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ABSTRACT Wireless sensor networks have become pervasive in various applications, including environ-
mental monitoring, smart cities, precision agriculture, and healthcare. In particular, linear wireless sensor
networks that span considerable distances are increasingly deployed for applications such as pipeline
monitoring and transportation systems. However, ensuring the reliability of long wireless sensor networks
poses significant challenges due to the unique characteristics of the network topology and the constraints
imposed by the resource-constrained sensor nodes. There is a notable lack of methods for the analysis and
optimization of the reliability of large-scale sensor networks, and in this paper, we partially fill this gap.
We propose a method for assessing the tradeoff between redundancy of forward error correction and reliable
packet delivery. We also consider approaches to improve the reliability of linear sensor networks based
on increasing topology connectivity and provide a corresponding method for the exact calculation of the
all-terminal reliability. Numerical experiments demonstrate the relevance and effectiveness of our results.
This research contributes to a deeper understanding of the underlying principles governing the reliability of
long wireless sensor networks and provides valuable insights for the design, optimization, and management
of such networks in real-world applications.

INDEX TERMS Wireless sensor networks, Internet of Things, monitoring system, fault tolerance, system
reliability, random graph, all-terminal reliability.

I. INTRODUCTION
Currently, corporations and governments around the world
are making serious efforts to research, develop, and patent
technologies based on wireless sensor networks (WSNs) for
monitoring long critical infrastructure [1], [2], [3], [4]. For
example, research on the use of WSNs for pipeline monitor-
ing has been carried out as part of a joint re-search project
between Stanford University, Southern California University,
and Chevron Corporation [5]. The Pipeline Monitoring Solu-
tions Competitionwas hosted by an agency of the U.S. federal
government (the Bureau of Reclamation) on a crowdsourcing
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platform. Even for a particular problem such as monitor-
ing water pipes to detect leaks, the market for solutions
reaches several billion US dollars and is growing at 5.8% per
year, according to an analytical report from GlobeNewswire.
WSNs are able to carry out continuous monitoring, detect
various faults in real time, and deliver the necessary data
to the decision-making center. Monitoring systems for vital
infrastructure based on WSNs are one of the most in-demand
IoT technologies. However, it is necessary to ensure the
reliability of the WSNs.

It should be noted that IT professionals make reason-
able claims about the unreliability of IoT technologies, and
they doubt the ultimate benefit to society from the intro-
duction of developments whose reliability is not guaranteed.
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This is especially true for the modernization of life-support
infrastructure. It is noted that companies specializing in IoT
technologies strive to occupy as much of the market as possi-
ble as quickly as possible and give priority to the early release
of products without paying due attention to issues regarding
its reliability. The issue of reliability is particularly acute
in large-scale WSNs used to monitor long objects, such as
pipelines. Most sensor nodes are geographically distant from
the base station and are usually equipped with self-contained
low-cost batteries, which have a small capacity. This means
that there is a limitation on the use of traditional network
reliability protocols.

Moreover, Linear Wireless Sensor Networks (LWSNs)
are commonly used to monitor the condition of long lin-
ear type infrastructures, such as oil/gas/water pipe-lines,
railway/metro, highway, and tourism/heritage sites [6]. The
topology of an LWSN is a simple chain graph. A packet sent
by a sensor is retransmitted by all nodes between this sensor
and the sink. Here, it should also be noted that wireless links
are inherently unreliable. If even one channel fails, the net-
work splits into two disconnected segments and data from all
sensors of one of the segments is lost. The methods proposed
to improve the reliability of LWSNs are based on improving
the link reliability or modifying the network topology in order
to increase its connectivity. However, even in the most recent
works, the analysis of such methods is carried out only for
small sized LWSNs [7]. There is an acute lack of efficient
methods for analyzing the reliability of long LWSNs, and in
this paper, we partially fill this gap.

Thus, the major contributions of this work are summa-
rized as follows. We consider optimization problems for
forward error correction schemes in long-distance networks
(LWSNs). For a number of scenarios we obtain solutions
in closed form. Furthermore, we propose an exact and fast
method for calculating the all-terminal reliability, taking
into account the nuances of LWSN modification. Finally,
we conduct rigorous numerical experiments to demonstrate
the significant superiority of the proposed method in terms of
computational time.

