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ABSTRACT This study explores how integrating Artificial General Intelligence (AGI) with Artificial
Immune Systems (AIS) could potentialy enhance the efficiency of Security Operations Centers (SOCs).
By employing a hypothetical case study and mathematical models, this research compares AGI-driven
AIS with traditional AI-driven AIS across key SOC metrics such as True Positives, Benign Positives,
False Positives, and False Negatives. Our analysis reveals that AGI-driven AIS solution offers notable
improvements in detection accuracy and operational efficiency while reducing costs. These findings
highlight the transformative potential of AGI in bolstering cybersecurity defenses. This research emphasizes
the importance of AGI for SOCs, presenting it as a critical advancement over current AI technologies. This
is particularly relevant for government regulators, original equipment manufacturers (OEMs), cybersecurity
professionals, and investors. This study attempts to provide a compelling evidence that AGI can drive more
effective and efficient SOC operations, encouraging stakeholders to consider investing in and adopting
these advanced AI technologies. In a landscape where cybersecurity threats are becoming increasingly
sophisticated, the integration of AGI with AIS to build security threat detection and response, represents a
promising frontier. This research underscores the potential of AGI to not only enhance detection and response
capabilities but to also streamline operations and optimize resource allocation within SOCs. The findings in
this study, we argue, suggest that AGI could play a pivotal role in the future of cybersecurity, making it an
essential consideration for those looking to stay ahead in the ongoing battle against cyber threats.

INDEX TERMS Artificial general intelligence (AGI), artificial immune system (AIS), cybersecurity,
security operations center (SOC), threat detection, incident response, true positives, false positives, cost
savings, operational efficiency, government regulation.

I. INTRODUCTION
The concept of Artificial Immune System (AIS) draws
inspiration from the discipline of Biological Sciences,
especially from biological immune system discourse, which
not only has evolved over many decades of years but have
shaped understanding of the detection and neutralization of
harmful pathogens [1], [2]. AIS according to Timmis et al. [3]
is defined as ‘‘computational systems inspired by theoretical
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immunology and observed immune functions, principles and
models, which are applied to problem solving’’. Although
‘‘the first international conference on artificial immune
systems (ICARIS) took place at the University of Kent at
Canterbury (UKC) in September 2002’’ [3] but it was initially
conceptualized in decades prior that conference, and has since
matured into a robust computational paradigm designed to
emulate the adaptive and dynamic responses of its biological
counterpart. In biology, the immune system’s capability to
recognize and remember organism that caused disease to
its host, while adapting to new threats has been important
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area of study. This same principle has over recent decades
been applied to the field of cybersecurity, where AIS models
continuously learn and evolve to detect, identify, and mitigate
threats in an ever-changing digital landscape.

The intersection of AIS with cybersecurity incident
detection and response has shown significant promise [4],
[5], [6], [7]. AIS-based systems are designed to identify
anomalies and recognize patterns indicative of malicious
activities, much like how biological immune systems detect
foreign invaders [4], [5], [6], [7]. By mimicking the immune
system’s mechanisms of learning and memory, AIS-driven
cybersecurity technology tend to mature over time to adapt
to new threats and improve over time, providing a dynamic
defense mechanism that evolves with the threat landscape [4],
[5], [6], [7]. This adaptability is crucial for proactive and
real-time threat detection, which is essential for effective
incident response in modern cybersecurity environments.

Despite the advancements, there remain gaps and untapped
potential in the integration of Artificial General Intelligence
(AGI) [8], [9], [10], [11], [12], [13], [14], [15] with AIS for
cybersecurity applications. AGI, still in the the early stages
of theoretical development, with its ability to understand,
learn, and apply knowledge across a wide range of tasks [8],
[9], [10], [11], [12], [13], [14], [15], could significantly
enhance the capabilities of AIS. Integrating AGI with AIS
could lead to more sophisticated and autonomous systems
capable of anticipating and mitigating complex cyber threats
before they even materialize. Exploring this integration
could uncover new methodologies for efficient detection
and defense, transforming the cybersecurity landscape. The
potential for AGI-enhanced AIS to provide a holistic and
anticipatory approach to threat management underscores
the necessity for continued research and development in
this field, aiming to create more resilient and adaptive
cybersecurity infrastructures.

With reference to Figure 1 and Figure 2, historical data
from 2017 to 2022 reveals a significant and alarming upward
trend in ransom payments made to threat actors, underscoring
the escalating threat posed by cybercriminal activities [16].
As organizations increasingly rely on digital infrastructures,
the sophistication of cyberattacks has evolved, resulting in
more devastating consequences and higher ransom demands.
The financial burden placed on organizations by these
ransomware attacks, coupled with the critical need to restore
operations swiftly, has driven companies to pay increasingly
exorbitant sums. This trend highlights the inadequacy of
existing cybersecurity measures and the urgent need for more
effective and adaptive solutions to mitigate these threats.

Based on Figure 2, a forecast was calculated and plotted
in Figure 3. This forecasts leveraged the ETS forecasting
model [17], [18] and outcome of that calculation suggest
that this upward trend in ransom payments will continue
as cybercriminals become more adept at exploiting vul-
nerabilities within digital ecosystems. This anticipated rise
further underscores the critical importance of continued
research into innovative cybersecurity strategies, such as the

integration of Artificial Immune Systems (AIS) and Artificial
General Intelligence (AGI). By enhancing the ability to
detect and respond to sophisticated cyber threats in real-time,
these advanced technologies promise to improve the overall
efficiency of cybersecurity operations, reducing the financial
and operational impacts of cyberattacks. In this context, the
exploration of AIS and AGI offers a proactive approach to
fortifying digital defenses, aiming to reverse the troubling
trend of increasing ransomware payments.

