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ABSTRACT Information representation enhancement in synthetic aperture radar images is highly debated in
remote sensing literature. In the past, the most credited solutions were based on traditional image processing
integrating microwave scattering principles. More recently, neural network-based solutions conquered the
scene, allowing for the introduction of representations obtained via domain translation. In this context,
generative adversarial networks rule the roost. However, after an initial improvement, the performance of
the newly developed solutions reached a plateau. This paper proposes a change of perspective, moving the
translation problem from the architecture to input data and training modality. It will be shown that state-
of-the-art multitemporal synthetic aperture radar processing provides products that, due to their enhanced
texture and colorimetric attributes, appear more similar to their optical correspondent. Moreover, training
constrained by spatial and temporal features is beneficial to increase the phenomenological correspondence
between the radar reflectivity function and the terrain reflectance. As a result, the obtained translated
products show a significant increase of the standard image quality parameters. Finally, the exploitability
of multimodal products is demonstrated with an application concerning the estimation of the normalized
difference vegetation index, which shows the comparability of the synthetic index with that calculated from
native optical data.

INDEX TERMS Synthetic aperture radar, multispectral, generative adversial networks, multimodal image
translation, vegetation monitoring.

I. INTRODUCTION
Passive remote sensing is a powerful tool for large scale Earth
monitoring. Thanks to recent advances in sensor technology,
it can provide very high spatial resolution images. The
presence of a number of satellites guarantees global coverage
with high revisit time. However, the limitations of this
technology are well-known. The dependence on illumination
and weather conditions are limiting factors in some scenarios
like emergencies or those needing continuous monitoring of
a specific area of interest. A statistical analysis on Terra and
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Aqua sensors acquisitions revealed that the 67% of the Earth
surface is, on average, covered by clouds [1].
In this regard, synthetic aperture radar (SAR) sensors

provide a valid alternative. Being active instruments, they
are able to generate their own power source. This makes
them independent from the availability of an external
illumination source.Moreover, operating at microwaves, they
are almost independent from weather conditions [2]. These
characteristics make SAR sensors very attractive from the
viewpoint of the acquisition capability, which can be assumed
as ‘‘all weather and all time’’ but represent, at the same time,
a limitation to their full exploitation.

Passive remote sensing typically offers data acquired in
the spectra of the visible, near-infrared (which is the domain
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of the chlorophyll), and far infrared (which is related to
the emissivity and thus to the surface temperature). Most
of remote sensing scientists and end-users are familiar with
these frequencies. SAR platforms, conversely, operate at
microwave frequencies, typically included between 1 and
10 GHz. These acquisitions are strongly influenced by
the surface roughness [3]. The peculiar image formation
mechanism makes data difficult to interpret by standard users
of satellite images. Thismakes the technology underexploited
against its real potential [4].

The problem of the enlargement of the SAR community
and, in general, of the interpretation of satellite images has
been widely debated in literature [4], [5], [6], [7], [8], [9],
[10]. Indeed, it assumes different meanings depending on
the specific sensor at hand. As an example, dealing with
hyperspectral data, the topic is how to reduce the dimen-
sionality of data in order to display meaningful information
on a standard tristimulus RGB device [11], [12], [13].
Working with SAR, proposed solutions aim at increasing the
exploitability through improved pre-processing and/or multi-
temporal data fusion techniques [4], [8], [14], [15]. More
recently, the progress in artificial intelligence made available
new tools allowing for the enlargement of the available range
of solutions for data enhancement, like super-resolution [16]
or multimodal image translation [17].
The latter has been initially conceived for the trans-

formation/modification of consumer images. For example,
Reference [18] showed how to change the style of a
photograph using deep convolutional neural networks. In this
work, famous paintings are combined with everyday pictures
to create original artworks. The concept of image-to-image
translation can be applied to several of situations, from dawn
to dusk scene conversion [19] to the generation of portraits
from sketches [20].
In the past, each of these tasks has been tackled with a

special-purpose algorithm. Today, the problem has been uni-
fied under a unique class of algorithms known as generative
adversarial networks (GANs). Firstly introduced in [21], they
are designed in such way to produce, ideally, a synthetic
output indistinguishable from the original input [20]. GANs
are constituted by a pair of networks trained simultaneously
and in competition with each other, i.e., the generator and the
discriminator. A common analogy applicable to visual data is
thinking of the generator as an art forger and the discriminator
as an art expert. The forger creates forgeries to make realistic
images. The expert tries to separate real artworks from fake
ones [22].
In the field of remote sensing, these concepts have

been recently exploited to translate SAR images into the
optical domain. Reference [23] proposed an improved
cycle-consistent GAN framework in which the standard loss
function is integrated with the mean square error (MSE) loss
for better performance. A similar approach has been adopted
by [24]. In this case, the standard loss function has been
integrated with the structure similarity index measure (SSIM)
[25]. Reference [26] introduced an improved conditional

