the number of parameters of the resulting
network composed of backbone and segmentation
head (LR-ASSP) was 39,012, while an inference
required 648 MFlops. Table 2 gives all the details
about the selected architecture (denoted as BAL_BB) by
adopting the same format of Table 1. In practice, starting
from a parent network with two blocks, a block was
added to find a trade-off between the discrepancy D and
the computation cost C (since βE = 1).

• Small architecture (βE = 10). This experiment privi-
leged the minimization of the computation component,
C . The number of iterations in the distillation process
was set to 100 because the child networks were
smaller in size and the training phases were faster.
A total of 600 architectures were evaluated. Again,
the selected Student network involved three Bottleneck
Residual Blocks; in this case, the number of parameters
of the resulting network composed of backbone and
segmentation head (LR-ASSP) amounted to 23,232 and
one inference step required 283 MFlops. Table 3 gives
the architecture details and adopts the same format as
Table 1. Notably, the first block uses a kernel of size
1 × 1, while in general low-level kernels have larger
sizes in standard architectures [67]. In the following, this
architecture will be referenced to as SMALL_BB.

TABLE 2. Balanced architecture distilled with the proposed method.

TABLE 3. Small architecture distilled with the proposed method.

B. GENERALIZATION PERFORMANCE OF THE LANDING
PAD DETECTOR
The experiment assessed the generalization performance
of the architectures embedding the two Student networks
discussed above. In total, four architectures for landing pad
detection were tested:

1) BALANCED: this architecture stacked the original
segmentation head (LR-ASSP, as per Fig. 5) on the
BAL_BB backbone.

2) SMALL: this architecture stacked the original segmen-
tation head (LR-ASSP) on the SMALL_BB backbone.

3) STM32: this architecture stacked the customized ver-
sion of the segmentation head described in Sec. IV on
the SMALL_BB backbone.
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4) STM32_TINY: this architecture stacked the customized
version of the segmentation head described in Sec. IV
on a customized version of the SMALL_BB backbone,
where the expansion factor has been divided by 2.
In this way, the number of floating point operations has
been reduced without changing the size of the tensors
propagated through the architecture.

The input size for the two latter architectures was set to
160 × 160 pixels instead of 320 × 320 pixels. The images
of size 160 × 160 were obtained by zooming the original
images maintaining the definition of the target landing pad
in the image. All the networks were trained for 20 epochs;
performance analysis involved a test set of 20,215 images
never used in the training process.

The four networks were compared with three recent
baselines suitable for solving the same task. The first baseline
was the architecture adopted as the Teacher model [57].
The second baseline was the network proposed in [47],
which supports recognition and classification of the landing
pad on an edge device embedded in the drone. Finally, the
third baseline was the SSD-lite MobileNetV3 architecture,
i.e., a general-purpose object detector that suits an edge
paradigm ([42], [43]). The Teacher network was trained using
the aforementioned settings. The detection method proposed
in [47] was replicated following the setup of the original
paper. The SSD-liteMobileNetV3 architecture pre-trained on
coco-dataset was fine-tuned for 20 epochs with a learning
rate 10−3 and ADAM optimizer. Hyper-parameters were set
using a subset of the training data as a validation set.

The landing pad detectors supported by the four archi-
tectures described above extracted a probability mask, i.e.,
a mask containing the probability of being a landing pad for
each pixel. The mask was converted into a box using a blob
search algorithm. In general, a mask can generate multiple
boxes. Here, only the largest box was considered. This setup
corresponded to a worst-case analysis.

Figure 6 gives the results of the experiments involving the
seven different implementations of the landing pad detector.
On the x-axis the plot gives the confidence threshold, i.e., the
minimum probability level for a pixel to be classified as a
landing pad. The y-axis gives the percentage of true positives
(TPs), i.e., images where the Intersection over Union (IoU)
between prediction and ground truth was higher than 0.
Threshold 0 was set because landing pads cover a small
portion of the image therefore even small values of IoU
identify valid detections. The plot compares the performance
of the four architectures described above with those achieved
by three baselines. In this plot, the two baseline methods that
did not exploit a pixel-wise classification are characterized by
a constant TP percentage.