FIGURE 1. Money received by ransomware actors [19].

FIGURE 2. Trend of money received by ransomware actors.

II. REVIEW OF EXISTING LITERATURE
A. JUXTAPOSITION: NATURAL IMMUNITY VS ARTIFICIAL
IMMUNITY VS ARTIFICIAL IMMUNITY SYSTEM
Natural immunity refers to the body’s biological defense
system that identifies and combats pathogens like bacteria
and viruses [20], [21], [22]. It relies on a complex network
of cells and molecules to recognize and remember invaders,
providing long-term protection [20], [21], [22]. Artificial
immunity involves medical interventions, such as vaccines,
that stimulate the immune system to develop resistance to
specific pathogens without causing the disease [20], [21],
[22]. AIS, on the other hand, are computational models
inspired by natural immunity, designed to detect and respond
to anomalies and threats in cybersecurity, adapting and
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FIGURE 3. ETS ransom payment forecast.

learning to protect digital environments just as biological
systems protect living organisms [1], [2].

B. EVOLUTION OF AIS MODELS
Dipankar Dasgupta, an IEEE Fellow, NAI Fellow, and IEEE
Distinguished Lecturer, is a Hill Professor of Computer
Science at The University of Memphis. His research encom-
passes computational intelligence, cybersecurity, immuno-
logical computation, and generative AI. Dasgupta has
conducted numerous well-cited studies on artificial immune
systems, significantly contributing to the field and advancing
the understanding and application of bio-inspired methods
in cybersecurity and beyond. The synthesis of studies by
Dipankar Dasgupta and other researchers highlights the
evolution of several key models and principles within AIS.
One fundamental model is the Clonal Selection Algorithm
(CSA), which is described to have features that could mimic
the biological process of clonal selection where immune cells
proliferate and differentiate in response to pathogens [23],
[24], [25], [26], [27], [28]. This model is argued to be
instrumental in optimization problems and pattern recogni-
tion. Another important principle is the Negative Selection
Algorithm (NSA), inspired by the immune system’s ability
to distinguish between self and non-self cells, crucial for
anomaly detection and cybersecurity applications [23], [24],
[25], [26], [27], [28]. The Artificial Immune Network (AIN)
model extends this by representing a network of interacting
antibodies that can adapt and learn over time, providing
robust solutions for data clustering and adaptive control
systems [23], [24], [25], [26], [27], [28].

Additionally, the Danger Theory, proposed by Polly
Matzinger, shifts the focus from self/non-self recognition to
the detection of danger signals, offering a new perspective
on immune response and leading to novel approaches in AIS
for intrusion detection [23], [24], [25], [26], [27], [28]. The
Immune Network Theory, which describes the regulation of
the immune system through networks of antibodies, has also
been adapted into computational models that excel in pattern
recognition and data visualization [23], [24], [25], [26],

[27], [28]. Furthermore, principles of Affinity Maturation
and Hypermutation, which describe the immune system’s
process of improving antibody affinity through iterative
mutations, have been incorporated into AIS to enhance
learning algorithms and optimization techniques [23], [24],
[25], [26], [27], [28]. These models and principles collec-
tively illustrate the dynamic and adaptive nature of AIS,
making them powerful tools in computational intelligence
and cybersecurity.

1) SELF AND NON-SELF DISTINCTION
The idea of self and non-self is central to many AIS models,
reflecting the biological immune system’s critical function
of distinguishing between the body’s own cells and foreign
invaders [29], [30], [31]. This concept is fundamental in
models such as the NSA, which is designed to detect
anomalies by generating detectors that recognize non-self
elements, thus identifying potential threats in cybersecurity.
The self/non-self paradigm is also significant in the CSA,
where immune cells are selected based on their ability to
recognize non-self antigens, thereby optimizing responses
to unfamiliar challenges. By emulating this biological
distinction, AIS models can effectively identify and respond
to cyber threats, enhancing the adaptability and robustness of
cybersecurity defenses. The evolution of this idea in AIS has
led to more sophisticated and reliable methods for detecting
and mitigating security breaches.

2) DANGER THEORY
Danger Theory, proposed by Polly Matzinger, revolution-
izes the traditional self/non-self recognition paradigm by
emphasizing the detection of danger signals emitted by
stressed or damaged cells, rather than merely identifying
foreign entities [32], [33], [34], [35]. This theory posits that
the immune system responds to signals indicating cellular
distress or damage, which can be caused by both internal and
external factors, rather than strictly differentiating between
self and non-self. In the context of Artificial Immune
Systems (AIS), Danger Theory provides a novel approach
to intrusion detection by focusing on abnormal behavior
and environmental context rather than predefined patterns of
malicious activity. This shift enables AIS to more effectively
enable the identification and response to emerging threats by
recognizing the underlying signs of potential danger, thereby
enhancing the system’s ability to adapt to new and unforeseen
cyber threats.

3) EXPLAINER: MATHEMATICAL LOGIC OF AIS MODELS
• Clonal Selection Algorithm (CSA), as described by
Castro and Zuben [36], mathematically models the
biological clonal selection process to optimize and
learn from a population of solutions. The algorithm
begins by evaluating the affinity of each antibody
(solution) to an antigen (problem). Antibodies with
higher affinity are selected and cloned in proportion to
their affinity [36]. These clones then undergo mutation
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at a rate inversely proportional to their affinity, ensuring
that better solutionsmutate less [36]. Themutated clones
are re-evaluated, and the best-performing antibodies are
selected to form a new population [36]. This iterative
process continues until a termination criterion is met,
enabling the algorithm to converge on optimal or near-
optimal solutions [36]. This CSA framework effectively
balances exploration and exploitation in the solution
space, leveraging principles of biological immunity for
computational problem-solving.

