
Received 11 August 2024, accepted 2 September 2024, date of publication 4 September 2024,
date of current version 13 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3454551

Optimized Data-Flow Integrity for
Modern Compilers
IRENE DÍEZ-FRANCO 1, XABIER UGARTE-PEDRERO 2, AND PABLO GARCÍA-BRINGAS 3
1University of Deusto, 48080 Bilbao, Spain
2Cisco Systems, Inc., San Jose, CA 95134, USA
3Faculty of Engineering, University of Deusto, 48080 Bilbao, Spain

Corresponding author: Irene Díez-Franco (diez.irene@opendeusto.es)

This work was supported in part by the Elkartek CERBERO Project of Basque Government under Grant KK-2024/00022. The work of
Irene Díez-Franco was supported in part by the Pre-Doctoral Grant by the Basque Government.

ABSTRACT Non-control-data attacks are those attacks that purely target and modify the non-control data
of a program, such as boolean values, user input or configuration parameters, and leave the control flow of a
program untouched. These attacks were considered a niche due to the high difficulty in crafting attacks that
do not modify the control flow. However, in recent years researchers have already demonstrated that non-
control-data attacks can be automatically constructed and that they pose a significant threat because they
can compromise critical and widely used software, such as web browsers and the Linux kernel. Moreover,
they can also be used to disable or bypass state-of-the-art software security techniques, such as control-flow
integrity. The most promising technique to protect against non-control-data attacks is data-flow integrity,
however, modern compilers do not implement this protection yet. In this work we present an optimized data-
flow integrity implementation for modern compilers that reduces the amount of basic blocks that need to
be protected in an average of 45.8%, it also has broader security guarantees due to its more precise static
analysis. Finally, we evaluate the completeness of our optimized data-flow integrity implementation.

INDEX TERMS Compilers, data-flow integrity, non-control-data attacks, program analysis, security
vulnerabilities, systems security.

I. INTRODUCTION
Since Chen et al. first raised awareness [15] of the theoretical
dangers of attacks targeting the non-control-data of a
program, security researchers have not only demonstrated
that non-control-data attacks are feasible and that they can be
automatically constructed [22], [23], [24], but also that they
are capable of hindering critical software, such as modern
browsers [25], [31], [34], and the Linux kernel [16], [47].
Moreover, some of these works demonstrate [11], [16]
that non-control-data attacks are also being used to bypass
different implementation variants of control-flow integrity
(CFI) [1]. Nowadays CFI is considered the state-of-the-art
technique against control-flow hijacking attacks, and it is
present in the two most prominent compilers (i.e., GCC and
LLVM) [41]. By using non-control-data attacks as a stepping

The associate editor coordinating the review of this manuscript and

approving it for publication was Chi-Yuan Chen .

stone to disabling CFI, attackers are free to utilize a wider
range of advanced exploitation techniques, such as return-
oriented programming [36] or other variants.

In order to eradicate non-control-data attacks, statistical
defenses focused on randomizing or encrypting the layout
of data in memory have been proposed [7], [8]; however,
due to the statistical nature of these defenses, they are often
vulnerable to information leak attacks. At the same time, the
most prominent runtime defense technique to hinder non-
control-data attacks is data-flow integrity (DFI) [13]. DFI is
a runtime defense technique that checks which instructions
are allowed to write to different memory addresses, and thus
is able to prevent non-control-data attacks. However, DFI is
limited by the quality of the static analysis that guides its
runtime checks, and by the performance penalties incurred
by using such defense at runtime.

Since DFI was originally presented nearly two decades
ago, specialized solutions have arisen to solve particular

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 124171

https://orcid.org/0009-0009-7994-6555
https://orcid.org/0009-0004-3950-9880
https://orcid.org/0000-0003-3594-9534
https://orcid.org/0000-0001-9338-4274

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

instances of non-control-data attacks [3], [37]; however,
to the best of our knowledge there have not been efforts
to optimize and broaden the security guarantees of the
original DFI.

The contributions of this paper are as follows:

• We present a design, and practical implementation of
DFI in modern compilers.

• We augment the security guarantees provided by the
original DFI proposal by strengthening the static anal-
ysis adding field-based points-to analysis and taking
call-context into account.

• We propose a first optimization that allows users to
define their own critical basic blocks so that those can
be automatically chosen to be instrumented.

• We further optimize DFI by providing a control
dependent data optimization to reduce the subset of basic
blocks that need to be instrumented.

• We evaluate the completeness of DFI in the presence of
compiler optimizations such as tail calls.

The rest of the paper is organized as follows: we discuss
the background and related work relevant to non-control-
data attacks and defenses (§ II), we present the threat model
applicable to our optimized DFI implementation (§ III),
we introduce the design of our DFI implementation (§ IV),
we explain our basic-block optimizations (§ V), we dis-
cuss the challenges of implementing DFI in a modern
compiler (§ VI), we evaluate the completeness of our
implementation (§ VII), to then finally present our conclu-
sions (§ VIII).

II. BACKGROUND AND RELATED WORK
Seecurity critical data in any program can be classified as
control data or non-control data. Control data is used to
drive the control-flow of a program (e.g., return addresses,
function pointers). In contrast, while non-control data does
not explicitly drive the control-flow of a program, it can
still serve as a decision point for control-flow statements
(e.g., boolean values, user input, configuration parameters).

Memory errors were first exploited to inject malicious data
that will later on be executed as code. In these scenarios it is
possible tomodify control data and then force the execution to
such malicious code. Modern mitigations like DEP/W⊕X [5]
prevent these exploitation techniques, and as a consequence
nowadays most attacks try to reuse existing control data to
subvert the control-flow of a program, and thereafter perform
malicious actions [39]. However, due to the effort made by the
security industry and research community many promising
defenses [1], [26], [30], [32], [40], [41], [42], [43], [46]
have been proposed that make control-flow hijacking attacks
increasingly difficult.

A. NON-CONTROL-DATA ATTACKS AND DEFENSES
Efforts to tamper with non-control data to launch viable
attacks were first discussed by Chen et al. [15] who identified
different types of security-critical non-control data and

provided memory error examples of real-world programs that
could be exploited to launch data-only attacks. Both Hu et al.
and Ispoglou et al. independently demonstrated that non-
control-data attacks could be automatically constructed using
two different methods [22], [24], the former method stitches
together two or more existing dataflows given a programwith
amemory error, the variable it can initially influence, its trace,
and the target variable to modify; whereas the later provides
a domain specific language to write exploits and leverages
symbolic execution techniques to search the basic blocks
with the desired capabilities. A subsequent contribution by
Hu et al. [23] proved that data-only attacks exhibited Turing-
complete capabilities if atomic data-oriented gadgets and a
gadget dispatcher could be chained together in a technique
known as data-oriented programming (DOP), which can be
thought as return-oriented programming (ROP) [36] or other
of its variants or weird machines [9], [10], [14], [35], but
specifically tailored for the non-control-data plane.