GAN method to enhance the contour sharpness, the texture
rendering and the colour fidelity in translated images.
Reference [27] proposed the exploitation of CycleGAN
architectures to tackle with multimodal images registration
issues. A comparative study of different methodologies for
SAR-to-optical image translation has been proposed by [17].
In this work, the authors reported that, independently from the
adopted loss function, the quality of the reconstruction tends
to get worse as the texture content of the scene increases.
As a result, the reconstruction of natural scenes is, on average,
quite true to reality. Conversely, urban areas are more affected
by artifacts, as testified by the decrease in the adopted image
quality indicators.

In the last years, the research on the topic has been
boosted by the release of the SEN1-2 dataset [28], which,
providing couples of SAR and optical images, constitutes a
fruitful environment for the development of new translation
techniques. This work aims to introduce a new perspective in
SAR to optical image translation. In fact, so far the literature
pursued the performance improvement by developing new
architectures and/or through fine-tuning of literature network
loss functions using as input single-look SAR images.
However, as reported in [17], the performance advance
measured via standard indicators is quite limited. In other
words, nevertheless the abundant literature published on the
topic, the quality of the generated output seems to have
reached a plateau.

This evidence makes some questions rising about the
development of new nets derived from major architectures
or the research of the best parametrization. It is reasonable
to think that the improvement of generated images, which
is a key to enable new applications based, for example,
on hybrid change detection models [29], should be pursued
following alternative ways. like a better management of the
training phase and the ingestion of an input more suitable for
translation, i.e., closer to the target. The shift of the focus from
the architecture to such concepts is new in the literature and
constitutes the principal novelty of the work.

To this end, SAR data are opportunely pre-processed using
state-of-the-art multi-temporal concepts [4] to make the tex-
ture and the chromatic content of images more similar to their
optical correspondent. The training is constrained by spatial
and temporal features to increase the phenomenological
correspondence between the radar reflectivity function and
the terrain reflectance. Data are processed using a literature
network, run with standard parameters, with no actions taken
on the original loss function. It will be shown that this change
of perspective significantly increases the performance met-
rics against typical literature values. Finally, the exploitability
of multimodal products is demonstrated with an application
concerning vegetation monitoring, in which it will be shown
that a synthetic vegetation index can reasonably approximate
the estimate obtained from native optical data.

The works is organized as follows. The general method-
ology is introduced in Section II. Experimental results are
presented and discussed in light of the recent literature in
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FIGURE 1. General workflow of the proposed multimodal image translation methodology. Blocks with red edges identify input/output data.

Section III. Vegetationmonitoring usingmultimodal products
is presented in Section IV. Conclusions are drawn at the end
of the work.

II. METHODOLOGY
The general workflow of the proposed methodology is
depicted in Figure 1. It mainly exploits techniques already
known in literature, introducing novelties in the way they are
fed and managed. As stated in the introduction, the focus is
moved from the network architecture to input products, which
are pre-processed to make them more similar to target data,
thus favoring the translation process. Moreover, the training
phase is optimized according to the spatio-temporal similarity
of the input, which allows for tackling the differences
between the SAR backscattering and the optical reflectance.

As shown in the diagram, the starting point is a time series
of SAR data. They are pre-processed according to state-
of-the-art multi-temporal concepts [4] to generate the data
to be ingested within the GAN [20] through the extraction
of geocoded patches. The second branch of the workflow
involves optical/multispectral data acquired over the same
area. They are pre-processed for atmospheric and radiometric
correction and cut for the generation of patches suitable to be
the targets for the training phase. The maximum time span
allowed between SAR and optical patches of the same area is
5 days.

Such multimodal data constitute the input for the GAN,
which is trained to learn the optical representation from SAR
data to implement the domain translation. The output of the
workflow is an optical image obtained from the original SAR
one.