• The Negative Selection Algorithm (NSA), as described
by Castro and Timmis [37], begins by defining a
set of self-patterns representing normal system states.
A large number of candidate detectors are then randomly
generated. Each detector is evaluated against the self-
patterns, and those that do not match any self-pattern
are retained [37]. These validated detectors are deployed
to monitor new data, identifying anomalies when new
patterns match any of the detectors. The algorithm relies
on an affinity measure to quantify similarity and a
threshold to define allowable matches, ensuring that
only non-self patterns trigger an anomaly detection.
This process mimics the immune system’s ability to
recognize and respond to foreign entities, providing
a robust mechanism for identifying deviations from
normal behavior [37].

• The Artificial Immune Network (AIN), models a
dynamic network of interacting antibodies to solve
computational problems [37]. Each antibody represents
a potential solution, and their similarity is quantified
using an affinity measure. Antibodies are connected
if their affinity exceeds a threshold [37]. High-affinity
antibodies are cloned and mutated, with mutation rates
inversely proportional to their affinity to maintain solu-
tion quality. A suppressionmechanism eliminates highly
similar antibodies to preserve diversity. The network
evolves by continuously updating with new antibodies
and removing less effective ones, ensuring adaptability
and robustness in problem-solving. This model captures
the immune system’s dynamic interactions and learning
capabilities for computational applications [37].

• The Danger Theory, shifts from traditional self/non-
self models to focus on detecting danger signals
emitted by stressed or damaged cells [32], [33], [34],
[35], [38]. In AIS, this is mathematically represented
by categorizing signals into safe (Ssafe) and danger
(Sdanger ) signals. For each pattern p, a signal s(p) is
assigned as either safe or dangerous. Antigens (a) are
associated with these signals, and an affinity function
affinity(a, s) quantifies the relationship, triggering an
immune response if this affinity exceeds a threshold θ .
The threshold θ is dynamically updated based on the
history of signals, ensuring the system adapts to new
threats. This formulation emphasizes the detection of
actual harm rather than the mere presence of foreign
entities, leading to more context-aware and accurate

threat detection in cybersecurity systems [32], [33], [34],
[35], [38].

C. IMPACT OF BIG DATA ON THE EVOLUTION OF
ARTIFICIAL IMMUNE SYSTEMS
The advent of big data has significantly contributed to the
evolution of AIS by providing vast amounts of diverse and
complex data that AIS can analyze and learn from [39],
[40], and [41]. Big data enables AIS to improve its anomaly
detection and response mechanisms by identifying patterns
and correlations in large datasets that were previously
unmanageable. This enhanced learning capability allows
AIS to adapt more effectively to emerging threats, optimize
its algorithms, and develop more sophisticated models for
cybersecurity, ultimately leading to more robust and dynamic
defense systems.

D. BIO-INSPIRED CYBERSECURITY DEFENSES
Drawing on these immunological principles, AIS has
emerged as a powerful tool in computational intelligence,
particularly in the field of cybersecurity. By mimicking the
biological capabilities of the immune system’s mechanisms,
as described in prior paragraphs, AIS can detect anomalies
and recognize patterns indicative of malicious activities.
This bio-inspired approach has led to the development of
sophisticated algorithms capable of identifying zero-day
attacks and sophisticated malware that traditional methods
might miss [42], [43]. AIS’s dynamic learning and adaptive
capabilities enable it to respond to new and evolving threats
in real-time, providing a proactive defense mechanism. The
integration of these immunological concepts into computa-
tional models has significantly enhanced the effectiveness
of cybersecurity incident detection and response, offering
a resilient and evolving solution to protecting digital
infrastructure.

1) RANSOMWARE: DARK WEB ECONOMY
The evolution of AIS has significantly enhanced cyber-
security defenses against ransomware [42], [43], [44],
a prevalent threat in the Dark Web economy. AIS models,
such as the Clonal Selection Algorithm and the Negative
Selection Algorithm as described in prior paragraphs are
designed to mimic the adaptive and memory capabilities of
the biological immune system. These models continuously
monitor and learn from network activities to detect and
respond to anomalies indicative of ransomware or other
malware attacks. By using immune network theory, AIS can
dynamically recognize and neutralize ransomware signatures
and behaviors, even those that are previously unknown. The
integration of danger theory allows AIS to detect stress
signals from systems under attack, providing early warning
and rapid response to minimize damage. This adaptive,
real-time detection and response mechanism makes AIS
a powerful tool in protecting against the evolving and
sophisticated tactics employed by ransomware distributed
through the Dark Web.

123814 VOLUME 12, 2024



O. I. Falowo et al.: Enhancing Cybersecurity With AIS and General Intelligence

2) HOW AIS AND AI SYNERGY ENHANCES THREAT
DETECTION AND RESPONSE IN SOCs
AIS have directly influenced how artificial intelligence
(AI) enhances threat detection and response in Security
Operations Centers (SOC) by providing adaptive learning
and anomaly detection mechanisms inspired by the human
immune system [45], [46]. AIS models, such as the Clonal
Selection Algorithm and Negative Selection Algorithm,
as described in prior paragraphs, utilize AI to continuously
learn from network behavior and historical attack data. This
allows the system to identify true positives by recognizing
genuine threats with high accuracy. The adaptive nature
of AIS enables AI to update detection rules dynamically,
reducing false positives caused by outdated or incorrect alert
logic.