Exploitation based on non-control data has diversified, and
has become a stage to launching attacks that give the attacker
more manoeuvrability. Small changes to non-control data
have proven to be useful to subvert other integral defense
techniques such as control-flow integrity (CFI) [11] thereby
allowing any form of control-flow hijacking; they can also
disable W⊕E in the Linux kernel [16], bypass same-origin-
policy enforcement in Chrome [25] or enable remote code
execution in Mozilla’s JavaScript code engine [31].

Nevertheless, the proposal of defenses to hamper the
exploitation of non-control data have remained stagnated
since data-flow integrity (DFI) [13] in comparison with the
efforts made to protect control data, even though endeavors
to leverage attacks based on non-control data have continued.
Specialized solutions have been proposed to hinder specific
attacks that leverage data-only attacks, Song et al. [37]
utilized DFI and write integrity testing (WIT) [3] to prevent
memory-corruption-based privilege escalation attacks in the
Android Linux kernel, Davi et al. [16] deployed page table
randomization to prevent data-only attacks against page
tables, whereas other approaches focus on providing memory
safety [12], [19], [33], [38] instead by using different methods
for selective memory isolation.

B. DATA-FLOW INTEGRITY
Data-flow integrity (DFI) [13] is a runtime security mecha-
nism that prevents the use of corrupted memory variables that
could lead to non-control-data attacks.

In an offline stage, DFI computes the reaching defini-
tions [2], [29] of each variable, a data-flow analysis that
shows where a given variable may have been defined when
program execution reaches a precise point. At runtime,
it tracks the last writer to each memory position in a runtime
definitions table (RDT); when a variable is used (read),
it checks whether the last definition (write) made to that
variable reaches the program at that point (the definition is
live). If the last definition is not in the statically determined

124172 VOLUME 12, 2024

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

reaching definitions set, then the latest write to that variable
is considered illegal and an exception is thrown, as the use
could potentially be malicious. Otherwise, the use is allowed
and execution continues.
It can also prevent some control-flow hijacking attacks since
it instruments the target addresses of indirect control-flow
transfers added by the compiler (ret addresses).
DFI is implemented at the compiler level to instrument the

uses and writes made to the variables. It uses two high-level
instructions (i) SETDEF addr, id and (ii) CHECKDEF
addr, set-id; which write the given id to the RDT in
the given address position, and check that the last identifier in
the given address is in the set of reaching definitions statically
determined, respectively. These high-level instructions are
specifically lowered into x86 assembly. The RDT is protected
by being in a well-knownmemory location and its bounds are
checked to prevent tampering with it.

DFI comes in two flavours (i) intraproc DFI, which only
instruments uses of local variables and control data, with an
average 45% overhead, and (ii) interprocDFI, which handles
local variables, local address-taken variables and static and
global variables resulting in an average 104% overhead. For
both cases the average space overhead is 50%.

III. THREAT MODEL OF OUR OPTIMIZED DATA-FLOW
INTEGRITY IMPLEMENTATION
Although the original DFI implementation could protect
against some control-flow hijacking attacks, the main goal of
our work is solely to protect programs against non-control-
data attacks. Protecting against control-flow hijacking attacks
and other exploitation techniques that employ control-data is
an orthogonal problem, we thus leave those defenses to other
specialized solutions such as CFI [1], CPI [26], and others.
Our threat model has reasonable assumptions and it is

consistent with other works [18]; it is defined as follows:
• Standard security mechanisms: DEP/W⊕E, ASLR.
We assume that the operating system provides standard
security mechanisms protecting against code-injection
attacks using DEP/W⊕E [5], and hinders the local-
ization of addresses to employ code-reuse attacks
by employing some form of Address Space Layout
Randomization (ASLR) [40].

• Control-flow integrity. Modern defenses against code-
reuse attacks, both for forward-edge and backward-edge
targeting attacks are in place by some form of fine-
grained CFI [1] with a shadow stack.

• Memory-corruption vulnerability. We assume that
user-space programs have memory-corruption vulnera-
bilities that could be used to read and write user-space
non-control data.

• RDT and static data-flow graph protection. We ass-
ume the runtime definitions table employed by DFI to
keep track of the runtime definitions as well as the static
data-flow graph to whom those definitions are compared
to is protected by high-level protection mechanisms
(e.g., memory isolation), and thus the attacker cannot

read or modify those. Such protection mechanisms
could vary depending on the system that DFI is being
deployed in.

IV. DESIGN
In this section we introduce the general design of our
system. The (i) static analysis component (§ IV-A) collects
security sensitive data, such as pointer information, uses and
definitions, called functions, equivalences, global variables
and context information; the (ii) instrumentation component
(§ IV-C) uses the data generated by the static analysis
component and instruments the target program inserting
high-level custom instructions to provide DFI; whereas
the (iii) runtime enforcement component (§ IV-D) is in
charge of handling changes made to the RDTs and enforces
the DFI property. Finally, in (§ V) we discuss our new
optimizations concerning the instrumentation of security-
critical non-control-data.

A. STATIC ANALYSIS
The main goal of the static analysis component is to generate
the static data-flow graph, which will be consulted at runtime
to check in a given point whether a variable is live.

For each source file the static analysis component (i) uti-
lizes an intra-procedural flow-sensitive and field-sensitive
analysis to gather the uses and definitions of local and global
variables in each function. Only variables that are used in
memory or spilled to memory from registers are considered.

An inter-procedural points-to analysis (ii) generates alias
information of security critical variables. At each function
call the parameters are recorded and the alias values updated
in the callee; additionally we check whether the return value
of the called function becomes aliased with any of the
function parameters performing backward slicing [45] on the
return value of the callee.

The static analysis component also (iii) collects which
functions are part of the whole compilation unit, since only
the context of internal functions will be handled in the
instrumentation component.

These three procedures are performed in an iterative mode
per source file. In a given point the static analysis may not
be complete since further functions from other additional
source files could be still needed to complete the alias
information. If these information gaps are not filled by the
end of the analysis, supplementary information is passed to
the instrumentation component to avoid instrumenting those
variables taking account their context and reverting to local-
only instrumentation. At this point the static analysismay also
determine that the given program is not sound (e.g., the target
of a function call has not been defined), and consequently, the
analysis is interrupted early.

When the static analysis component finishes, reaching
definition set identifiers are assigned to each unique reaching
definitions set, and equivalent sets are assigned the same iden-
tifier; then, each variable is assigned one set identifier and

VOLUME 12, 2024 124173

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

the information is written to a file, plus other complementary
metadata.