In the following, each processing block will be discussed
in detail.

A. MULTI-TEMPORAL SAR PROCESSING
The purpose of the first part of the workflow is the
generation of input products for image domain translation.
To this end, a time series of SAR images is considered.
It is subject to state-of-the-art pre-processing to make data
suitable for ingestion in the training phase. In other words,
the objective of the processing is to make the appearance
of SAR data closer to their optical correspondent at both
texture and chromatic content. This is achieved by exploiting
change-detection principles allowing for the enhancement of

the correspondence between the SAR reflectivity function
and the optical reflectance [30].

Multi-temporal SAR pre-processing accounts for radio-
metric calibration, geometric co-registration, multi-temporal
despeckling, time-series cross-calibration, multi-temporal
composites generation and geocoding [4]. All the SAR data
exploited in this work have been acquired by the Sentinel-1
constellation.

Radiometric calibration allows for compensating effects
due to the orbit and/or the sensor [31]. It is performed
by using calibration coefficients available in the product
metadata. Radiometric calibration makes the data of the time
series comparable. This means that, after calibration, the
same object, imaged at different times, will exhibit the same
reflectivity value, if not subject to changes.

Coregistration is the process of geometric alignment of
images. It exploits both orbital information stored in themeta-
data and data-driven processing [32]. After coregistration,
each pixel of each image of the time series will correspond
to the same point on the Earth’s surface, even if still in SAR
geometry.

For the purpose of image translation, despeckling is
probably the most important processing step. Speckle is
a characteristic of SAR images. It is due sub-resolution
elements within the resolution cell causing a random reflec-
tion [32]. This means that, given two areas macroscopically
identical, they may exhibit a different reflectivity. This phe-
nomenon causes the typical salt-and-pepper appearance of
data, which corrupts the scene texture preventing the correct
training of the neural net responsible for the translation.

Indeed, speckle is a phenomenon non-existent in optical
images, which makes the texture of SAR images very
different against their optical correspondence. However,
it can be mitigated by the application of proper despeckling
techniques [33]. Working with time series allows for the
exploitation of spatio-temporal despeckling [34], like the
algorithm developed in [35] used in this work.
The availability of multi-temporal data allows for building

RGB composites, enhancing the information carried by
the single acquisition in a change-detection framework [4],
[8]. To this end, time-series cross-calibration must be
implemented to re-quantize data in an 8-bit format suitable
for display on standard tristimulus devices. The methodology
proposed by [4] is implemented in this work. It consists of a
histogram clip guided by a reference image, which is assumed
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to be the one exhibiting the minimum of the maxima. The
reflectivity value corresponding to the 98% of the cumulative
histogram of the reference image is assumed as a clipping
parameter. The choice of the 98th percentile is the best
compromise between the percentage of saturated pixels and
the preservation of the image entropy, which is a measure of
the image information content [36].

Once the metrics of the time-series is established, data
can be combined in order to obtain photo-realistic images.
According to [5], all the composites belonging to the time
series share the red channel, which plays as reference image.
It is convenient to choose such an image when the vegetation
is at its minimum. In such ways, loading one by one the other
images on the green channel, an increasing vegetation content
in the scene is associated with an increase of the green color
contribution. This is due to the backscattering enhancement
triggered by the growth of vegetation canopies [37]. Finally,
the blue channel is reserved to a texture measure, i.e., the data
range within a box of fixed size. This is useful to highlight
high-texture areas like urban areas [5].
The last step of SAR pre-processing is geocoding. It is

necessary to re-project data from the SAR geometry into a
cartographic system [32]. This is crucial for the alignment
with the optical data and the ingestion into the GAN training
pipeline.

B. OPTICAL DATA PRE-PROCESSING AND PAIRING WITH
THE SAR DATASET
The pre-processing of optical data accounts for atmospheric
corrections. In this work, the exploited optical data have been
acquired by the Sentinel-2 constellation. In particular, Level-
2A images have been used. They are pre-processed products
provided in bottom of atmosphere reflectance format thanks
to the application of the Sen2Cor processor [38].
Optical images are paired and overlapped with the SAR

dataset and cropped for the extraction of relevant patches
for training the subsequent GAN. The pairing is made using
images acquired with a maximum time span of 5 days to
minimize the possibility of changes occurring in the scene.
Similarly to SAR data, images are converted to 8-bit format
via clipping at the 98% of the cumulative histogram and
rescaled in the interval [0, 255].