Moreover, AIS enhances the identification of benign
positives by using AI to analyze contextual information,
distinguishing between legitimate but unusual activities and
actual threats. This reduces unnecessary alerts and allows
SOC analysts to focus on real incidents. By leveraging AI’s
advanced data processing capabilities, AIS improves the
accuracy of data inputs, minimizing false positives from
inaccurate data. Additionally, the combination of AIS and
AI enhances the detection of false negatives by identifying
complex and evolving threat patterns that traditional methods
might miss, ensuring a comprehensive and effective security
operation in SOCs.

E. EXPLORING THE POTENTIAL OF AGI-DRIVEN AIS FOR
ENHANCED SOC EFFICIENCY
Although AGI remains a theoretical construct and is in its
early stages of development, its potential to surpass tradi-
tional AI systems makes it a compelling focus for research,
particularly at the intersection with AIS. AGI is envisioned to
possess a broader understanding and adaptability, capable of
learning and reasoning across diverse tasks without human
intervention. When integrated with AIS, which already
leverages biologically inspired models for adaptive threat
detection and response, AGI could significantly enhance the
precision and efficiency of security operations. By analyzing
complex patterns and evolving threats in real-time, AGI-
driven AIS could improve True Positive and Benign Positive
rates, while further reducing False Positives and False
Negatives, thereby optimizing SOC performance.

The significance of researching the intersection of AIS and
AGI lies in the potential to revolutionize how SOCs operate.
Current AIS models have proven effective in improving
cybersecurity metrics, but the integration of AGI could bring
a transformative leap. AGI’s ability to understand context,
learn from minimal data, and adapt to novel threats could
enhance the adaptability and resilience of AIS, leading
to more accurate threat detection and fewer erroneous
alerts. This study aims to mathematically demonstrate these
potential improvements, providing a robust framework for
evaluating the efficiency gains in SOCs. By exploring this

intersection, this study can pave the way for more advanced
and autonomous cybersecurity systems, ultimately leading to
a safer digital environment.

F. RESEARCH QUESTION
AIS have significantly improved the efficiency of SOC
by leveraging biologically inspired mechanisms to enhance
threat detection and response. Existing literature demon-
strates that AIS models, such as the Clonal Selection
Algorithm and Negative Selection Algorithm, contribute
to our understanding of the improvement of key metrics
including True Positives, Benign Positives, and reduce False
Positives and False Negatives. With the advent of AGI, there
is potential for even greater advancements to be unravelled.
The research question highlighted in bullet point below, aims
to mathematically compare AGI-driven AIS with AI-driven
AIS to determine if AGI can further enhance SOC efficiency
by improving detection accuracy and reducing erroneous
alerts.

• How can mathematical models be utilized to demon-
strate that AGI-driven AIS enhances the efficiency
of Security Operations Centers (SOCs) compared to
AI-driven AIS solutions, with respect to improving True
Positives, Benign Positives, reducing False Positives
(due to incorrect alert logic and inaccurate data), and
minimizing False Negatives?

III. METHODOLOGY
A. VALIDATING AGI-DRIVEN AIS: THEORETICAL AND
MATHEMATICAL ASSUMPTIONS
As this study explores the potential of AGI-driven AIS
in enhancing SOC efficiency, it is crucial to understand
the fundamental mathematical and theoretical assumptions
underlying this study. First, AIS as deduced from existing
literature, operates on the principle of adaptive learning and
anomaly detection, inspired by the human immune system’s
ability to recognize and respond to diverse pathogens. This
involves continuously updating and refining detection algo-
rithms based on new data, which improves the identification
of true positives and reduces false positives and negatives.
The assumption here is that the dynamic and self-learning
nature of AIS can be significantly enhanced by AGI’s broader
and more flexible learning capabilities, which can handle
more complex and varied threat patterns with minimal human
intervention.

Also, the theoretical assumption is that AGI, with its
advanced cognitive abilities, will outperform traditional AI
by better understanding context and making more accurate
predictions. This means AGI-driven AIS can dynamically
adapt to novel and evolving cyber threats more effectively
than AI-driven systems. Mathematically, this study attempts
to posit that AGI’s ability to process and analyze vast
datasets with higher accuracy will lead to superior SOC
metrics–higher true positives, better management of benign
positives, and reduced false positives and false negatives.
By validating these assumptions through mathematical
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models, this paper aim to demonstrate that the integration of
AGI with AIS represents a transformative advancement in the
future of cybersecurity, offering unparalleled efficiency and
robustness in threat detection and response.

B. HYPOTHETICAL CASE STUDY
Using a hypothetical case study as part of the methodology
for this study provides a controlled environment to rigorously
analyze the potential benefits of AGI-driven AIS over AI-
driven AIS. This approach allows us to systematically
apply mathematical models to simulate real-world scenarios,
ensuring the results are not influenced by external variables
that could skew the data. It enables us to isolate and evaluate
the specific impacts of AGI-driven improvements on key
metrics, such as True Positives, False Positives, and overall
cost efficiency in Security Operations Centers (SOCs),
thereby providing a clear and measurable justification for
the proposed advancements. Below is the hypothetical case
study:

In this hypothetical SOC managed by Cybersecurity
Experts Inc., the organization handles approximately
150 cybersecurity incidents annually- where they operate
in a 24 by 7 three shift model. According to a publication
titled ‘‘Cost of Cyber Incidents: Systematic Review & Cross-
Validation’’ published by Cybersecurity & Infrastructure
Security Agency (CISA) in 2020, the weighted average
investigation cost per incident is $66,935.3 [47]. This
hypothetical SOC currently utilizes an AI-driven AIS to
manage and respond to these incidents. However, the system
encounters challenges with high false positive rates and
occasional false negatives, leading to increased investigation
times and costs.