The reminder of the paper is organized as follows.
Section II provides a brief overview of the research back-
ground. Section III presents mathematical models that for-
malize the problem of optimizing the reliability of linear
wireless sensor networks and discusses approaches to obtain-
ing a solution. In Section IV, we consider the more general
case of elongated wireless sensor networks. Section V con-
cludes the paper.

II. PRELIMINARIES
The literature has extensively focused on approaches to
enhance the reliability IoT applications and WSNs [7], [8],
[9]. Ensuring the reliability of a network is deemed jus-
tifiable even in light of heightened energy consumption,
given that the accrued advantages outweigh the associated
costs of increased energy usage [8]. A prevailing consensus

acknowledges the necessity of striking a balance between
energy consumption and reliability. However, to effectively
achieve this equilibrium, methods for evaluating reliability
are indispensable, particularly in the context of multi-hop
communication. Common for all types of wireless networks,
is that channels are vulnerable to failures caused by interfer-
ence, signal attenuation, noise and other related factors. These
factors exacerbate reliability concerns, particularly in large-
scale networks.

Prominent techniques for ensuring network reliability
include Automatic Retry Request (ARQ) and Forward Error
Correction (FEC) [9]. ARQ relies on retransmissions to for-
tify reliability, proving efficacious within shorter distances.
However, its feasibility diminishes in expansive networks
housing low-power nodes. Furthermore, the latency sensi-
tivity of WSNs applications poses an additional challenge.
Therefore, retransmissions should be avoided in these cases.
On the other hand, FEC involves the integration of redundant
bits prior to packet transmission, enabling the correction of
corrupted messages and substantially reducing the necessity
for retransmissions. Therefore, we delve into a comprehen-
sive examination of enhancing network reliability through
FEC. The paper [10] provides an extensive survey of recent
research on FEC in various wireless communication domains,
with a specific emphasis on low power wide area networks
and IoT technologies.

There is a relationship between message length, error tol-
erance, and bit error probability. To demonstrate this we use
the following notation. The message is encoded into a binary
n-tuple: (x1, x2, . . . , xn). Let the probability of an error in a
single bit be equal to pb. Therefore, the probability of no error
of a single bit is 1− pb. A correction code can correct up to k
errors. Therefore, ifNe is the number of errors in the message,
and Ne ≤ k , then a transmitted message is successfully
recovered by the receiver. The value of k represents the error
correction capability and can be defined as a fraction of n [9].
The transmission of bits is assumed to be independent.

Let us introduce the following designation for the binomial
cumulative distribution function:

B(n, k, pb) =

∑k

i=0

(n
i

)
pib(1 − pb)n−i, (1)

where binomial coefficients are present(n
i

)
=

n!
i! (n− i)!

(2)

Therefore, the probability of successfulmessage transmission
(i.e. the reliability of the link between two nodes) is as
follows [9], [11], [12], [13], and [14]:

P (Ne ≤ k) = B(n, k, pb) (3)

FEC mechanisms increase the overall data size, leading to
higher energy consumption. In resource-constrained WSNs,
this additional overhead may be a significant drawback. Note
that FEC has a finite ability to correct errors based on the
redundancy introduced. If the level of corruption exceeds the
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correction capacity, then the FEC may not be able to fully
recover the original data, leading to potential data loss. If data
packets are transmitted through many intermediate nodes to
reach their destination (multi-hop scenario), the reliability
situation deteriorates significantly.

It is also possible to increase network reliability through
redundant nodes and links. However, the costs associated
with each backup facility are typically high. Therefore,
network planning must include a cost-benefit analysis that
weighs the additional network reliability and the ability to add
a backup element against the additional costs. Although the
cost of adding a backup node is usually easy to determine,
it is much more difficult to predict the additional system
reliability gained by adding nodes. Randomgraph approaches
have been proposed in the literature for estimating how much
network reliability will increase by adding backup nodes and
links. All-terminal reliability is the most commonly used
reliability measure defined on random graphs [15], [16].
This metric quantifies the probability that a random graph
remains fully connected despite independent edge failures,
each occurring with a uniform probability. For the Internet
of Things, where WSNs serve as the underlying architec-
ture, the all-terminal reliability is a particularly sought-after
criterion [17].