B. COMPARISON TO THE ORIGINAL DATA-FLOW
INTEGRITY
The original DFI [13] uses a field-insensitive points-
to analysis based on Adersen’s algorithm [4]. Since the
instrumentation relies on this type of analysis, it cannot
detect attacks that overwrite different fields in data structures.
A recent study has shown [28] that it is feasible to
identify low-level memory structures mapped to high-level C
structs to then modify them by means of a non-control-
data attack, thereby the original DFI cannot protect against
attacks focused on this level of granularity. In comparison,
our approach uses field-based static analysis that fully
differentiates different fields in data structures and thus can
detect manipulations to field-based data structures.

Moreover, the original DFI does not take call-context into
account, whereas our analysis computes alias equivalences at
each function call to pass a call context in each function call.

In conclusion, the security guarantees that our implemen-
tation provides are broader since our reaching definitions
data-flow analysis has been constructed with amore complete
static analysis.

C. INSTRUMENTATION
Our approach follows some of the design guidelines of the
original DFI to implement the two high-level instructions
(SETDEF, CHECKDEF) described there [13], however our
work has some key differences and consequently implements
some additional high-level instructions. Since our static
analysis gathers context information and is field-sensitive,
it demands to differentiate between instrumenting normal
variables and field-based data structures, resulting in dif-
ferent types of SETDEF/CHECKDEF instructions; moreover,
additional instructions to handle context are needed and an
instruction to load the static data-flow graph (SDFG) into
memory to employ comparisons is also required.

The following code snippet shows the pseudo-code of
a sample program taken from [13] that depicts a sample
data-only vulnerability in SSH when an attacker overwrites
auth using an overflow in packet:
1 int auth = 0;
2 char packet[1000];
3
4 while (!auth) {
5 PacketRead(packet);
6
7 if (Authenticate(packet)) {
8 auth = 1;
9 }
10 }
11
12 if (auth) {
13 ProcessPacket(packet);
14 }

Our approach would instrument the previous program as
shows in the following code snippet, where our instrumenta-
tion is denoted within brackets ([]):

1 [load_statics()]
2 [create_frame()]
3 [set_def(&auth, 1)]
4 int auth = 0;
5 [set_def(&packet, 2)]
6 char packet[1000];
7
8 [check_def(&auth, set_id_11)]
9 while (!auth) {
10 [check_def(&auth, set_id_11)]
11 [create_shared_frame()]
12 [share_var(set_id_12, &packet)]
13 PacketRead(packet);
14 [unshare_frame()]
15
16 [check_def(&packet, set_id_12)]
17 [create_shared_frame ()]
18 [share_var(set_id_12, &packet)]
19 if (Authenticate(packet)) {
20 [unshare_frame()]
21 [set_def(&auth, 8)]
22 auth = 1;
23 }
24 }
25
26 [check_def(&auth, set_id_11)]
27 if (auth) {
28 [check_def(&packet, set_id_12)]
29 [create_shared_frame()]
30 [share_var(set_id_12, &packet)]
31 ProcessPacket(packet);
32 [unshare_frame()]
33 }
34 [delete_frame()]

The set of high-level instructions used to instrument the
program is explained in the following section.

First, we define the data structures needed in our approach
(§ IV-C1), the different instructions injected in the code
to provide the DFI property (§ IV-C2, § IV-C3, § IV-C4,
§ IV-C5), as well as how are are special cases such as global
variables (§ IV-C6), recursive calls (§ IV-C8) or indirect calls
(§ IV-C7) handled.

1) DATA STRUCTURES
Apart from the runtime-definitions table (RDT) where the
address of each definition is stored with the given ID, we have
included another RDT for global variables; furthermore,
we use two additional lists of frames to store local addresses
and shared addresses per call-frame: the Local Address
Frame (LAF) and the Shared Address Frame (SAF), respec-
tively. Another structure, the Variable-Context List (VCL)

124174 VOLUME 12, 2024

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

stores for each defined address, which are the different
set-IDs that are used to define its context.

The contents of these data structures are modified during
runtime based on calls made to SETDEF/CHECKDEF instruc-
tions, or by specific instructions that handle context.

The DFI checks rely on information gathered during
compile time, which is stored in two data structures: a map
that holds the definitions that are allowed for each set-ID,
and a two-tier nested map that holds, for each set-ID of a
field-based data structure, the different offsets at which it has
a field, and the corresponding set-ID assigned for each field
(Field-Offset Index).

In contrast to the original DFI, the set-IDs in our
implementation may not refer to unique lists of definitions
when the set-ID is used to reference a set of definitions for
a field-based variable. In our approach it is primordial to
uniquely differentiate those field-based variables and their
fields, thereby those set-IDs are unique even if they refer to
the same set of definitions.

2) STATIC DATA-FLOW GRAPH LOADING INSTRUCTION
A single load_statics instruction is injected after the
prologue of the entry point of the instrumented program.
It loads the required static information to handle DFI checks:
the static data-flow graph (SDFG) and the Field-Offset Index.

The protection of shared libraries or those programs
without a main is out of the scope of this work.

3) CONTEXT HANDLING INSTRUCTIONS
The following instructions are used to create and delete LAFs
and SFAs:

• create_frame/delete_frame. At the beginning
of each function a create_frame is inserted, which
will create a LAF, and a delete_frame is placed at
the end of the function. This new LAF will hold the
addresses defined by every set_def instruction.When
the function is about to exit, delete_frame will be
called and each of the addresses defined in this LAF
will be compared against the addresses of variables that
were shared for this frame (if any) and stored in the SAF.
If those addresses are local, they will be deleted from the
RDT; finally, the LAF is deleted.

• create_shared_frame/unshare_frame. Bef-
ore each function call (direct or indirect) considered
internal (i.e., calls within the global compilation unit
or indirect calls whose call destination is unknown)
a create_shared_frame is placed before the
call and a unshare_frame after the call. These
instructions simply create and delete a SAF respectively,
where the addresses of the shared variables and their set-
IDs will be stored.

• share_var/share_var_lvl setid, addr.
When a variable is passed as a parameter in a function
call we also need to share it with this instruction.
share_var adds the address and set-ID of the shared
variable to the previously created SAF;moreover, it adds

the set-ID to the VCL, updating the list of set-IDs that
make the whole context of the variable.

4) INSTRUCTIONS FOR HANDLING NON-FIELD-BASED
VARIABLES
These are the custom high-level specialized instructions
introduced by our approach in order to handle non-field based
variables:

• set_def/set_def_lvl addr, id. These instru-
ctions handle definitions of variables, the address is
used as a key in the RDT and the ID is added as the
value taken, the ID is defined as the line (given by the
compiler) in which the variable is defined, as the original
DFI did. We also take note of the address in the LAF.