The results confirmed that a general-purpose object
detector with backbones for general-purpose computer vision
represents a valuable option for high-accuracy detections.
Similarly, traditional computer vision pipelines, even being
more efficient, feature lower generalization capabilities.
The teacher network [57] is a suitable option to extract

FIGURE 6. Generalization performance of the architectures under
analysis: NSE [57], NAS-1 tiny architecture, NAS-2 balanced architecture.

effective features, for intermediate confidence values. The
four distilled networks show two trends. The BALANCED
network improves monotonically its performance when the
confidence threshold grows. With high confidence levels,
the network becomes the most accurate among all the
predictions. The results suggest that using a smaller set of
parameters acted as a regularizer. The three versions based
on the small backbone exhibit a similar trend. Interestingly,
the difference with respect to the teacher becomes very high
for low or high confidence levels, but for intermediate values,
the drop in accuracy remains low.

Figure 7 shows the standard precision-recall plot obtained
by varying the confidence levels. An image was considered
a false negative (FN) when the detector did not identify any
landing pad and was classified as a false positive (FP) when
IoU was zero, i.e., the network identified the landing pad in
the wrong position. In this plot, the x-axis gives the recall
while the y-axis gives the precision. The chart focuses on a
specific portion of the plot, i.e., precision and recall greater
than 0.95. As in fig. 6, the plot compares the performance of
the architectures under test with those achieved by baselines.
The baseline [47] is not visible in the plot because it scored a
Precision/Recall value always lower than (0.95, 0.95).

FIGURE 7. Generalization performance: precision-recall analysis.

The results confirm that all the solutions based on deep
neural networks yield a high level of precision and recall for
at least one confidence value, confirming the suitability of the
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proposed methodology to detect landing pads from medium
distances.

C. COMPUTATIONAL PERFORMANCE
The computational performance of the four proposed imple-
mentations of a landing pad detector has been evaluated by
using as reference the Cortex A and Cortex M platforms,
as anticipated in Sec. IV.

Two commercial tools supported the deployment of the
architectures on the two platforms. The deployment on
RaspberryPi 4 (featuring a Cortex A core) was obtained using
the TFLite suit.

The deployment on the STM32 microcontroller (featuring
a Cortex M core) was performed in two steps. First, the
network was converted via TFLite; then, the STM32X-Cube-
AI suit was exploited to optimize the model. Eventually, the
memory indexing was tuned to use the external memory,
when necessary, to host the tensors during the propagation
along the layers of the network. Data representation was set
to 32-bit. All the measurements were performed using the
STM32 design suite utility for testing.

In both cases, a standard 32-bit floating point representa-
tion was considered. This choice allows for a fair comparison
between the two devices that use different computing engines.
Indeed, the documentation of the two SDKs highlights
different management of the quantized models based on
the selected quantization strategy and layers involved in
the network architecture, which would bias the measured
performance. Ultimately, the measured performance can be
considered a worst-case analysis for both devices, given that
quantization can improve performance in terms of latency.

Table 4 summarizes the outcome of the experiments. The
first two columns (in red) give the network name and the
input size (in pixels), respectively. The third and fourth
columns (in yellow) show the computational features of the
network that are independent of the implementation, i.e.,
the FLOPS and the number of parameters. Columns from
fifth to seventh (in blue) refer to the implementation on the
STM32 microcontroller. These columns give the latency in
seconds (per frame), the amount of flash memory required to
store the parameters, and the peak of RAM usage. Finally,
the last column (in green) refers to the implementation on
RaspberryPi. This column shows the latency in milliseconds
(per frame). Since the available memory in the RaspberryPi
platform was abundant for the networks involved in the
experiment, the table does not provide any information about
memory usage.