The all-terminal reliability problem is NP-hard [18]. More-
over, it is not known to belong to the NP class [19],
primarily because verifying the correctness of a solu-
tion could also be computationally intensive, potentially
requiring more than polynomial time. For a comprehen-
sive exploration of the computational complexity involved
in network reliability analysis, we suggest consulting the
paper [20]. For very simple topologies such as trees or
cycles, the reliability metric of all terminals can be cal-
culated analytically [16]. However, in more general cases,
researchers typically rely on bound estimations [19] or
approximate methods [21], which prove ineffective for large-
scale networks [22]. This will be further demonstrated
below. Even recent works [7], [23], [24] have analyzed only
small networks of a few dozen nodes, while geographically
extensive networks can contain thousands of nodes. Thus,
advancing technique for network reliability analysis that con-
siders the unique properties of network topology are highly
promising.

III. LINEAR TOPOLOGY RELIABILITY
In this section, we consider the typical case of traditional
LWSNs, where the network topology is described by a simple
chain graph. To improve the reliability of the link, a for-
ward error correction mechanism is assumed to be used.
By increasing the power of the transmitted signal, it is pos-
sible to increase the probability of successfully transmitting
one bit, 1 − pb. By increasing the message size, we can
increase the efficiency of the error-correcting code. This
improves the reliability of the channel and the entire network
as a whole. However, this also increases the energy consump-
tion and other overhead costs.

Thus, to find the optimal message size, we need to solve
the optimization problem as follows:

minn C(n) (4)

subject to

R(pb, n) ≥ α (5)

where
• C is a function describing network costs;
• R is a function describing a system reliability;
• α is the required level of reliability.

It is reasonable to assume that C(n) and R(n) are strictly
monotonically increasing functions of n. This implies that as
n increases, the values ofC(n) and R(n) consistently increase.
Hence, the optimal message size is as follows:

n∗
=

⌈
R−1(pb, α)

⌉
(6)

where R−1 is the inverse function to R. Taking into account
the integer nature of n, we obtain

n∗
= min{n ∈ N : R(pb, n) ≥ α} (7)

Therefore, we obtain the general solution to the optimization
problem (4) and (5), and the optimal system cost is C(n∗).
In the problem under consideration, the optimal solution
depends solely on the constraint defined by the reliability
function and not on the specific form of the cost function,
provided that the cost function is monotonically increasing.
Consequently, the optimization problem is reduced to the
computation of the reliability function. For a fixed n, a similar
approach can be examined to determine the minimum possi-
ble error in the transmission of a single bit. Optimizing the
objective function acrossmultiple variables necessitates more
advanced techniques, which in turn intensify the demands on
both the quality and the precision of the reliability function’s
calculation.

Let us note that the cost function can be interpreted in terms
of energy consumption. For example, in the case of a linear
energy consumption function we obtain C (n) = nE1b, where
E1b represents the energy expended for the transmission,
processing, and receiving one bit [9].

Likewise, we can consider the problem of maximizing reli-
ability for a given budget constraint, c0. In this case, we obtain
the following solution:

n∗
= max {n ∈ N : C (n) ≤ c0} (8)

Although the optimal solution is also determined by the con-
straint, in order to assess the adequacy of the allocated budget,
it is necessary to calculate the reliability function R(pb, n∗).

Given the scarcity of wireless sensor networks resources,
it is desirable to avoid repeated messages and redundant
service packets. Since the network topology is a simple chain,
the reliability function, R, can be obtained explicitly. The
minimum probability of delivering a correct message from
any sensor to the sink can be used as an indicator of the sys-
tem’s reliability. Let h be the distance between the sensor and
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the sink in the term of hops, i.e. h is the count of transmissions
occurring between a source and a destination. If the message
will be corrected in each intermedia node then the reliability
function takes the following form:

R(h) = Bh(n, k, pb) (9)

In the case of heterogeneous error probability, the for-
mula (9) is modified as follows:

R (h) =

∏h

i=1
B (n, k, pb(i)) (10)

where pb(i), iϵ[1, h] is the 1-bit error probability in the i-th
link from the sensor to the sink.