• check_def/check_def_lvl addr, setid.
These instructions check that the given address exists
in the RDT, and that the ID of the last writer is in the
given set-ID. This last check is preemptively allowed
to fail since the given set-ID does not take into account
the whole context in which the variable is living. We get
the remaining context of the variable using the VCL and
check again, if this check fails a DFI error is thrown.

Instructions with a lvl keyword (share_var_lvl,
set_def_lvl, check_def_lvl) perform the same
actions as their fellow instructions without lvl, but they
perform a given number of runtime dereferences beforehand,
to then execute the common actions. This is done to handle
pointers that require dereferences, see § VI-B1.

5) INSTRUCTIONS FOR HANDLING FIELD-BASED VARIABLES
These instructions are used to handle variables that might
have other associated addresses (i.e. structs) which need to
be handled as a batch:

• share_fvar setid, addr, offset. In addi-
tion to the steps taken by its non-field based counterpart,
this instruction also shares the set-ID of the variables
that the given set-ID has attached to (i.e. all the fields
of a given struct). The required addresses are calculated
using the Field-Offset Index, and all possible nested
variables are also handled.

• set_def_fvar addr, offset, id. Apart from
the same functionality of its non-field based counterpart,
the base address of the variable (addr - offset) is also
added to the LAF and the base address is added to the
RDT, with a dummy definition.

• check_def_fvar addr, offset, setid.
This instruction checks that the given address exists in
the RDT, and also that the ID of the last writer is included
in the sets definitions specified by given set-ID. This first
DFI check is allowed to fail on first instance when the
offset of the given variable is 0, and also since further
checks due to possible aliases and context handling must
be taken into account.
Nested structs placed in offset 0 will share the same
address but will be assigned unique set-IDs, thereby all

VOLUME 12, 2024 124175

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

the possible nested set-IDs with the given set-ID as is
outermost variable will be retrieved and checked against,
if any of those checks is successful the DFI property will
be considered satisfied.
To check if the definitions were made in a previous
context the VCL is consulted.

6) HANDLING GLOBAL VARIABLES
To handle the definitions and checks when global variables
are used, we also differentiate between field-based and non-
field-based variables but the definitions are stored in a
specific RDT for global variables and no context handling is
required.

7) HANDLING INDIRECT CALLS
The LAF creation and deletion has been modelled after
the function prologue and epilogue of assembly languages.
We delete the SAF in the caller after the callee has been
executed, rather than in the callee itself. This allows to handle
every indirect-call target inside the compilation unit.

When an indirect-call to a function outside the compilation
unit is made, the required variables are still shared and
once the indirect-call returns, the shared frame will be
deleted; similarly if the target of the indirect-call is inside
the compilation unit, it will execute, perform any DFI related
checks it might have and return; this causes a slight space
overhead due to the nesting nature of real-world programs,
but the alternative is to forfeit context information and revert
to basic local DFI checks wherever any indirect-call is made,
resulting in looser security guarantees.

8) HANDLING RECURSIVE CALLS
Before a direct recursive call, any share_var instructions
and the create_shared_frame / unshare_frame
instruction pair are exceptionally not injected because we
claim that the security guarantees would remain equiva-
lent and the overhead is lower (23%) according to our
experiments.

The rationale behind this design decision falls within the
nature of recursive calls (which can be reduced to loops), and
the requirements of DFI to instrument every definition and
use of in-memory variables. After the call from an outside
function to the recursive function is made, the recursive
function will have a SAF with the addresses passed from
the previous context, and any checks made against variables
passed down as arguments will continue having context-
sensitive security guarantees. On the other hand, checks made
against local variables, both local by the current context of the
recursive call and local in previous recursive-contexts, will
continue to be made.

D. RUNTIME ENFORCEMENT
The runtime enforcement component handles all frame/con-
text management operations and propagates setdefs made in
a shared-RDT before it is deleted. It also charges the SDFG
into memory, takes note of definitions made by SETDEF

instructions and performs the relevant checks required for
CHECKDEF instructions. All the high-level instructions
described above (see § IV-C) have their implementation in
this component.

V. OPTIMIZATIONS
Although DFI remains as the main reference to prevent non-
control-data attacks, its performance downside has prevented
its wide usage in real-world applications, even though it
includes several optimizations [13].
To improve the prospects of DFI’s usability in real-world

applications, we propose a new series of optimizations that
aim to remove all CHECKDEF instructions concerning non-
control-data that has not been considered security critical.

A. RATIONALE
The non-control-data of given program may have different
purposes; for example, it may be used to make computations,
hold user-input parameters or decide which execution path
the program will take. From a security standpoint, we should
only be concerned about security-critical non-control-data.
The original DFI implementation instrumented all non-
control-data. Instead, we propose to only instrument the
subset of security-critical non-control-data.

B. IMPLEMENTATION OF THE OPTIMIZATIONS
In order to determine which non-control data can be con-
sidered security-critical we refer to Chen et al. [15], where
their work identified that configuration data, user input and
user identity data along with decision-making data should be
considered security-critical.

Configuration, user input and user identity data are highly
program-dependent, whereas decision-making data can be
broadly defined as that data that is used to trigger changes in
the control-flow. These types of security-critical non-control-
data are taken into account when designing the following
optimizations:

1) CRITICAL DATA TYPES
We comprise configuration, user input and user identity data
as the term critical data types, and it will concern data whose
types (as in storage data types) have been determined critical
by an expert (e.g., task_struct structs in the Linux kernel
or ngx_command_t structs in Nginx). This optimization is
applied per basic block and removes the DFI checks to every
non-critical var type.

2) CONTROL DEPENDENT DATA OPTIMIZATION
Control dependencies exist between two statements,
S1 and S2, whenever the predicate of S1 controls whether
S2 is executed; if so, S2 would be control dependent on S1.
Following this example we can say that the legitimate
execution of S1’s predicate is security critical for S2’s
legitimate execution.

Given a control-flow graph (CFG), we can also establish
this relationship between basic blocks using the algorithm

124176 VOLUME 12, 2024

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

TABLE 1. Reduction in the instrumentation size per basic block and
program using the Control dependent data optimization.

described by Ferante et al. [17] to determine the control
dependences of a program.

To generate this control dependency relationship we first
construct the post-dominator tree for the given CFG, then
we check each edge of the CFG and take note of those
edges whose destination basic block does not post-dominate
the source basic block; in order to accomplish this, we use
the previously generated post-dominator tree. The source
basic blocks of the resulting edges are the basic blocks to
whom the rest of the blocks in the CFG may be dependent
on. Those basic blocks to whom other basic blocks are
control dependent are considered security critical, and their
checkdefs will be kept. The other checkdefs will be removed.
Nonetheless, we cannot split a CFG in two types of basic
blocks, those which are dependent on others and those which
are not; thereby, we also calculate the exact dependencies
between blocks and mark those which are not part of any
of those categories as security critical as well. This is also
done using the algorithm provided by Ferante et al., which
traverses post-dominator tree backwards from the destination
basic block of each of the edges selected beforehand up to
the source basic block’s parent. Every basic block in between,
excluding the parent, is control-dependent on the source basic
block.