From each geocoded pair, a number N = 200 of patches
is extracted for ingestion into the GAN training pipeline.
In Figure 2, an example of the data used for the training is
shown. They concern the city of Edmonton, Canada. SAR
data have been extracted from a dataset of about 60 images.
The compositions shown in Figure 2a and Figure 2c share
the reference image, acquired in January 2019 and loaded
on the red band. The green channel has been acquired
in August 2020. As previously discussed, the purpose of
SAR pre-processing is to make data as much as possible
photo-realistic. However, they shall be evaluated from a
change-detection perspective, being the result of the fusion
of two acquisitions. For example, buildings are rendered in
yellow or white colours depending on the low or high texture

FIGURE 2. Examples of patches ingested within the GAN. Area with high
urban texture: (a) Multi-temporal RGB SAR image and (b) correspondent
optical image. Rural area: (c) Multi-temporal RGB SAR image and
(d) correspondent optical image.

of the area due to the high contribution of both the reflectivity
channels [39]. Areas with significant green contribution are
characterized by increasing backscattering due to the growth
of the vegetation against reference conditions. A balanced
contribution of the two reflectivity channels is representative
of stable land-cover.

The crucial aspects of the SAR pre-processing are the
mitigation of the speckle and the introduction of a stable
colour rendering of the land cover. As shown in the samples
reported in Figure 2a and Figure 2b and in Figure 2c and
Figure 2d, this makes SAR data closer to their optical
correspondent. This is expected to enhance the training phase.

C. GAN BASICS AND TRAINING
In this Section, the fundamentals of GANs will be briefly
recalled omitting most of the mathematical foundations of
these architectures. The readers interested in such details are
referred to dedicated works [20], [21], [40].

In recent years, the scientific community has been
increasingly interested in GANs due to their ability to
manage large quantities of unlabeled data. The classic
architecture of a GAN is constituted by two competing
nets [21]. As aforementioned, the two nets replicate the
dualism between a forger and an art expert [22]. Referring to
Figure 3, the forger, i.e., the generatorG creates a copy ywith
the objective of making it as much as possible similar to the
source x. The expert, i.e., the discriminator D, examines both
the original x and the copy y trying to understand whether the
artwork is fake. The two nets are trained simultaneously and
compete with each other. The generator does not have direct
access to real data. This means that the training of this net is
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FIGURE 3. Basic architecture of a GAN.

FIGURE 4. Basic architecture of a cGAN.

related only to interactions with the discriminator that, on the
other hand, can access to both original and synthetic data.
The error signal provided to the discriminator is represented
by the truth about the correct decision and is used to train
the generator, making it able to create synthetic data of better
quality.

In this work, the translation from SAR to optical has
been implemented through a conditional GAN (cGAN) [41].
As shown in FIGURE 4, in this setting, both the discriminator
and the generator are class-conditional. According to [22],
they provide better representations for multimodal data
generation. Therefore, they are particularlywell-suited for the
problem at hand.

The architecture exploited is the one known as Pix2Pix,
presented in [20]. It is a conditional image-to-image
translation architecture using a conditional GAN objective
combined with a reconstruction loss. The conditional GAN
objective for observed images x, output images y, and the
random noise vector z can be expressed as

LGAN = Ex,y
[
logD (x, y)

]
+ Ex,z [1 − D (x,G(x, z))] . (1)

The discriminator is trained like in a traditional GAN
architectures, i.e., minimizing the negative log likelihood of
identified real and fake images. The generator is trained using
both the adversarial loss for the discriminator model and the
L1 loss between the generated translation and the expected
target image. In other words,G tries to minimize the objective
expressed in Equation 1 against an adversarial D that tries to
maximize it, i.e.

G∗
= argmin

G
max
D
LGAN (G,D) + λLL1(G). (2)

where

LL1(G) = Ex,y,z
[
||y− G(x, z)||1

]
(3)

The combination of the L1 loss with the adversarial loss
is controlled by the hyperparameter λ, which is set to 10.
It determines the importance of the L1 loss against the
adversarial loss during the training of the generator.