In multi-hop transmission scenarios, the probability of data
loss significantly rises, when corrections are made only at the
end node. In this case, the probability of successful transmis-
sion equals

P (Ne ≤ k) = B (n, k, q(h)) (11)

where q(h) is the following function:

q (h) = 1 − (1 − pb)h (12)

and in the case of heterogeneous error probability:

q (h) = 1 −

∏h

i=1
(1 − pb (i)) (13)

Obviously, the probability of error, characterized by the
q (h) function, is growing rapidly, and the reliability of the
network becomes unsatisfactory. A hybrid approach can be
used, restoring the message on each j-th intermediate node.
Suppose that the sensor is located at a distance h from the
sink. Let h = aj + l, where a and l are integers, and l is the
remainder of dividing h by j. Therefore, the probability is to
restore the message on the sink is as follows:

P (Ne ≤ k) = (B (n, k, q(j)))a B (n, k, q(l)) (14)

The hybrid approach can be used for medium-distance trans-
missions, but is not suitable for long-distance networks.
In the case of a heterogeneous bit error rate, an analogous
formula can be readily derived. However, for performance
analysis, researchers typically assume a consistent pb value.
For instance, in the reliability analysis of multi-hop trans-
missions, the worst-case bit error rate is employed [13],
or the typical values for channel availability or failure
are used [25], [26], [27]. In applications of long WSNs,
such as pipeline monitoring or underwater object tracking,
even geographically dispersed sensors are often treated as
statistically homogeneous [28], [29], [30]. Moreover, the
assumption of statistical similarity among network nodes is a
common practice in wireless communications and IoT appli-
cations. For example, in the performance analysis of Slotted
ALOHA-based MAC protocols for IoT, it is assumed that
each sensor has an equal probability of accessing the channel
within a specific time slot [31], [32]. Thus, for the purposes
of performance analysis, we assume statistical homogeneity
among nodes and links. However, it is important to note that

the proposed methods are also applicable in the heteroge-
neous case.

The reliability of message transmission can be increased
by using independent routes. If the sensor is between two
sinks, at a distance of h1 from one sink and h2 from the other
sink, and the message is sent to both sinks, then the reliability
function becomes

R (h1, h2) = R (h1) + R (h2) − R (h1)R (h2) (15)

The formula can be readily generalized to star topologies as
well as other tree topologies. The reliability function allows
for the effective optimization of system parameters, thereby
enhancing overall system performance and efficiency.

In the aforementioned cases, the network topology is rep-
resented by simple chains. Consequently, the calculation of
reliability is unimpeded by topological issues, allowing us to
accurately determine both the exact value of network reliabil-
ity and the solutions to inverse problems. These results enable
us to provide a clear example highlighting the complexities
associated with approximate calculations of network reliabil-
ity. Let the system parameters be as follows: α = 0.99,pb =

0.05, h = 500, k = n/2, and n will undergo examination
with a value of 32. Assume an approximate approach is used
instead of formula (9), leading to a 1% underestimation of
system reliability. Consequently, if they obtained reliability
level is acceptable, messages of size n = 32 are used,
although n = 8 suffices. This results in a fourfold increase
in energy consumption. Thus, even advanced approximate
methods for calculating system reliability may fail to opti-
mize network parameters. As network size increases, this
issue becomes more pronounced, highlighting the need for
reliability computing algorithms that are both efficient and
precise.

IV. LONGITUDINAL GRAPHS
In this section, we consider the more general case of graphs
representing a topology of long-distance wireless sensor net-
works. An analytical expression for the reliability of a random
graph can be easily obtained if a graph can be represented
by serial–parallel union of graphs with known reliability
polynomials. However, by modifying LWSNs to increase
connectivity, we obtain topologies for which a reliability
calculation is a challenge. To the best of our knowledge, such
computations have exclusively been performed for small-
sized systems. We use the special properties of modified
LWSNs and develop an efficient and accurate method for
calculating the reliability of large networks.

A. NOTATIONS
Let us assume that a topology of a wireless sensor network
is modeled by an undirected probabilistic graph G = (V ,
E). Here V is a set of vertices. These vertices represent the
sensor nodes in the network. E is a set of edges (links).
Each edge connects two vertices and represents the wireless
channel between two adjacent nodes. Each link e ∈ E works
properly with an associated probability pe. We consider a
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typical case, when sensor nodes are absolutely reliable and
wireless channels are affected by random failures due to
noise, signal shielding, weather conditions, and other factors.
The reliability of graphG is the probability of connectivity of
G, i.e., we focus on all-terminal reliability.

The value of pe can be determined through the application
of formula (9) or by employing other approaches, such as
alternative mathematical models [33], experimental proce-
dures, expert interviews, and so on.