For CFGs with more that one exit (e.g., exits that handle
exception paths) we cannot apply this optimization since the
post-dominator calculation requires a single exit in the CFG.

C. RESULTS
Table 1 shows the per program reduction in the instrumen-
tation size after running an experiment with the control
dependent data optimization on SPEC CPU2006 using C
benchmarks. The results show that our approach can remove
the CHECKDEF instructions in 45.8% of the basic blocks on
average.

VI. IMPLEMENTATION
In order to select a compiler to implement our optimized
DFI variant, we focused on selecting the compiler that could
handle the broader amount of use cases, both in user and

kernel space, to be able to build upon this implementation
in future works. Thereby, we chose GCC due it’s variety of
targets, as well as for being the official compiler being used
to build the Linux Kernel.

Our work uses gcc version 5.4.0; this version has
been selected to match the gcc version available in our
lab environment which is used to run the completeness
experiments shown in section VII-A.
The static analysis and instrumentation components are

implemented in two plugins for the GCC compiler collection,
which consist of 6,400 and 14,300 lines of C/C++ code
respectively, whereas the runtime enforcement component is
a shared library consisting of 1,100 lines of C/C++ code.

These plugins allow users to add DFI to their C/C++

programs with their existing GCC distribution without the
need to recompile the whole compiler. The plugins attach the
new compilation passes defined by our work to the existing
compilation infrastructure, the user just needs to add the
parameter -fplugin to load the required plugin and specify
some plugin related parameters (i.e., folder locations to
store/load the SDFG). The plugins operate in GCC’s middle-
end, where machine-independent optimizations are made,
thereby our implementation is also machine-independent.

The following sections describe the challenges and
peculiarities of implementing the static analysis component
(§ VI-A) and the instrumentation component (§ VI-B) in
GCC, finally we show how the runtime library (§ VI-C) has
been implemented.

A. STATIC ANALYSIS COMPONENT
The static analysis component is a GCC plugin which
works on top of GCC’s machine-independent intermediate
three-address code representation, GIMPLE, to gather uses
and definitions of security critical variables (see § IV-A).
The static analysis plugin consists of two inter-procedural

passes and an intra-procedural pass which are attached
to the middle-end right after the static single-assignment
(SSA) form has been created. The intra-procedural pass
traverses the SSA form to gather field-sensitive and flow-
sensitive use-def chains which are directly translated into
uses and definitions of variables; one of the inter-procedural
passes performs the context-sensitive analysis following the
procedure described in § IV-A building upon the context-
insensitive information gathered in the previous pass. The
remaining inter-procedural pass recovers metadata of all the
functions of the compilation unit.

1) BIT-FIELDS
Due to the variety of compilation targets that GCC supports,
the compiler marks as addressable memory operations that
take addresses smaller that a byte. Our work is framed to
handle standard C with target x86-64 due to the equipment
chosen to run the security experiments that we have run to
validate our claims, thereby we ignore uses and definitions
to those bit-fields since we cannot address anything smaller
than a byte in standard C.

VOLUME 12, 2024 124177

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

Nevertheless, adapting our implementation to other archi-
tectures or environments that may require bit-field addressing
is trivial.

2) VARIADIC FUNCTIONS
Functions which take a variable number of arguments
represent a challenge since, by definition, at compile time we
cannot distinguish variables part of the optional argument list
among themselves. Thereby, optional arguments of variadic
functions are handled by the static analysis algorithms as a
single argument.

B. INSTRUMENTATION COMPONENT
The instrumentation component is implemented as the second
GCC plugin, which consists of five passes following the
design specified in § IV-C and § V. The aim of these five
passes is threefold: (i) instrument the code, (ii) check that the
instrumentation remains consistent after the standard GCC
compiler optimizations are made, and (iii) perform our last-
minute optimizations.

The passes handling the instrumentation are hooked
after the SSA form has been built and before the
main machine-independent optimizations have finished. The
instrumentation pass is hooked as early as possible to prevent
tampering with standard compiler optimizations. Once the
code has been instrumented and the machine-independent
optimizations are done, we hook some other passes to check
the integrity of the instrumentation (e.g., frame creation
and deletion must come in pairs) just before the SSA form
is translated into the machine-dependent register transfer
language (RTL).

Apart from the functionality described in § IV-C there
are other aspects that we have considered to implement DFI
in GCC. We discuss them below.

1) N-LEVEL INDIRECTION POINTERS
Our approach concerns the safety of non-control data, thereby
when a pointer with multiple levels of indirection appears
in the r-value of a SSA statement, we inject a CHECKDEF to
the address of the bottom-most pointer. Due to the design of
the SSA form, valid basic pointer assignment operations apart
from indexed copy instructions have one of the following
forms [2]:

1) x = &y
2) x = *y
3) *x = y

Thereby, pointers with more than one level of indirection
require one statement per dereference level. Instead of
making multiple dereferences to take note of the target
address for the required CHECKDEF, our implementation
takes the r-value of the topmost SSA statement, calculates
at compile time the number of indirection levels that the
target address requires, and then, at runtime, the required
numbers of dereferences are made. Moreover, if multi-
ple CHECKDEFs were to be made as a consequence of

multiple SSA dereferences, only the topmost would remain
and the rest would be optimized out as per DFI’s basic
optimizations [13].

2) ‘‘DYNAMIC’’ POINTERS
As per the definition of the SSA form, all variables are
distinguishable from each other since each definition to a
variable uses a different name [2]; commonly, instead of
renaming the variable, the GCC compiler keeps its original
identifier and its version changes.

During our experiments we identified some cases where
assignments in SSA form did not update the version of the
variable. Since our static analysis component traverses the
SSA form to get information about uses and definitions of
variables, this resulted in inaccurate static information that
could lead to false positives if those specific non-updated
variables were used.

The following example shows a code extract in SSA form
from the ngx_utf8_length function (ngx_string.c)
from nginx:

1 p.4_18 = p;
2 p.5_19 = p.4_18 + 1;
3 p = p.5_19;
4 // omitted
5 p.1_12 = p;

The code shows how p is not updated. When a checkdef is
made to check DFI on variable p in statement 5, a DFI error
is thrown since the address location where p resides is not
defined, it has been overwritten in statement 3.