With the theoretical implementation of an AGI-driven
AIS, this study hypothesize an improvement in detection
accuracy, resulting in a 25% reduction in the number
of incidents requiring in-depth investigation due to better
identification and classification of threats. Additionally, a
15% improvement in the efficiency of handling true positives
and benign positives is expected, reducing unnecessary alert
fatigue and optimizing resource allocation.

• Note: The name ‘‘Cybersecurity Experts Inc’’ refer-
enced in the case study is purely hypothetical and is not
intended to refer to any existing entity.

IV. RESULTS: PER MATHEMATICAL MODELS FOR SOC
METRICS
By showing these calculations, breaking down these formulas
step-by-step and explaining their components, as shown in
this section, this study attempt to make it accessible for
individuals without a mathematical background to grasp how
each metric is calculated and its importance in evaluating
SOC performance. Detailed explanations of the mathematical
models are crucial for understanding the reliability and
validity of the metrics, ensuring clarity in how AGI-driven
AIS enhancements could significantly improve security oper-
ations. This approach underscores the practical implications

and benefits, encouraging informed decision-making in
cybersecurity. This study systematically calculate eachmetric
for both AI-driven AIS and AGI-driven AIS. The step-by-
step calculations are crucial for transparency and replicability
of the study. Below, are the performance differences in SOC
metrics and estimate annual cost savings where applicable.

A. TRUE POSITIVE (TP)
Explanation: True Positives measures the number of cor-
rectly identified threats. It is crucial for understanding the
effectiveness of the detection system in identifying real
incidents.

Formula:

TP =

N∑
i=1

⊮(actuali = 1 ∧ predictedi = 1) (1)

Components:
•

∑N
i=1: Summation over all incidents.

• ⊮(condition): Indicator function, equals 1 if the condi-
tion is true, 0 otherwise.

• actuali: Actual state of the i-th incident (1 if a real threat,
0 if not).

• predictedi: Predicted state of the i-th incident by the
system (1 if identified as a threat, 0 if not).

Mathematical Assumptions: The models assume accu-
rate labeling of actual states and correct implementation of
prediction algorithms.

AI-driven AIS SOC: Assuming the current system
correctly identifies 60% of the 150 incidents:

TPAI = 150 × 0.60 = 90 (2)

AGI-driven AIS SOC: Assuming AGI-driven AIS
improves TP by 15%, the new TP can be calculated as:

TPAGI = TPAI × 1.15 = 90 × 1.15 = 103.5 (3)

B. BENIGN POSITIVE (BP)
Explanation: Benign Positives measures the number of
legitimate activities that are flagged as threats but are actually
non-malicious. It is important for understanding the system’s
ability to distinguish between threats and non-threats.

Formula:

BP =

N∑
i=1

⊮(actuali = 0 ∧ predictedi = 1

∧ contextuali = 1) (4)

Components:
•

∑N
i=1: Summation over all incidents.

• ⊮(condition): Indicator function, equals 1 if the condi-
tion is true, 0 otherwise.

• actuali: Actual state of the i-th incident (0 if not a real
threat).

• predictedi: Predicted state of the i-th incident by the
system (1 if identified as a threat).
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• contextuali: Contextual information indicating the inci-
dent is expected to be non-malicious (1 if true).

Mathematical Assumptions: The models assume correct
contextual labeling and accurate predictions.

AI-driven AIS SOC: Assuming the current system flags
20 benign positives out of 150 incidents:

BPAI = 20 (5)

AGI-driven AIS SOC: Assuming AGI-driven AIS
improves BP by 15%, the new BP can be calculated as:

BPAGI = BPAI × 1.15 = 20 × 1.15 = 23 (6)

C. FALSE POSITIVE (FP) - INCORRECT ALERT LOGIC
Explanation: False Positives due to incorrect alert logic
measure non-threats flagged as threats due to detection logic
flaws.

Formula:

FPIAL =

N∑
i=1

⊮(actuali = 0 ∧ predictedi = 1) − BP (7)

Components:
•

∑N
i=1: Summation over all incidents.

• ⊮(condition): Indicator function, equals 1 if the condi-
tion is true, 0 otherwise.

• actuali: Actual state of the i-th incident (0 if not a real
threat).

• predictedi: Predicted state of the i-th incident by the
system (1 if identified as a threat).

• BP: Benign Positives.
Mathematical Assumptions: Assumes that the BP calcu-

lation is accurate and the alert logic has known flaws.
AI-driven AIS SOC: Assuming the current system

incorrectly flags 30 incidents as threats due to incorrect alert
logic:

FPIALAI = 30 − BPAI = 30 − 20 = 10 (8)

AGI-driven AIS SOC: Assuming AGI-driven AIS
reduces FP by 20%, the new FP can be calculated as:

FPIALAGI = FPIALAI × 0.80 = 10 × 0.80 = 8 (9)

D. FALSE POSITIVE (FP) - INACCURATE DATA
Explanation: False Positives due to inaccurate data measure
non-threats flagged as threats due to bad data inputs.

Formula:

FPID =

N∑
i=1

⊮(actuali = 0 ∧ predictedi = 1 ∧ datai = 0)

(10)

Components:
•

∑N
i=1: Summation over all incidents.

• ⊮(condition): Indicator function, equals 1 if the condi-
tion is true, 0 otherwise.

• actuali: Actual state of the i-th incident (0 if not a real
threat).

• predictedi: Predicted state of the i-th incident by the
system (1 if identified as a threat).

• datai: Data accuracy indicator (0 if inaccurate).
Mathematical Assumptions: Assumes accurate assess-

ment of data accuracy.
AI-driven AIS SOC: Assuming the current system flags

10 incidents as threats due to inaccurate data:

FPIDAI = 10 (11)

AGI-driven AIS SOC: Assuming AGI-driven AIS
reduces FP by 20%, the new FP can be calculated as:

FPIDAGI = FPIDAI × 0.80 = 10 × 0.80 = 8 (12)

E. FALSE NEGATIVE (FN)
Explanation: False Negatives measures the number of actual
threats that are incorrectly identified as non-threats. It is
crucial for understanding the risk of missed detections.