Let us introduce a formal definition of longitudinal graphs
that have been used to model a topology of WSNs. Let
G1,G2 . . . ,Gk (k > 1) be a sequence of biconnected graphs
with the properties as follows:

1) Graphs Gi and Gi+1 have exactly two common vertices
xi, yi and do not have common edges, 1 ≤ i ≤ k .

2) If |i− j| > 1, thenGi andGj have no common elements.
The graph

G =

⋃k

i=1
Gi (16)

ThisG =
⋃k

i=1Gi is then called a longitudinal graph (Fig. 1).
Subgraphs Gi (1 ≤ i ≤ k ) are the components of the longi-
tudinal graph G. This graph is a connected graph. Therefore,
each pair of vertices {xi, yi|1 ≤ i ≤ k − 1} is a vertex cut
in G.

In this paper, we define longitudinal cut in G as set⋃k−1

i=1
{xi, yi} (17)

FIGURE 1. Longitudinal graph.

A component of longitudinal cut, xi, yi is defined as a cross-
cut of G. A longitudinal cut is maximal if no 2-vertex cut of
G can be added to it so that it remains longitudinal. Any two
cross-cuts xi, yi and xj, yj are adjacent if |i− j| = 1.

B. PRACTICE EXAMPLE
In practical scenarios, a longitude graph emerges when the
LWSN topology is modified to improve network connectivity
with auxiliary nodes or networks, extend the transmission
range of sensor data, or use of mobile sinks [34], [35].
Next, the WSN topology is naturally described by a lon-
gitude graph in environments where sensors are distributed
along a quasi-linear path. Practically important cases include
border surveillance, road and railway monitoring, vehicle-
to-everything (V2X) systems, and bridge or tunnel health
monitoring. Clustering and the convergence of multiple net-
works can also contribute to the formation of longitude

graph-like topologies. In [36], the authors propose a fewways
to modify LWSNs used for underwater pipeline monitoring,
which led to network topologies described by longitudinal
graphs.

Let us consider a case when a network contains two-vertex
cuts. The corresponding graph is longitudinal. The modified
LWSN topology described in [7] and [23] is longitudinal and
contains many two-vertex cross cuts (Fig. 2).

FIGURE 2. Method for modifying LWSNs to improve reliability.

Here, the sensors generate and send data to a single
sink. Additional nodes (backbone nodes) have been added to
improve connectivity. Without backbone nodes, packets from
sensor nodesmust rely onmulti-hop forwarding along a linear
topology to reach the sink. However, with backbone nodes
and their interconnections, sensors have additional paths to
access the sink, which improves system reliability by improv-
ing the network topology connectivity. The components of
the corresponding longitudinal graph are subgraphs Gi. The
cross-cuts of the longitudinal graph are sets formed by a
backbone node and sensors of corresponding Gi.

C. DECOMPOSITION TECHNIQUE
Currently, a number of methods are known for accurate
and approximate calculation of network reliability indicators.
Taking into account the problem of all-terminal reliability,
the most popular approach is the factoring method, which
is also called the branching method or the Moore–Shannon
method [33], [37]. The method is based on replacing the
initial problem with two auxiliary subtasks with a smaller
number of random elements. To do this, an arbitrary unre-
liable edge is selected and the total probability formula is
applied to it. Thus, we obtain two new graphs. In one of them,
the edge becomes absolutely reliable, i.e., we can contract an
edge with vertices incident to it into one vertex. In another
graph, an edge has been removed. A similar procedure (fac-
torization) is applied to the resulting graphs. Therefore,

R (G) = peR
(
G∗
e
)
+ (1 − pe)R (G\e) (18)
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where the graph G∗
e is obtained by contracting edge e in G∗

e ,
and the graph G\e is obtained by deleting e. We continue the
recursion process until we obtain a disconnected graph (its
reliability is zero) or a small graph for which the probability
of being connected is already known [38]. In addition to the
factoring method, other exact and approximate methods have
been proposed for calculating the all-terminal reliability of
a random graph. A corresponding comprehensive survey can
be found in [37].

Reduction and decomposition methods are often used to
speed up calculations. They can be used both at the stage
of preliminary graph analysis and during the computational
process. This technique makes it possible to reduce the com-
putational time and memory used for exact algorithms as well
as to improve the estimates obtained by approximate meth-
ods. There are attractive prospects for network decomposition
through a vertex cut, in particular, a two-vertex cut (2-cut)
[38], [39]. Let us consider a biconnected graph G, which can
be divided by a 2-cut into two subgraphs G1,G2 (Fig. 3).