In order to prevent these false positives we instrument
the code with a special instruction (check_dfg_update)
before and after the address change; at runtime, the first
instruction before the address change takes note of the current
address for the variable, and after the address is changed,
we get that new address and update the different RDTs
replacing the old address with the new one, as shown in the
updated code below:

1 p.4_18 = p;
2 p.5_19 = p.4_18 + 1;
3 check_dfg_update_before (p);
4 p = p.5_19;
5 check_dfg_update_after (p);
6 // omitted
7 p.1_12 = p;

The previus example in SSA form shows how the write to
p, now in statement 4, has a pair of check_dfg_update
instructions before and after the variable p is updated, which
allow us to catch the address change and update the RDTs.

3) CALLS TO EXTERNAL KNOWN-TO-BE-PROBLEMATIC
FUNCTIONS
Even in the case of a fully sound and complete points-to
analysis, DFI can still not detect attacks that happen outside

124178 VOLUME 12, 2024

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

the instrumentation scope, for instance, when a user misuses
a function from an external library.

Many non-control-data attacks occur when the bounds
of objects in memory are surpassed in a malicious way
to overwrite other locations that store non-control-data
variables; there are functions with a widely spread usage
from common libraries, such as libc, that could lead to
this insecure behavior (e.g., memcpy, strcpy). When the
instrumentation component encounters one of such known-
to-be-problematic functions, it calculates the addresses that
will be overwritten by the specific function and inserts the
required setdefs for every location that will be modified
before the actual call to the libc function.

4) REDUCING UNDEFINED BEHAVIOR
Using automatic variables before they have been initialized is
one of the most common examples of undefined behavior in
C/C++. In these cases, the user is solely responsible for writ-
ing code without undefined behavior and the compiler might
yield some warnings. In the case of GCC, the compiler pro-
vides the optional -Wuninitialized, -Winit-self,
and -Wmaybe-uninitialized warning options [21].
Our work gives more assurances to the user preventing this

type of undefined behavior in C. Due to the nature of DFI,
when a variable is used a DFI check will be done, and if the
variable has not been defined a data-flow integrity error will
be yielded, removing the uncertainty of undefined behavior
in such cases.

5) φ-FUNCTIONS
φ-functions are used within the SSA form to define that a
variable can be defined in more than one control-flow path.
The result of the φ-function is the value of the argument that
has the control-flow path chosen at runtime [2]. For instance,
given the following statement: x3 = φ(x1, x2), the variable
x3 would be either x1 or x2, depending on the control-flow
of the function, but the compiler will always define a new
variable x3, and continue with the optimizations using this
new variable.

In our experiments we have seen that the results of the
φ-functions are often optimized out to registers, moreover
since it is impossible to statically determine which of the
arguments of the φ-function were used when we need to share
the context of the result of a φ-function, we set the same
set-ID for all the possible φ-function address arguments.

This conservative solution focuses on eliminating the false
positives that would have been yielded if no set-IDs were
shared when the context resided within the result of a
φ-function.

C. RUNTIME ENFORCEMENT LIBRARY
When our DFI related high-level instructions are lowered
by the compiler they will invoke the routines of our run-
time enforcement C/C++ shared library, thereby programs
need to be linked against our shared library. Unlike the

original DFI, which lowered its high-level instructions to x86
assembly, our work is software-based to be cross-compatible.

VII. COMPLETENESS OF DFI
The completeness of the DFI integrity checks relies on the
validity of the instrumentation directives, this completeness
depends on (i) code execution integrity, and (ii) compiler code
generation.

Code execution integrity is provided by DEP/W⊕E in
modern operating systems, thereby it is guaranteed under our
threat model (see § III); whereas code generation heavily
depends on the compiler optimizations chosen to compile a
piece of code, which previous studies show [27] that might
impact the injected checks.

The use of some compiler optimizations is critical to the
correctness of any DFI algorithm implementation. Specifi-
cally, the usage of obscure tail-calls (e.g., tail calls that jump
to an arbitrary position of the callee, instead of the beginning
of a well defined function) may hinder the security guarantees
that this implementation offers if the optimizations that
generate these tail calls are enabled. DFI implementations
are based on the assumption that functions are atomic and
independent units of code, with a well defined entry point and
one or more exit points (return instructions). DFI assumes
that the control flow of the program will respect these
rules, inserting instrumentation code at strategic points that
implement checks that guarantee data-flow integrity. If any
optimization subverts these assumptions, the completeness of
DFI is no longer guaranteed.

In this section we analyze the usage of tail calls, to evaluate
how common they are, and to which extent they can affect the
completeness of our DFI implementation.

A. EXPERIMENTS
Our experiments were conducted using Nucleus [6], the
state of the art function identification tool which, to the
best of our knowledge, is currently the tool that provides
the best precision and recall. This tool helped us with
the identification of function boundaries and call/jmp
instructions between them.

Our test suite has been crafted to contain a sample of the
most widely used programs in the world, and it includes
binutils-2.32 and coreutils-8.31, which serve as
a sample of common and widely used Unix programs, as well
as nginx 1.4.0, a well-known web server which is the
most widely used server in the world [44].

The programs are compiled with gcc version 5.4.0
20160609 (Ubuntu 5.4.0-6ubuntu1 16.04.12).

B. COMPLETENESS RESULTS
Initially, our experiment pointed out (refer to row Target
unknown of Table 2) 129 cases of tail calls to unknown targets
in binutils and 18 cases in coreutils, both compiled
with -O0. These cases (marked with * in Table 2) refer to
targets of addresses outside the boundaries of any function.
We inspected these cases and found certain errors and

VOLUME 12, 2024 124179

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

TABLE 2. Tail call experiments for the binutils and coreutils suites. Target start refers to tail calls that jumped to the beginning of the target
function, Target not start known jumped to known locations that were not the beginning of the function, Target unknown jumped to unknown locations,
Target PLT jumped to the PLT and Target cannot compute are jumps whose target cannot be statically determined.

inconsistencies on the results provided by Nucleus where
the function boundaries did not include the last basic block
of the function. The majority of these cases were observed
in the presence of jump tables (corresponding to switch
clauses). These special cases were reported by the Nucleus
authors, and affect the inter-procedural CFG generation
which is later on used to detect the function boundaries.
We inspected these cases and filtered out these false
positives.

1) TAIL CALLS TO THE PLT
Similarly, a number of tail calls (refer to row Target PLT
in Table 2) do not jump to a function of the program, but
to the PLT, which is in charge of resolving and jumping
to a target function in a dynamically loaded function (e.g.,
system library calls such as a program exit function). These
particular cases do not affect the instrumentation added by
DFI techniques.