As stated in [20], both the generator and the discrim-
inator use modules of the form convoluton-BatchNorm-
ReLu [42]. The network optimization follows the standard
approach proposed in [21]. The used solver is Adam [43]
with a learning rate of 0.0002 and momentum parameters
β1 = 0.5 and β2 = 0.999.
The network has been trained using SAR/optical pairs with

a maximum time span of 5 days to minimize the possibility
of abrupt changes within the scenes. Nevertheless, the major
problem to tackle in the translation task is the ambiguity of
the SAR response against optical land covers. Indeed, the
SAR reflectivity function depends on a number of factors
like the roughness, the dielectric constant, the orientation
of the scatterers and the occurrence of volumetric scattering
phenomena [2], [32]. They do not have a unique optical
correspondent. In other words, the same SAR reflectivity
value could correspond to different optical land covers and
vice-versa, thus causing the the generator to fail.
The idea is to reduce the variety of optical land covers by

dividing the training problem into more sub-tasks with higher
spatiotemporal consistency. In other words, the proposal is
not to look for a ‘‘general GAN’’ able to translate images
whenever and wherever acquired. Rather, the concept of
‘‘zonal GAN’’ is introduced, in which the net is trained with
data acquired on a specific area, i.e., a specific city and
in a limited time frame, like a specific month. Due to the
intrinsic difference between the data at hand, this is useful to
reduce the variety of texture and land covers to be translated.
This means that the translation of the area of interest will be
performed using several GANs, each one representative of a
month. Due to the cyclic nature of land covers, the temporal
consistency is preserved through the years.

D. DATA
The data used in this study have been acquired under the
aegis of the Copernicus Programme by the constellations
Sentinel-1 (SAR) and Sentinel-2 (optical). Input SAR data
are in ground range detected (GRD) format. As suggested in
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the past related literature [26], [44], [45], all the data have
been acquired in the same configuration in terms of orbit and
incidence angle in order to avoid backscattering differences
on targets of the same nature due to the different imaging
geometry.

Target multispectral data are in atmospherically corrected
L2A format. All the images have 10-meter spatial resolution.
As discussed above, they are converted to 8-bit format before
ingestion in the neural network.

The locations for the test of the proposed methodology
have been selected to diversify the land cover. To this end,
two urban and two rural sites have been chosen. The formers
are represented by two Canadian cities, i.e., Red Deer and
Edmonton. The latters concern agricultural areas in Dodge
City (US) andWurzburg (Germany). In all cases, imageswere
acquired during years 2018 to 2021.

III. EXPERIMENTAL RESULTS
A. PERFORMANCE METRICS
The assessment of the obtained results has been performed
using literature image quality indicators, like the root mean
square error (RMSE), the peak signal-to-noise ratio (PSNR),
and the SSIM [16].
Indicating with x the luminance of the original image and

with y that of the translated one, the first indicator exploited,
the RMSE, is obtained from the square root of MSE, i.e.,

RMSE =
√
MSE =

√√√√ 1
N

N∑
i=1

(x − y)2, (4)

where N is the total number of pixels. The luminance is
calculated according to the following relation

I = 0.299 R+ 0.587G+ 0.114B, (5)

in which R, G and B are the intensities of the red,
green and blue channels. The RMSE is a measure of the
Euclidean distance between the original and the translated
image evaluated pixel-wise and, therefore, an indicator of the
fitting of the translated image with the original one. It has
been preferred to the MSE as it provides values of the error
measured in the same unit of the value to be predicted, i.e.,
digital numbers (DNs).

The second indicator, the PSNR, is defined as the ratio
between the maximum signal power and the noise power.
Mathematically, the following relation holds [16]

PSNR = 20 log10

(
max (y)
√
MSE

)
. (6)

The PSNR is relatively simple to calculate and has a
clear physical meaning. However, as the RMSE, it does not
introduce human visual system characteristics into the image
quality evaluation because the differences are analyzed purely
from a mathematical perspective. In other words, although
the PSNR and the RMSE remain accepted evaluation metrics,
they cannot capture the differences in visual perception [16].