FIGURE 3. A graph G with a two-vertex cut.

For the decomposition of this graph, there is the following
formula, which was first derived in [40], and was indepen-
dently obtained in [41] a decade later:

R (G) = R (G1)R
(
G′

2
)
+ R (G2)R

(
G′

1
)
− R (G1)R (G2)

(19)

where G′
i is a graph obtained by merging the vertices x, y in

the graph Gi, i = 1, 2.
We use formula (18) as a core idea for creating an efficient

approach to calculating the reliability of a longitudinal graph,
since such a graph contains a number of 2-cuts. Moreover,
the graphs resulting from the decomposition may still contain
2-cuts. At the same time, when formula (19) is used recur-
sively, for some graph components, it is required to recalcu-
late their reliability. These calculations can be avoided. In the
next subsection, we describe a method for finding all inter-
sections. Below, we describe a way to find all intersections.
Using this result, a method for calculating the reliability of a
graph without redundant recalculation is proposed.

D. METHOD
Recursive application of equation (19) for longitudinal graph
G leads us to consider its components Gi and the following
auxiliary graphs (Fig. 4):

FIGURE 4. Auxiliary graphs. The vertex zi is obtained by merging vertices
xi and yi .

Please note that

Gik =

⋃
i≤j≤k

Gj, 1 ≤ i ≤ k; (20)

G′
ik = G′

i

⋃
i+1≤j≤k

Gj, 1 < i ≤ k. (21)

Using formula (19), we obtain the recurrent equations as
follows:

R (Gik) = R
(
Gi,G′

i+1k ,G
′′

i ,Gi+1k

)
(22)

and

R
(
G′
ik
)

= R
(
G′
i,G

′

i+1k ,G
′′′

i ,Gi+1k

)
(23)

where R (X ,Y ,Z ,W ) is the functional defined on graphs
X ,Y ,Z , and W as follows

R (X ,Y ,Z ,U) = R (X)R (Y ) + R (Z )R (U) − R (X)R (U)

(24)

According to the provided definition, G1k = G. Thus,
we provide the novel recursive algorithm for calculating the
reliability R (G).
Now, consider the problem of finding the maximum lon-

gitudinal cut. A natural way to solve it is a recursive search
for 2-cuts in the components into which the graph is divided
according to the 2-cuts already found. The main difficulty is
that the set of 2-cuts obtained by this procedure remains a
longitudinal cut. This difficulty is trivially solvable for the
components G1,Gk since any of their 2-cuts can be chosen
to complement the already formed longitudinal cut. The only
thing is to make sure that each vertex from the new 2-cut in
G1 or Gk is distinct from the nodes {x1, y1} or {xk−1, yk−1},
respectively.

For an internal component Gi(2 ≤ i ≤ k − 1), none of its
2-cuts can be added to a current longitudinal cut set (17).

Let there be a cut {x, y} in the component Gi, dividing
it into subgraphs H1,H2. Obviously, the longitudinal cut
remains longitudinal due to location of vertices from neigh-
boring cross-cuts with numbers i, i−1 to different subgraphs:
H1,H2. That is, ⋃k−1

i=1
{xi, yi} ∪ {x, y (25)
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is also a longitudinal cut if nodes {xi−1, yi−1} are in one
subgraph Hi, and the nodes {xi, yi} are in another. Thus,
having a longitudinal cut C in the graph and wanting to
complete it to the maximum longitudinal cut, we find an
arbitrary two-vertex cut {x, y}, check where the nodes from
neighboring cross-cuts are, and determine whether the cut is
longitudinal.

Let us call the algorithm given by formulas (22)-(24)
LongCuts. To calculate the reliability of a longitudinal graph
using the LongCuts algorithm, it is necessary to calculate
the reliability of 4 (k − 2) + 4 graphs: components or
contracted components. Using the traditional approach (the
2-Cuts algorithm) based on formula (19) with sequential enu-
meration of the components of the longitudinal cut, we need
to calculate the reliability of the following number of graphs:

2 + 2k−1
+ 4

∑k−3

i=0
2i ≈ 2k (26)

Thus, the proposed new algorithm is much faster than the
traditional 2-Cuts algorithm.