2) CALL/JMP TAGETS THAT CANNOT BE STATICALLY
COMPUTED
During these experiments we also observed cases where it
was not possible to statically compute the target of a function
call (refer to row Target cannot compute of Table 2). In many
of these cases, the target depended on the value of a register
that must be computed dynamically at run-time (e.g., jmp
rax). We describe the different cases we found after manual
inspection:

• Jump tables. Jump tables are an assembly construct
typically used to implement switch statements. In switch
statements, the control flow depends on the value of
a variable, which occasionally is an incremental int
variable. In these cases, the jump table can use this
variable (stored in a register) as an index to access a
table that stores the address of the different clauses in
the switch statement. In this way, the jmp instruction
will first access the table by using an offset (base address
of the table, and an index multiplied by the size of each

entry in the table). These cases do not represent an issue
for a DFI implementation as these jmps never point
outside the function boundaries.

• Polymorphism and usage of function pointers. There
are many different programming paradigms and styles,
but languages like C, and specially C++, allow to
call functions given a pointer to its entry point. This
pointer can be defined at runtime, and this it can
depend on the data and/or execution path followed
by the program. This is the main underlying concept
behind polymorphism, and although C is not object
oriented, it allows to implement similar strategies by
using function pointers. These cases do not affect DFI
implementations, and these function pointers should
only point to valid function entry points, as long as
pointer arithmetics are well implemented and control
flow and data flow integrity are preserved.

C. DISCUSSION
The results show that tail call optimizations introduced by the
GCC compiler have different targets. Although this is a com-
mon phenomenon across the different test cases, the number
of tail calls is very low when compared to the total number
of function calls. Even though current DFI implementations
cannot support this type of construct, the impact of removing
these optimizations should not affect the overall performance,
as it is possible to apply the rest of the compiler optimizations
(107+) by disabling the specific one that enables tail calls
(-fno-optimize-sibling-calls in GCC [20]).
Thereby, the completeness of the DFI checks can be

ensured if tail-call optimizations are disabled when the target
is compiled with -O0, -O1, -O2 or -O3.

VIII. CONCLUSION AND FUTURE WORK
In this work we have provided a design to implement
the data-flow integrity technique in modern compilers and
tested our implementation with the GCC compiler. We have
augmented the security guarantees of the original data-flow

124180 VOLUME 12, 2024

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

integrity by using a static analysis approach that is field-
based, and by taking the call-context into account. Moreover,
we have introduced two new optimizations that aim to
reduce the number of basic blocks that are needed to be
instrumented by selecting the security-critical basic blocks,
these optimizations result on an average reduction of 45.8%
of the basic block instrumentation count. Finally, we have
evaluated the completeness of the DFI integrity checks by
analyzing the underlying compiler optimizations that could
hinder the completeness of DFI, we identified that disabling
tail calls (via the -fno-optimize-sibling-calls
option in GCC) is the only prerequisite that our DFI
implementation requires, allowing the compiler to utilize the
remaining optimizations (107+).

We have identified that leveraging a statistical defense
along with data-flow integrity could further enhance the secu-
rity capabilities against non-control-data attacks. Moreover,
deploying non-specialized data-flow integrity techniques that
could protect the Linux kernel against generalized non-
control data attacks still needs to be explored.

REFERENCES
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, ‘‘Control-flow integrity:

Principles, implementations and applications,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), 2005.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2006.

[3] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, ‘‘Preventing
memory error exploits with WIT,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2008.

[4] L. O. Andersen, ‘‘Program analysis and specialization for the C
programming language,’’ Ph.D. thesis, Univ. Cophenhagen, Copenhagen,
Denmark, 1994.

[5] S. Andersen and V. Abella, ‘‘Data execution prevention. Changes to
functionality in Microsoft windows XP service. Pack 2. Part 3: Memory
protection technologies,’’ Rep., 2004.

[6] D. Andriesse, A. Slowinska, and H. Bos, ‘‘Compiler-agnostic function
detection in binaries,’’ in Proc. IEEE Eur. Symp. Secur. Privacy (EuroSP),
Apr. 2017, pp. 177–189.

[7] B. Belleville, H. Moon, J. Shin, D. Hwang, J. M. Nash, S. Jung, Y. Na,
S. Volckaert, P. Larsen, Y. Paek, and M. Franz, ‘‘Hardware assisted
randomization of data,’’ in Proc. Int. Symp. Res. Attacks, Intrusions,
Defenses (RAID). Springer, 2018, pp. 337–358.

[8] S. Bhatkar and R. Sekar, ‘‘Data space randomization,’’ in Proc. Int. Conf.
Detection Intrusions Malware, Vulnerability Assessment, 2008.

[9] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, ‘‘Jump-oriented
programming: A new class of code-reuse attack,’’ in Proc. 6th ACM Symp.
Inf., Comput. Commun. Secur., Mar. 2011.

[10] E. Bosman and H. Bos, ‘‘Framing signals—A return to portable
shellcode,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 243–258.

[11] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, ‘‘Control-
flow bending: On the effectiveness of control-flow integrity,’’ in Proc.
USENIX Secur. Symp., 2015.

[12] S. A. Carr and M. Payer, ‘‘DataShield: Configurable data confidentiality
and integrity,’’ in Proc. ACM Asia Conf. Comput. Commun. Secur.,
Apr. 2017.

[13] M. Castro, M. Costa, and T. Harris, ‘‘Securing software by enforcing data-
flow integrity,’’ inProc. USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2006.

[14] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy, ‘‘Return-oriented programming without returns,’’ in Proc.
17th ACM Conf. Comput. Commun. Secur., Oct. 2010.

[15] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer, ‘‘Non-control-data
attacks are realistic threats,’’ in Proc. USENIX Secur. Symp., 2005.

[16] L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi, ‘‘PT-rand: Practical
mitigation of data-only attacks against page tables,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., 2017.

[17] J. Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The program dependence
graph and its use in optimization,’’ ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, Jul. 1987.

[18] T. Frassetto, D. Gens, C. Liebchen, and A.-R. Sadeghi, ‘‘JITGuard:
Hardening just-in-time compilers with SGX,’’ inProc. ACMSIGSACConf.
Comput. Commun. Secur., Oct. 2017.

[19] T. Frassetto, P. Jauernig, C. Liebchen, and A.-R. Sadeghi, ‘‘IMIX: In-
process memory isolation extension,’’ in Proc. USENIX Secur. Symp.,
2018.

[20] GNU. Using the GNU Compiler Collection, Options That Con-
trol Optimization. [Online]. Available: https://gcc.gnu.org/onlinedocs/
gcc/Optimize-Options.html

[21] GNU. Using the GNU Compiler Collection, Options to Request or Sup-
press Warnings. [Online]. Available: https://gcc.gnu.org/onlinedocs/gcc-
11.1.0/gcc/Warning-Options.html

[22] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang, ‘‘Automatic
generation of data-oriented exploits,’’ inProc. USENIX Secur. Symp., 2015.