To this end, the SSIM index is exploited. It is defined as
follows [25]

SSIM =
4σxyµxµy(

σ 2
x + σ 2

y

) (
µ2
x + µ2

y

) , SSIM ∈ [−1, 1] , (7)

where

µx =
1
N

N∑
i=1

xi, (8)

µy =
1
N

N∑
i=1

yi, (9)

σ 2
x =

1
N − 1

N∑
i=1

(xi − x̄)2 , (10)

σ 2
y =

1
N − 1

N∑
i=1

(yi − ȳ)2 , (11)

σxy =
1

N − 1

N∑
i=1

(xi − µx)
(
yi − µy

)
. (12)

The SSIM is a perceptual metric and a comprehensive
measure of similarity between images from three aspects,
including structure, brightness, and contrast. Therefore, the
SSIM can measure either the degree of distortion of a picture
or the degree of similarity between two pictures. This makes
the SSIM index more in line with human eye perception [16].

B. RESULTS AND DISCUSSION
The results of the application of the proposed workflow are
reported in Figure 5 and Table 1.
In particular, the graphics reports patches arranged as

follows. The rows are relevant to different sites. The columns
reports input or output data. Specifically, the first row of
Figure 5 concerns the Red Deer site. The second, the
Edmonton site. The third, the Dodge City site. The fourth,
the Wurzburg site.

The column organization of Figure 5 is as follows. The
first one is reserved to sample SAR patches. The second
reports the correspondent optical ones. The third column is
the translated multimodal image. The last column depicts the
RMSE map. For the latter, the colormap spans from cool
colors to hot ones, so blue areas are characterized by an
almost null RMSE, while red ones are those with exhibiting
the higher values.

Qualitatively, it is remarkable that multimodal products
preserve both shapes and color with a good degree of
approximation. The textures of dense urban areas are
respected after translation as well as the border of agricultural
fields. Looking at the RMSE maps, there are limited areas
with insurgence of significant errors due to incorrect color
rendering. As a general comment, most of the errors are
located in correspondence with sharp edges, which are
slightly distorted by the domain translation.
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FIGURE 5. Examples of GAN output. First row: Red Deer dataset. Second row: Edmonton dataset. Third row: Dodge city dataset.
Fourth row: Wurzburg dataset. First column: SAR patch. Second column: optical patch. Third column: translated image. Fourth
column: RMSE.

Quantitative results of the application of the proposed
methodology are reported in Table 1. As for the PSNRmetric,
it is quite stable, with a peak of 29.2 registered for the
Wurzburg dataset (month of July) and an average value of
28.4.

The same holds for the RMSE measure, which ranges
between 8.99 registered for the Wurzburg dataset (month of
July) and 10.5 obtained for the Dodge City site (month of
October). The registered average value is 9.73.

As for the SSIM index, higher fluctuations are observed. Its
values range from 0.386, calculated for the Edmonton dataset

(month of October), to 0.674, obtained using the Wurzburg
dataset (month of August). The registered average value is
0.564.

In Table 1, the results of the application of the standard
workflow [17] are also reported. In this case, the translation
has been implemented using the Pix2Pix network without any
substantial pre-processing on SAR data, apart 8-bit rescaling
through histogram clip and geocoding. A general digradation
of the image quality parameters is observed, although those
concerning the PSNR and the RMSE are less significant.
The substantial change in the performance concerns the
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TABLE 1. Multimodal image translation: quantitative results for the different datasets and comparison with standard approach.

SSIM parameter, that is more than halved using the standard
methodology. In fact, the MSE and the PSNR are measures
of the absolute errors, while the SSIM is more sensitive to
structural differences. As reported by [46], the MSE, and so
the PSNR, show low performance in the discrimination of
the structural content of images since diverse degradations
applied to the same image can result in the same MSE. This
means that, using the standard workflow, nevertheless similar
value of absolute error metrics, the drop in SSIM values
testify a significant texture degradation.

The obtained results can be interpreted also in light of the
related recent literature. The results reported in some selected
papers are summarized in Table 2. It is worthwhile to remark
that this Table is not exhaustive, as the literature on the topic
is wide. Consequently, only few papers have been selected for
explicit comparison, in order to provided numbers to support
the discussion. However, similar values can be found in many
other works [23], [24], [47], [48], [49], [50], [51], [52]
From this Table, it arises that, although the change of the

architecture used for the translation, the obtained values for
the performance indicators are quite flat. For example, the
reported PSNR is in most cases included in the range 16-19,
thus about 30% lower than that obtained using the proposed
approach. Using the Pix2Pix network, i.e., the same one used
to implement the proposed workflow, the results obtained by
the examined literature range between 17.4 and 17.8.