V. PERFORMANCE EVALUATION
First, we consider a case of a linear topology and demon-
strate the inadequacy of an approach that implements error
correction solely at the terminal node, excluding interme-
diate nodes. Fig. 5 illustrates the reliability of LWSN for
unidirectional packet transmission using the following three
approaches: error correction at each node, error correction
exclusively at the sink, and a hybrid method in which errors
are corrected at every second node, i.e. j = 2 in equation (14).
The FEC parameters are selected as follows: = 10,K =

3,pb = 0.1. All three plots depict a decreasing function of
the distance between the sensor and the sink. However, in the
scenario wheremessage correction is performed at each node,
the reliability decreases at a significantly slower rate.

FIGURE 5. FEC performance across different approaches.

For a sensor located one hop from the sink, the results
are identical across all approaches. The message is correct
with a probability of about 0.99. However, for a sensor

located only two hops away from the receiver, implement-
ing message recovery at the intermediate node results in an
observed 8% increase in reliability. As the number of hops
increases, the disparity between the reliability indicators of
the different approaches will become increasingly signifi-
cant. For the other two approaches, the reliability values
coincide; i.e., for h = 2, formula (11) and formula (14)
are equivalent. With increasing values of h, the reliability of
the hybrid approach demonstrates relatively modest degra-
dation and this situation may be partially enhanced through
the augmentation of n. However, this method of increasing
reliability seems impractical. Indeed, in wireless networks,
the ratio of energy costs for data transmission compared to
computations at network nodes is typically skewed heavily
towards transmission. The energy consumption for packet
transmission increases exponentially with distance, while the
computational tasks in WSN nodes are usually designed for
low energy consumption using energy-efficient microcon-
trollers. Moreover, the sensor hardware can be optimized
to perform the required computations and control functions
with minimal energy consumption. Thus, error correction
at all intermediate nodes is justified even with some addi-
tional energy consumption. Hence, for the remainder of our
performance analysis, we adopt the approach wherein error
correction is implemented at each node.

In scenarios where the probability of bit errors increases,
a practical method for maintaining the requisite level of net-
work reliability involves enlarging the message size. Fig.6
illustrates how network reliability varies with different values
of n, demonstrating that increasing the message size can
effectively counteract higher bit error rates and ensure robust
communication. The remaining parameters are defined as
follows: k = [n/2], h = 100.

FIGURE 6. Effect of message size on reliability, h = 100.

Fig,7 is analogous to Fig.6, differing only in that the num-
ber of hops is set to 1000. At low values of pb, the network
reliability remains high.

In the context of long LWSNs, characterized by a relatively
high bit error rate of pb = 0.1 and an average message size of
n = 21, the reliability indicators exhibit exceptional stability.

124512 VOLUME 12, 2024



V. V. Shakhov et al.: Toward Reliability of Long Wireless Sensor Networks

FIGURE 7. Effect of message size on reliability, h = 1000.

Remarkably, these indicators remain unchanged to within
seven decimal places, notwithstanding a tenfold increase
in the number of transitions. Thus, the FEC mechanism
demonstrates its ability to maintain a high level of network
reliability with a large number of transitions. However, when
the parameter k decreases, the situation no longer looks so
optimistic.

Fig.8 shows that the reliability of the LWSNs is muchmore
dependent on parameter of error-correction capability, k , than
on the network size. In this numerical experiment, we set n =

21, pb = 0.1.

FIGURE 8. Impact of error-correction capability on LWSN reliability
compared to network size.

When k values are close to 1, network reliability experi-
ences a significant decline, persisting at notably low levels
even with a small number of hops. When the parameter k
is set to 4 and the number of hops h is 100, the network
reliability index is observed to be at an unsatisfactory level.
The situation is radically changed by doubling the value of k ,
resulting in a dramatic improvement in the reliability index.

In contrast, reducing the number of hops by half or more does
not produce a nearly comparable effect.

Assume the LWSN comprises 100 nodes utilizing a FEC
scheme characterized by parameters: n = 32, p = 0.1, and
k = 8. Fig.9 illustrates the delivery rate for each sensor node,
indexed from 1 to 100, under two distinct network configu-
rations. In the first configuration, the network incorporates
two sinks. The sensor chain is enclosed between these sinks.
Each sensor node transmits messages in two directions, tar-
geting both sink nodes. This approach is designed to enhance
reliability by providing redundant paths for message delivery;
however, it results in a doubling of energy consumption.
In the second configuration, the network includes only a
single receiver node. Packets are transmitted in one direction
towards this sole sink. This configuration is simpler and less
expensive, but at the same time sacrifices reliability.