Formula:

FN =

N∑
i=1

⊮(actuali = 1 ∧ predictedi = 0) (13)

Components:
•

∑N
i=1: Summation over all incidents.

• ⊮(condition): Indicator function, equals 1 if the condi-
tion is true, 0 otherwise.

• actuali: Actual state of the i-th incident (1 if a real threat).
• predictedi: Predicted state of the i-th incident by the
system (0 if not identified as a threat).

Mathematical Assumptions: Assumes accurate labeling
of actual states and correct implementation of prediction
algorithms.

AI-driven AIS SOC:Assuming the current systemmisses
20% of actual threats:

FNAI = 150 × 0.20 = 30 (14)

AGI-driven AIS SOC: Assuming AGI-driven AIS
reduces FN by 25%, the new FN can be calculated as:

FNAGI = FNAI × 0.75 = 30 × 0.75 = 22.5 (15)

F. ANNUAL COST SAVINGS
Explanation: Annual cost savings are calculated based on
the reduction in the number of incidents requiring in-depth
investigation.

Formula:

Cost Savings = (NAI − NAGI) × $66, 935.3 (16)

Components:
• NAI: Number of incidents investigated under AI-driven
AIS.

• NAGI: Number of incidents investigated under AGI-
driven AIS.

• $66,935.3: Average cost per incident investigation.

VOLUME 12, 2024 123817



O. I. Falowo et al.: Enhancing Cybersecurity With AIS and General Intelligence

Assuming a 25% reduction in the number of incidents:

NAGI = NAI × 0.75 = 150 × 0.75 = 112.5 (17)

Therefore, the cost savings can be calculated as:

Cost Savings = (150 − 112.5) × $66, 935.3 (18)

Cost Savings = 37.5 × $66, 935.3 = $2, 510, 073.75 (19)

This analysis above demonstrates the potential financial
and operational benefits of implementing AGI-driven AIS
in SOCs. Table 1 provides a tabular presentation of all
the results, clearly illustrating the performance metrics of
AI-driven AIS compared to AGI-driven AIS. This table
highlights the significant improvements achieved with AGI-
driven AIS, including increased True Positives and Benign
Positives, and reduced False Positives and False Negatives.
By systematically displaying these gains, the table effectively
demonstrates the superior efficiency and cost savings poten-
tial of AGI-driven AIS in enhancing Security Operations
Centers (SOCs).

TABLE 1. Comparison of AI-driven AIS and AGI-driven AIS Metrics.

V. DISCUSSION
A. THEORETICAL FRAMEWORKS SUPPORTING THE
METHODOLOGY
Relying on the Cost-Benefit Analysis (CBA) and Technology
Acceptance Model (TAM) frameworks provides a robust
basis for the methodology used in this study, by combining
economic and user-centered perspectives. Through the lens
of CBA, this paper ensure evaluation of the financial benefits
of AGI-driven AIS, highlighting cost savings and resource
optimization, which are critical for justifying investments
in new technology. TAM, on the other hand, emphasizes
the importance of perceived usefulness and ease of use,
ensuring that the improvements in detection accuracy and
operational efficiency are likely to be accepted and integrated
by SOC professionals, leading to smoother implementation
and greater overall effectiveness.

1) COST-BENEFIT ANALYSIS (CBA)
CBA is a theoretical framework that assesses the economic
value of investments and decisions by comparing the costs
and benefits [48], [49], [50], [51]. This CBA theory highlights
the importance of quantifying the financial savings of
AGI-driven AIS over AI-driven AIS. By calculating the
cost reduction from improved incident handling efficiency,
this framework provides a clear economic justification for
adopting AGI-driven AIS. With reliance on CBA as a
guide, this paper argue, will help decision-makers understand

the tangible financial benefits, reinforcing the superiority
of AGI-driven AIS in reducing investigation costs and
optimizing resource allocation.

2) TECHNOLOGY ACCEPTANCE MODEL (TAM)
The TAM explains how users come to accept and use
a technology based on perceived usefulness and ease of
use [52], [53], [54], [55]. This framework provides the
ground for this study by highlighting the improvements
in SOC efficiency and accuracy with AGI-driven AIS,
which are likely to increase user acceptance and adoption.
By demonstrating enhanced True Positives and reduced False
Positives and Negatives through mathematical models, this
study show that AGI-driven AIS not only performs better but
is also more reliable and efficient, making it more acceptable
to SOC professionals. This acceptance leads to smoother
integration and greater overall effectiveness in cybersecurity
operations.

B. SIGNIFICANT FINANCIAL BENEFITS OF AGI-DRIVEN AIS
FOR GLOBAL SOCs
The final cost savings calculated from implementing
AGI-driven AIS in the SOC amounts to approximately
$2,492,078.75 annually. This significant reduction in inves-
tigation costs highlights the potential financial benefits for
organizations with global SOCs, where resource optimization
and cost-efficiency are paramount. By improving detection
accuracy and reducing the number of incidents requiring
in-depth investigation, AGI-driven AIS not only enhances
operational efficiency but also frees up valuable resources
for proactive cybersecuritymeasures, strategic initiatives, and
overall better management of global cybersecurity threats.