Considering the SSIM index, the same considerations can
be replicated. The values reported by the examined papers
range between 0.3 and 0.4 in most of cases, with a worsening
of about 50% against the value obtainable using the proposed
workflow.

The RMSE, indeed, is not adopted in the majority of
the literature on the topic, although it provides an easy-
to-understand measure of the distance between the original
image and the translated one. In fact, it is worthwhile to
note that this metric is expressed in the same unit of the
data it refers to, in this case DNs. Nevertheless, in most

of the reviewed papers, the MSE, whose unit of measure
is the square of the unit of measure of the data, is used
for the purpose. Moreover, it is observed a normalization
of the data against their maximum [45], which makes the
numbers difficultly interpretable. However, when expressed,
the RMSE is about 30% than that obtained by applying the
proposed methodology.

Concerning the loss function, some indications about its
impact on the quality of the translated image can be found
in [45] and [50]. In the first work, the authors tested two
different loss functions within their proposed architecture.
In particular, they proposed to use the L1 loss, which is the
one utilized in the standard Pix2Pix network, in combination
with a perceptual loss [53] and with a perceptual loss and the
SSIM loss. As a result, they obtained that the second option
was the best performing and determined an increase of the
PSNR and of the SSIM index from 13.2 to 13.5 and from
0.292 to 0.354, respectively. Similarly, Guo et al. [45] tested
the architecture proposed in their work with different loss
functions, obtaining variations of the PSNR and of the SSIM
index between 18.1 and 19.4 and between 0.393 and 0.444,
respectively.

The above numbers and considerations allow for arguing
that i) the variation of the architecture exploited for
translation, as well as modifications of the loss function,
has a negligible impact on the standard translation quality
indicators, especially concerning the PSNR; ii) the results
obtained in literature are quite similar although different input
datasets, in which the SAR part is provided in single-look
format, are exploited.

In summary, the proposed methodology, using a standard
architecture, allows for significantly improving the values of
the translation quality indicators. This is obtained through
i) optimization of input SAR data that, thanks to multitem-
poral processing, exhibit a textural and chromatic content
closer to their corresponding optical representation and ii) a
training constrained by spatial and temporal features, with the
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TABLE 2. Multimodal image translation: quantitative results extracted from the recent literature.

aim to reduce the quantity of patterns to be rendered, as the
correspondence between the SAR reflectivity function and
the reflectance of the scene is not bijective.

The message that we want to convey is that neural
networks, and specifically GANs for multimodal image
translation, can provide better results if the intrinsic nature
of input and target data and their phenomenological cor-
respondence are respected during the implementation of
the information process. It is intended that the training
phase is computationally more expensive with the adoption
of the proposed framework, as each area has its own
GAN to be trained. The optimization of such hassle is
not faced in this work, whose principal objective is to
demonstrate that a different way to use GANs in SAR to
optical image translation tasks is possible, and that provides
results outperforming those so far presented in the literature.
Possible workaround for training phase optimization is to
group scene sharing similar characteristics. For example,
cities of the same country can share the same model, as well
as images acquired in different seasons like spring/summer
and fall/winter.

IV. VEGETATION MONITORING
In applications, multimodal images are mainly exploited
for removing clouds from optical acquisitions [55], [56],
thus helping photo-interpretation tasks. In this Section,
we explore the suitability of multimodal images with

vegetation monitoring in areas prone to massive cloud
coverage. The idea is to estimate the normalized difference
vegetation index (NDVI) via partial least squares regression
(PLSR) [57] of a collection of indicators derived from both
translated and native optical data.

To this end, a total of 12 optical literature indices has been
considered. They include the three reflectance R,G, B bands
and the luminance expressed in Equation 5. Moreover, the
triangular greeness index (TGI) [58], the green/red vegetation
index (GRVI) [59], the green leaf index (GLI) [60], the visible
atmospherically resistent index (VARI) [61], the normalized
difference red-green redness index [62], the coloration
index [63], and the simple ratios blue/green and blue/red [64]
have been used for regression using an approach derived
from [65] in which regression variables are screened using
the variable importance in projection (VIP) parameter [66]
to determine which ones are the more informative for the
estimation problem.