FIGURE 9. Comparison of network reliability in LWSNs with one and two
sinks.

As can be seen from Fig.9, the reliability of LWSNs with
two sink nodes exhibits a noticeable trend, reaching its mini-
mum value at the midpoint of the network, specifically at the
50th sensor node. The overall reliability of the network with
two sinks substantially surpasses that of a system configured
with a single sink node.

Next, we consider a more general case where the network
topology is described by a longitudinal graph. We present the
results of a comparative numerical analysis of our proposed
algorithm with two other known algorithms that have the
best performance. One of these algorithms is the already
mentioned recursive 2-cuts. The remaining algorithm does
not use any decomposition based on vertex cut and is based
on the factoring method (Factoring algorithm) reinforced by
a serial-parallel transformation at each step, where a recursive
process is performed until a 5-vertex graph with a known
reliability polynomial is obtained [21]. To the best of our
knowledge, other algorithms for solving a similar problem,
even those recently published, have a significantly lower
performance. For example, in a paper [42], calculating the
reliability of a graphwith 15 vertices and 30 edges takes about
13 hours.
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Here, decomposition-based testing methods also use the
factoring procedure when necessary. Finding the maximum
longitudinal cut using the procedure described above requires
enumeration of all pairs of nodes along with checking the
connectivity of the graph obtained by removing each pair of
nodes, i.e., O(MN 2) operations.

For experiments, we have taken longitudinal graphs
obtained by the recursive procedure of joining to an already
formed graph of the 4-node complete graph K4 under the
assumption that two nodes of these graphs coincide. The
longitudinal graph after k − 1 has iterations we denote as K k

4
(Fig. 5).

FIGURE 10. Example: graph K5
4 .

Table 1 shows the execution time of algorithms for calcu-
lating the reliability for graphs K j

4, j ∈ {20, 25, 100}. The
smallest graph, K 20

4 , contains 40 nodes and 96 edges. For
testing, we use 4-core CPU (2.4 GHz). The reliability of each
edge equals 0.9. The graph reliability values obtained using
the tested algorithms coincided with an accuracy of up to
six decimal places. The mentioned values are also shown in
Table 1.

TABLE 1. Units for magnetic properties.

The experiments clearly demonstrate the limitations of
all-terminal reliability algorithms based on factorization. The
reliability calculation time for real-size networks becomes
unacceptably long. In the same situation, the decompo-
sition approach also makes such a calculation quite fast,
while the use of longitudinal cuts additionally speeds up the
calculation.

VI. CONCLUSION
In this article, we consider the main approaches to improve
LWSN reliability, such as error correction mechanisms in
received packets and topology connectivity enhancement.
To analyze and optimize these approaches, we have devel-
oped mathematical tools. The problem of calculating the
probability of connectivity of linear wireless sensor networks

with unreliable communication channels has been consid-
ered. We analyzed the influence of the parameters of the
correction codes on the reliability of message de-livery to the
sink through a large number of intermediate nodes. Longer
messages generally allow a higher bit error threshold and
offer a better error correction capability, but they require more
energy. We have obtained formulas for finding a trade-off
between network reliability and message transfer overhead.
Please note that specific system settings may vary depend-
ing on network characteristics, application requirements, and
environmental factors. A new approach to the all-terminal
reliability calculation is proposed on the basis of the for-
mula for decomposing a network in a two-vertex cut. For
networks of an extensional spatial structure with many such
cuts, arranged in series, we describe a method for identifying
such cuts and a method for their subsequent traversal. As a
result, it becomes possible to calculate the reliability of such
a network with a single calculation of the reliability of its
components as well as of components merged by the cutting
nodes.We focus on exact algorithms since approximatemeth-
ods can lead to an inadequate choice of system parameters.
A corresponding numerical example is given. In the general
case, the calculation of the all-terminal reliability is an NP
hard problem. However, we use the properties of longitudinal
graphs and find an algorithm of polynomial complexity in
practically important cases. Numerical experiments show that
this approach significantly speeds up the calculation of the
reliability of a longitudinal graph and significantly outper-
forms all known similar algorithms.
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