[23] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang, ‘‘Data-
oriented programming: On the expressiveness of non-control data attacks,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 969–986.

[24] K. K. Ispoglou, B. AlBassam, T. Jaeger, and M. Payer, ‘‘Block oriented
programming: Automating data-only attacks,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., Oct. 2018.

[25] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang,
‘‘‘The web/local’ boundary is fuzzy: A security study of Chrome’s process-
based sandboxing,’’ inProc. ACM SIGSACConf. Comput. Commun. Secur.
(CCS), 2016.

[26] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
‘‘Code-pointer integrity,’’ in Proc. USENIX Symp. Operating Syst. Design
Implement. (OSDI), 2014.

[27] Y. Lin and D. Gao, ‘‘When function signature recovery meets compiler
optimization,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2021,
pp. 36–52.

[28] M. Morton, J. Werner, P. Kintis, K. Snow, M. Antonakakis,
M. Polychronakis, and F. Monrose, ‘‘Security risks in asynchronous
web servers: When performance optimizations amplify the impact of
data-oriented attacks,’’ in Proc. IEEE Eur. Symp. Secur. Privacy (EuroSP),
Apr. 2018, pp. 167–182.

[29] F. Nielson, H. R. Nielson, and C. Hankin, Principles of Program Analysis.
Springer, 2015.

[30] B. Niu and G. Tan, ‘‘RockJIT: Securing just-in-time compilation using
modular control-flow integrity,’’ in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., Nov. 2014.

[31] T. Park, K. Dhondt, D. Gens, Y. Na, S. Volckaert, andM. Franz, ‘‘NoJITsu:
Locking down Javascript engines,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., 2020.

[32] A. Prakash, X. Hu, and H. Yin, ‘‘VfGuard: Strict protection for virtual
function calls in COTS C++ binaries,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., 2015.

[33] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and
M. Polychronakis, ‘‘XMP: Selective memory protection for kernel
and user space,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2020,
pp. 563–577.

[34] R. Rogowski, M. Morton, F. Li, F. Monrose, K. Z. Snow, and
M. Polychronakis, ‘‘Revisiting browser security in the modern era: New
data-only attacks and defenses,’’ in Proc. IEEE Eur. Symp. Secur. Privacy
(EuroSP), Apr. 2017, pp. 366–381.

[35] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,
‘‘Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2015.

[36] H. Shacham, ‘‘The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the ×86),’’ in Proc. 14th ACM Conf.
Comput. Commun. Secur., Oct. 2007.

[37] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, ‘‘Enforcing kernel
security invariants with data flow integrity,’’ in Proc. Netw. Distrib. Syst.
Secur. Symp., 2016.

[38] C. Song, H. Moon, M. Alam, I. Yun, B. Lee, T. Kim, W. Lee, and Y. Paek,
‘‘HDFI: Hardware-assisted data-flow isolation,’’ in Proc. IEEE Symp.
Secur. Privacy (SP), May 2016, pp. 1–17.

VOLUME 12, 2024 124181

I. Díez-Franco et al.: Optimized Data-Flow Integrity for Modern Compilers

[39] L. Szekeres, M. Payer, T. Wei, and D. Song, ‘‘SoK: Eternal war in
memory,’’ in Proc. IEEE Symp. Secur. Privacy, May 2013, pp. 48–62.

[40] (2003).Address Space Layout Randomization (ASLR). [Online]. Available:
http://pax.grsecurity.net/docs/aslr.txt

[41] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson,
L. Lozano, and G. Pike, ‘‘Enforcing forward-edge control-flow integrity
in GCC & LLVM,’’ in Proc. USENIX Secur. Symp., 2014.

[42] V. van der Veen, D. Andriesse, E. Göktaş, B. Gras, L. Sambuc,
A. Slowinska, H. Bos, and C. Giuffrida, ‘‘Practical context-sensitive CFI,’’
in Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015.

[43] V. van der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, ‘‘A tough call:
Mitigating advanced code-reuse attacks at the binary level,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2016, pp. 934–953.

[44] Web Tecnology Surveys. (2024). Comparison of the Usage
Statistics of Nginx vs. Apache for Websites. [Online]. Available:
https://w3techs.com/technologies/details/ws-nginx

[45] M. Weiser, ‘‘Program slicing,’’ IEEE Trans. Softw. Eng., vol. SE-10, no. 4,
pp. 352–357, Jul. 1984.

[46] C. Zhang, C. Song, K. Z. Chen, Z. Chen, and D. Song, ‘‘VTint: Protecting
virtual function tables’ integrity,’’ in Proc. Netw. Distrib. Syst. Secur.
Symp., 2015.

[47] J. Zhou, J. Hu, Z. Pan, J. Zhu, G. Li,W. Shen, Y. Sui, and Z. Qian, ‘‘Beyond
control: Exploring novel file system objects for data-only attacks on Linux
systems,’’ 2024, arXiv:2401.17618.

IRENE DÍEZ-FRANCO received the B.S. and
M.S. degrees in computer science from the Uni-
versity of Deusto, in 2017, where she is currently
pursuing the Ph.D. degree in systems security. She
is currently a Software Engineer with Red Hat,
where she is working on the Red Hat Enterprise
Linux operating system. Her research interests
include systems security, compilers, program anal-
ysis, operating systems, and binary analysis.

XABIER UGARTE-PEDRERO received the Ph.D.
degree in computer science from the University
of Deusto, Spain. He is currently a Malware
Researcher with Cisco Talos. He has published
several academic papers at computer security
conferences. His main research interests include
malware analysis and reverse engineering, data
analytics, and any technical aspect of computer
science.

PABLO GARCÍA-BRINGAS received the engi-
neering degree in computer science, the mas-
ter’s degree in telecommunications, the master’s
in industrial informatics, the Ph.D. degree in
computer science and artificial intelligence (spe-
cialized in cybersecurity), and the Executive
Master’s degree in business administration. He is
currently an University Associate Professor and
the Vice Dean of External Affairs. He is also
the Head Researcher of Deusto for Knowledge-

D4K Research Group. Previously, he was the Director of Deusto Institute
of Technology (DeustoTech), the Director of Research of the Faculty of
Engineering, and the Director of the Deusto’s Chair on Digital Industry.
He has more than 20 years of experience in research and development
management, with tens of projects and technology transfer actions led, for
more than ten million euro, more than 40 ISI-JCR impact factor publications,
more than 120 international peer-reviewed contributions, and 19 Ph.D.
supervised dissertations. His research interests include artificial intelligence
applied to the fields of information security and industrial processes. He has
co-chaired world-class scientific events, such as DEXA, CISIS, SOCO,
ICEUTE, HAIS, INFOSEC, BIGDAT, and DEEP LEARNING BILBAO.

124182 VOLUME 12, 2024