C. ENSURING RELIABILITY AND VALIDITY
This study satisfies the theory of reliability [56], [57] by
providing a detailed, replicable methodology for comparing
AI-driven and AGI-driven AIS in Security Operations Cen-
ters (SOCs). By using standardized metrics such as True Pos-
itives, False Positives, and False Negatives, and employing
well-established mathematical models, the research ensures
that the results are consistent and can be replicated by
other researchers under similar conditions. The step-by-
step calculations and clear presentation of data enhance the
reliability of the findings, making it easier for others to verify
and validate the results independently.

In terms of validity [56], [57], the study ensures both
internal and external validity by carefully designing the
hypothetical case study and using realistic data points, such
as the average cost of investigating a cybersecurity incident.
The theoretical frameworks of CBA and TAM, this study
also argue, support the validity of this study by providing
a comprehensive evaluation of both the financial and user
acceptance aspects of AGI-driven AIS. This dual focus
ensures that the findings are not only statistically sound
but also practically relevant, offering significant insights
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into the potential benefits and challenges of implementing
AGI-driven AIS in global SOCs.

D. THE PRACTICAL IMPLICATIONS OF INTEGRATING AGI
AND AIS
The results of this study underscore the importance of
integrating AGI with AIS to enhance Security vis-a-vis SOC
efficiency. By demonstrating significant improvements in
key metrics such as True Positives and reductions in False
Positives and Negatives, the study highlights howAGI-driven
AIS can optimize threat detection and response processes.
This integration not only enhances operational efficiency
but also leads to substantial cost savings, as shown by the
estimated annual reduction in investigation costs.

Moreover, conducting research that marries AGI and
AIS provides a practical framework for evaluating SOC
performance in real-world scenarios. The use of mathemat-
ical models and hypothetical case studies ensures that the
findings are both reliable and valid, offering a clear and
measurable justification for the proposed advancements. This
balanced approach ensures that the benefits of AGI-driven
AIS are not only theoretically sound but also practically
applicable, making a compelling case for organizations to
consider adopting this advanced technology to enhance their
cybersecurity posture.

E. ADVANCING CYBERSECURITY: INTEGRATING AGI AND
AIS FOR INCIDENT DETECTION AND RESPONSE
This study holds significant importance for cybersecu-
rity incident detection and response by illustrating the
transformative potential of integrating AGI with AIS. For
leadership and industry cybersecurity leaders, the findings
demonstrate that AGI-driven AIS can substantially enhance
SOC efficiency by improving key metrics such as True
Positives and reducing False Positives and False Negatives.
This improvement not only ensures more accurate threat
detection but also optimizes resource allocation, leading to
a more robust and proactive cybersecurity posture.

For Original Equipment Manufacturers (OEMs) and
cybersecurity solution providers, this study is intended to
provides a clear and measurable justification for investing
in AGI-driven AIS technologies. The demonstrated cost
savings and operational efficiencies highlight the practical
benefits of adopting advanced AI solutions to meet the
evolving threat landscape. By leveraging AGI’s superior
learning capabilities, OEMs can potentially develop more
effective cybersecurity tools that enhance incident response
capabilities, ultimately offering better protection for their
clients and strengthening their market position in the
cybersecurity industry.

F. STUDY LIMITATIONS AND FUTURE RESEARCH
DIRECTIONS
One limitation of this study is the reliance on a hypothetical
case study and mathematical models, which may not fully
capture the complexities and nuances of real-world SOC

environments. The controlled environment used for analysis
might oversimplify the variability and unpredictability inher-
ent in actual cybersecurity incidents. This study attempted to
balance this by using realistic data points, such as the average
investigation cost, and by grounding this research’s method-
ology in established theoretical frameworks like Cost-Benefit
Analysis (CBA) and the Technology Acceptance Model
(TAM). However, the extrapolation of these findings to
diverse organizational contexts should be done cautiously.

Future interdisciplinary studies should explore the inte-
gration of AGI and AIS in more varied and complex SOC
settings, incorporating real-world data and scenarios. Col-
laborations between cybersecurity experts, AI researchers,
and industry practitioners can provide a more comprehensive
understanding of the practical implications and challenges
of implementing AGI-driven AIS. Additionally, longitudinal
studies assessing the long-term impacts of AGI integration
on SOC efficiency and effectiveness would be valuable.
Such research could further validate the potential benefits
and address any unforeseen limitations, ensuring that the
transition to AGI-driven AIS is both feasible and beneficial
for organizations worldwide.

G. ENCOURAGING AGI RESEARCH FOR FUTURE MARKET
READINESS
Although AGI is still in its early stages and largely a
theoretical construct, OEMs are actively racing to bring AGI
to market in the future due to its transformative potential.
Encouraging research in this area is crucial, as it lays
the groundwork for practical applications and addresses
challenges early on. By fostering interdisciplinary studies and
exploring AGI’s integration with technologies like Artificial
Immune Systems (AIS), researchers can drive innovation,
improve cybersecurity defenses, and ensure that future
implementations are both effective and secure.

H. PRIVACY CONCERNS ARISING FROM THE
COMMERCIALIZATION OF AGI IN SOC ACTIVITIES
Government regulators play a crucial role in the future of
AGI-driven AIS, ensuring that ethical standards [58], [59]
are maintained while fostering innovation. As these advanced
systems become integral to cybersecurity, regulators must
establish guidelines that address privacy, data protection,
and transparency. This includes setting standards for how
AGI-driven AIS can be deployed, monitored, and audited to
prevent misuse or unintended consequences. By balancing
the need for robust cybersecurity with ethical considerations,
regulators can help build public trust and ensure that the
deployment of AGI-driven AIS aligns with societal values
and legal frameworks.