The table compares the four proposed implementations
(BALANCED, SMALL, STM32, STM32_TINY) with the
model proposed in [57]. In addition, as a reference, the last
row gives the FLOPS and the number of parameters of the
SSD architecture for object detection. SSD was not deployed
on the devices; the table refers to the original implementation
available in Tensorflow v1 object detection API model zoo.2

2https://github.com/tensorflow/models/blob/master/research
/object_detection/g3doc/tf1_detection_zoo.md

Eventually the deployment would have led to biased results
due to the different implementation. In addition, one can see
that both the number of FLOPS and parameters are larger
than the other network involved in the experiments therefore
hardware requirements are likely to be significantly larger.

The proposed architectures can save parameters and
FLOPS operations (yellow indicators). The STM32TINY
network is the smallest among the proposed ones, it uses
one-tenth of the parameters of the Teacher model and around
0.08 of the FLOPS for both the input sizes. As expected
RaspberryPi can support real-time landing pad detection
using all the proposed architectures: even the balancedmodel,
with the largest input size, is executed at 3 FPS without
dedicated accelerators. The STM32 is the hardest benchmark.
The number of FLOPS and the peak RAM usage are a
direct function of the input size. Memory is set by the
size of the largest tensor propagated inside the architecture.
The lowest latency, as expected, has been achieved by
STM32TINY, which completes the inference phase in
1.5 seconds. This is a noteworthy result for a computer vision
task on a commercial microcontroller. The well-known recent
work of Banbury et al. [36] designed DNNs for real-time
inference on MCUs. The software release contained tiny
object detector for ARM Cortex A but Cortex M was not
supported.

At the end of the pipeline proposed in [47] a CNN classifies
the landing pad. This model was not included in the table
because it refers to a different pipeline. MobileNetV2 was
one of the architectures tested in [47] for the classification
stage. With input size 100 × 100 it has 3538K parameters
and uses 156 MFLOPS for a single inference, proving less
efficient than the proposed models

The frame rate on the STM32 was lower than 1 FPS
which is incompatible with requirements imposed by some
fine-grained control operations. Nonetheless, in the envi-
sioned scenario, the low-power core equipped with the
STM32microcontroller monitors the ground in long-distance
images. After the detection of a landing pad, the fine-grained
control operations required to manage the UAV landing
could be handled by a hardware accelerator activated only
in that phase. Overall, such a solution can meet real-time
requirements while limiting energy consumption, as UAV
landing can be managed via a high-performance unit only for
the time required to complete the task.

STM declares a peak power consumption of 345 mW for
STM32F746NG. As the STM32TINY architecture scores an
inference time of 1.5 s, the estimated energy is 0.518 J.
In [47] land-pad detection was deployed on a RaspberryPi
with a dedicated hardware accelerator. The reported energy
consumption was 0.246 J at the expense of an average
power consumption of 4.92 W. Therefore, the proposed
implementation on MCU shows a modest increment in
energy consumption (2x) and a large cutback in peak power
consumption (14x). This result is interesting if one considers
that a larger power peak forces the use of dedicated power
supplies on the AUV.
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TABLE 4. Hardware measures.

VI. CONCLUSION
The paper presented a design strategy for landing pad
detection on ARM cortex-based microprocessors. The strat-
egy uses an automatic procedure to extract the neural
network architecture balancing, in the best way, hardware
requirements and generalization performance. The results
confirmed the suitability of the proposed approach for
real-time deployment on STM32 microcontrollers. Possible
future work includes: 1) the use of quantization-aware train-
ing strategies directly in the NAS procedure to enhance the
trade-off between hardware efficiency and the generalization
performance of the models; 2) the exploration of faster search
procedures to speed up architecture selection, which currently
requires significant GPU time; 3) testing and/or adapting
the proposed methodology for network generation to new
applications that require a good level of abstraction on tiny
architectures.
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