Regression results are shown in FIGURE 6 and FIGURE 7
for Red Deer and Wurzburg datasets, respectively. In the first
case, the target is the average NDVI calculated on 20 plots.
In the second one, 42 plots have been considered.

The first experiment had the purpose to verify the existence
of a relation between the NDVI and the selected indices.
Therefore, all the available acquisitions have been exploited
to train the regression algorithm. As for the Red Deer
datasets, the obtained results are depicted in FIGURE 6a and
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FIGURE 6. Regression results - Red Deer dataset. (a) All data, input multimodal (RMSE = 0.138, R2 = 0.611). (b) All data, input optical (RMSE = 0.078,
R2 = 0.874). (c) Prediction, input multimodal (RMSE = 0.112, R2 = 0.567). (d) Prediction, input optical (RMSE = 0.094, R2 = 0.650).

FIGURE 7. Regression results - Wurzburg dataset. (a) All data, input multimodal (RMSE = 0.181, R2 = 0.564). (b) All data, input optical
(RMSE = 0.060, R2 = 0.952). (c) Prediction, input multimodal (RMSE = 0.206, R2 = 0.446). (d) Prediction, input optical (RMSE = 0.058, R2 = 0.954).

FIGURE 6b, for multimodal data and native optical data,
respectively.

Using native data, a strong correlation is observed between
optical indices and the target NDVI. The registered RMSE
is 0.078, while the R2 coefficient is 0.874. This is mostly
confirmed in case of usage of multimodal data. The regres-
sion performance are slightly worse (RMSE = 0.138,R2 =

0.611) but reasonably accurate considering the nature of the
input.

The same test has been repeated with theWurzburg dataset.
Its results are reported in FIGURE 7a and FIGURE 7b for
multimodal and native data, respectively. They confirm the
above considerations. Using native data, a strong correlation
(RMSE = 0.060,R2 = 0.952) is observed between optical
indices and the NDVI. The usage of multimodal data weakens
such a relation (RMSE = 0.181,R2 = 0.564), although the
regression holds, for the majority of the plots, a sufficient
degree of approximation.

The second experiment was focused on the building of a
predictive model. In this case, a subset of the available images
was used to train the regression model, which was used to
predict the NDVI of the last two of the series. For the Red
Deer dataset, the obtained results are shown in FIGURE 6c
and FIGURE 6d for multimodal and native data, respectively.
For the Wurzburg dataset, they are reported in FIGURE 7c
and FIGURE 7d for multimodal and native data, respectively.

As for the Red Deer dataset, the regression is quite
insensitive against the usage of multimodal or native optical
data. In fact, in the first case the registered RMSE and
R2 are 0.112 and 0.567, respectively. In the second one,
their values are 0.094 and 0.650. This holds only partially

using the Wurzburg dataset, for which the regression using
native optical data resulted in a very accurate prediction,
with RMSE = 0.058 and R2 = 0.954. The exploitation of
multimodal data provided a lower quality prediction having
RMSE = 0.206 and R2 = 0.446.

V. CONCLUSION
Generative adversarial networks constitute a powerful tool for
image domain translation, provided that input and target data
share characteristics allowing for a believable translation.
In the literature, the translation of synthetic aperture radar
images to the visible domain has beenmainly tackled with the
same approach used for the treatment of consumer images,
thus ignoring the peculiar structure of images and the lack of
a bijective correspondence between the reflectivity function
and the land cover.

In this paper, we demonstrated that acting on input products
and network training allows for the improvement of output
multimodal products according to standard image quality
indicators. In particular, the input is pre-processed based
on multi-temporal principles for the mitigation of speckle
and the introduction of RGB composites enhancing the
separability of the different land covers in a change-detection
perspective. The training phase has been constrained by
spatial and temporal features to account for land cover
variability against the radar reflectivity function.

The higher quality of the obtained multimodal products
allows for extending their exploitability to vegetation mon-
itoring, which has been tested through the estimation of
a synthetic normalized difference vegetation index derived
from translated optical bands with promising results, thus
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opening the possibility to the integration of such products in
further remote sensing applications beyond visual interpreta-
tion support so far proposed in the literature.

The principal drawback of the proposed workflow is the
computational burden required to train the spatio-temporal
networks for domain translation. The workaround for the
optimization of the training phase is object of current research
and represents the way forward for the diffusion of the
methodology.
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