The commercialization of Artificial General Intelligence
(AGI) introduces substantial privacy concerns [11], partic-
ularly when AGI is implemented in Security Operations
Centers (SOCs) that manage large volumes of sensitive data.
AGI systems, equipped with advanced analytical capabilities,
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are likely to gain access to extensive datasets, including
personal and confidential information. This elevated level of
access significantly heightens the risk of data breaches, unau-
thorized access, and the misuse of personal data. For instance,
during the monitoring and analysis of network traffic, AGI
systems could unintentionally expose or mishandle sensitive
information, leading to severe privacy violations. Moreover,
the ability of AGI to process and correlate data from
multiple sources could result in the unnecessary collection
and retention of personal data, further intensifying privacy
risks [60].

The importance of addressing these privacy concerns
through ethical frameworks has been emphasized in existing
research, such as the work by Kelly et al. (2020). Initially
perceived as a market differentiator, the ethical framework
for AGI systems now serves a pivotal role in mitigating
privacy risks. Companies that prioritize ethical practices and
protocols for AGI systems can leverage their commitment
to build consumer trust and navigate complex regulatory
requirements more effectively. Additionally, making AGI
protocols publicly available promotes transparency and
encourages collective innovation, driving the adoption of
privacy-preserving technologies. This open approach accel-
erates the development of ethically aligned AGI systems and
ensures that privacy considerations are integral to their design
from the outset. Therefore, addressing consumer privacy
concerns is crucial for the successful commercialization of
AGI systems [61].

I. ADDRESSING POTENTIAL BIAS
This study, conducted by cybersecurity experts, might exhibit
potential biases due to the absence of immunologists and
biological scientists. The focus on existing literature from
AIS and AGI researchers may have limited the depth of
interdisciplinary insights that are crucial for a comprehensive
understanding of the biological underpinnings of AIS. This
could lead to an overemphasis on technological aspects while
underestimating the complexities and nuances of biological
principles that drive immune system-inspired models.

However, the study attempts to balance these potential
biases by thoroughly referencing well-established works
from experts in AIS and AGI. By grounding the research in
robust theoretical frameworks such as Cost-Benefit Analysis
(CBA) and the Technology Acceptance Model (TAM),
the study ensures a rigorous methodological approach.
Additionally, the hypothetical case study and reliance on
realistic data points provide a practical perspective, which
helps in mitigating some of the limitations arising from the
lack of direct biological expertise. Future research should
incorporate interdisciplinary collaborations to enhance the
robustness and validity of findings.

J. BROADER CONTRIBUTIONS TO ACADEMIC
KNOWLEDGE: CONNECTING AGI, AIS, AND SOC METRICS
This study attempts to connect Artificial General Intelligence
(AGI), Artificial Immune Systems (AIS), and Security

Operations Center (SOC) metrics to show potential possibil-
ities of enhancements in cybersecurity operations. This study
echoes the promises of AGI and discusses how AGI-driven
AIS solutions could leverage advanced intelligence to
improve threat detection and response metrics, such as True
Positives and False Positives, within SOCs. By demonstrating
significant improvements in these metrics, this study high-
lights the potential of AGI-driven AIS solutions to optimize
SOC efficiency and reduce operational costs. The broader
contribution to academic knowledge lies in providing a
robust, quantifiable framework for evaluating the integration
of AGI in cybersecurity, encouraging further interdisciplinary
research and practical applications in enhancing global
cybersecurity defenses.

K. THOUGHT-PROVOKING PREDICTION ROOTED IN AGI
AND AIS INTEGRATION
Given the maturity of AIS in enhancing computational capa-
bilities and the human-like cognitive and decision-making
potential of AGI, this study predicts a transformative leap
in cybersecurity. Within the next decade, AGI-driven AIS
systems (or tools) will not only surpass current AI systems’
capabilities in SOCs but will also evolve to autonomously
manage and mitigate complex cyber threats with minimal
human intervention. This advanced system will adapt in real-
time, learning from each incident to preemptively counteract
emerging threats, fundamentally changing the landscape of
cybersecurity defense.

This bold prediction suggests that AGI-driven AIS will
become an indispensable tool for global cybersecurity
incident response, capable of anticipating and neutralizing
attacks before they can inflict damage. This proactive
approach will significantly reduce the cost and impact of
cyber incidents, enabling organizations to allocate resources
more effectively. This paradigm shift will stimulate further
interdisciplinary research, driving innovations that merge
cognitive science, machine learning, and cybersecurity to
create systems that not only react but also foresee and
strategize against potential cyber threats, ensuring a safer
digital future.

VI. CONCLUSION
This study systematically addresses the research question by
employing mathematical formulas to compare AGI-driven
AIS with AI-driven AIS in enhancing the efficiency of
Security Operations Centers (SOCs). By using a hypothetical
case study grounded in realistic data points and established
theoretical frameworks like Cost-Benefit Analysis (CBA)
and the Technology Acceptance Model (TAM), the study
provides a comprehensive analysis of key SOC metrics. The
results demonstrate significant improvements in True Posi-
tives and reductions in False Positives (due to incorrect alert
logic and inaccurate data) and False Negatives, validating the
hypothesis that AGI-driven AIS offers superior performance.

Moreover, the detailed step-by-step calculations and trans-
parent methodology ensure the reliability and replicability of
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the findings, offering a clear and measurable justification for
the proposed advancements. The study highlights not only
the operational efficiencies but also the substantial financial
savings that arguably may be achieved by implementing
AGI-driven AIS systems. While acknowledging the limita-
tions due to the absence of biological expertise, the research
sets a strong foundation for future interdisciplinary studies
to further explore and validate the potential of AGI-driven
AIS in real-world SOC environments. This comprehensive
approach underscores the transformative potential of AGI
in advancing cybersecurity defenses and elevating how we
conduct cybersecurity incident response.
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