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ABSTRACT This paper focuses on a two-level hierarchical system with dual-criticality components
scheduled on a single processor. To address the independent scheduling of mixed-criticality (MC) com-
ponents using fixed-priority (FP) servers, we introduce the mixed-criticality deferrable server (MC-DS),
featuring multiple server capacities within a fixed server period. Within the MC-DS, we employ the
earliest deadline first (EDF) scheduler to manage mixed-criticality tasks for each component. We perform
schedulability analysis based on the worst-case response time (WCRT) for MC-DSs. Augmented by
the WCRT analysis, we derive a new supply bound function (SBF) to precisely evaluate the processor
execution time guaranteed by the server for components over specific time intervals. Furthermore, a more
effective schedulability test based on the concept of demand bound function – supply bound function
(DBF-SBF) is presented. Through extensive experiments, we demonstrate the effectiveness of our proposed
component-based schedulability analysis. Specifically, our method improves the acceptance ratio of task sets
by an average of 17% in our experiments.

INDEX TERMS Earliest deadline first (EDF), fixed-priority (FP), hierarchical system, real-time server,
mixed-criticality scheduling, supply bound function (SBF), schedulability analysis.

I. INTRODUCTION
Embedded real-time systems are trending toward
consolidating functionalities into fewer but more powerful
microprocessors. This paradigm shift is evident not only
in the automotive electronics sector but also in avionics
and other fields [1]. As the number of electronic devices
in avionics systems increases, system architectures become
more complex, complicating integration, testing, and mainte-
nance. Running several avionics applications or modules on a
single computing device can simplify system complexity and
reduce weight. However, integrating multiple real-time appli-
cations on a single microprocessor introduces challenges
in resource allocation and partitioning. To address these
challenges, there is growing interest in real-time servers [2],
which can distribute resources from the hardware platform to
associated applications and schedule each application inde-
pendently. In the automotive and aviation domains, the use
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of servers based on fixed-priority scheduling is particularly
important [3].

In server-based hierarchical scheduling systems, each com-
ponent is managed by a dedicated server. During scheduling,
a global scheduler allocates computational resources from
the physical computing platform to these servers. Subse-
quently, each server’s local scheduler distributes the allocated
resources to the component tasks according to its local
scheduling algorithm. Existing servers typically have fixed
replenishment periods and a single server capacity [4],
[5], [6], [7], which are suitable for scheduling non-mixed-
criticality components. However, real-time systems increas-
ingly integrate components with different criticality levels on
the same hardware platform [8], known as mixed-criticality
(MC) systems.

In MC systems, high-criticality tasks must undergo certifi-
cation by certification authorities (CAs), leading to extremely
pessimistic worst-case execution time (WCET) estimates.
In contrast, low-criticality tasks only need to meet the sys-
tem designer’s requirements, resulting in more optimistic
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FIGURE 1. A motivating scenario.

WCET estimates. If the system is validated at the highest
level of assurance, all tasks will be scheduled under the
most pessimisticWCET estimates, causing resource wastage.
Therefore, Vestal [9] proposed multiple system modes to
correspond to different assurance levels. For example, when
the system executes in low-criticality mode, all tasks are
scheduled according to optimistic WCET estimates. If any
high-criticality task exceeds its optimistic WCET estimate,
high-criticality tasks are then scheduled according to themost
pessimistic WCET estimates.

The scheduling problem in component-based mixed-
criticality systems focuses on resource distribution strategies
for components when the mode switch occurs. Yang and
Dong [10] proposed a degraded mixed-criticality resource
model for the low-criticality components. They assume that
the budgets for low-criticality components degrade to a
specific value when a mode switch occurs. However, their
study did not address mixed-criticality workloads. Build-
ing upon this foundation, Arafat et al. [11] considered
mixed-criticality task models for low-criticality components
and assumed independence between the criticality levels of
resource models and workloads. Their research also focused
on low-criticality components. Gu et al. [8] introduced an
interface-based mixed-criticality periodic resource (MCPR)
model and developed a schedulability test for high-criticality
components under the EDF algorithm. However, their supply
bound function (SBF) analysis in the schedulability test was
pessimistic.

In this paper, we focus on a scenario where the system
comprises a set of dual-criticality components and follows a
two-level hierarchical scheduling framework, as depicted in
FIGURE 1. At the global level, we employ a fixed-priority
(FP) scheduler. Within the servers (also known as the local
level), we use the earliest deadline first (EDF) schedulers
to manage tasks within components. Each low-criticality
component includes a set of low-criticality tasks, while each
high-criticality component contains a set of dual-criticality
tasks [8]. To reduce the pessimism in the existing schedula-
bility test, we propose the mixed-criticality deferrable server
(MC-DS) to guarantee the processor time for MC compo-
nents. With MC-DS, the minimum processor time received
for components within a specific time interval can be calcu-
lated using the server’s WCRT, thereby enhancing accuracy.

A. CONTRIBUTION OF THIS PAPER
In this paper, we integrate the proposed mixed-criticality
deferrable server into the hierarchical system depicted in
FIGURE 1. Hierarchical scheduling follows two distinct
research paths [12]: one involves schedulability analysis of
the system given known server parameters, and the other
focuses on designing server parameters. This paper adheres
to the first research path. Specifically, we first ensure the
schedulability of the mixed-criticality deferrable server in the
system. Building upon this, we develop a schedulability anal-
ysis of component tasks based on the demand bound function
(DBF) and supply bound function (SBF). The technical con-
tributions of this paper can be summarized as follows:

• We propose an FP-based mixed-criticality deferrable
server (MC-DS) for allocating computational resources
from the physical computing platform to MC compo-
nents. The MC-DS has two different server capacities,
each linked to a distinct criticality level. To ensure that
MC-DSs guarantee sufficient processor time for MC
components, we conduct the worst-case response time
(WCRT) analysis for the MC-DS in different modes and
derive the schedulability analysis for mixed-criticality
deferrable servers accordingly.

• Based on the WCRT of the MC-DS, we derive a precise
computation of the minimum execution time guaranteed
by the incomplete server period. This yields a new SBF
that allows for a less pessimistic schedulability analysis
of mixed-criticality components.

• Through rigorous experiments, we validate the effective-
ness of the proposed server and schedulability test on
scheduling component tasks. Our experimental results
show that our method enhances the acceptance ratio of
task sets by an average of 17%.

The remainder of this paper is organized as fol-
lows: Section II introduces related work. Section III pro-
vides a detailed description of the scheduling model.
In Section IV, we introduce the existing SBF computation.
Section V conducts a schedulability analysis of the proposed
mixed-criticality deferrable server. In Section VI, we derive
the server-based SBF computation and use it for the schedu-
lability test of component tasks. The experimental results are
presented in Section VII. In section VIII, we conclude the
paper.

II. RELATED WORK
Over the past few decades, mixed-criticality systems and
hierarchical systems have been extensively studied. In 2007,
Vestal [9] first introduced the concept of mixed-criticality
systems. He focuses on scheduling mixed-criticality tasks on
a uniprocessor using the preemptive fixed-priority algorithm.
Following Vestal’s model, Baruah et al. [13] proposed the
earliest deadline first with the virtual deadlines (EDF-VD)
algorithm for mixed-criticality task models with implicit
deadlines. To extend the idea of setting virtual deadlines
to mixed-criticality task models with constrained deadlines,
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some studies have introduced deadline tightening algorithms
based on the demand bound function [14], [15]. To address
the conflict between Vestal’s model and practical applica-
tions, where low-criticality tasks are completely discarded
when the system switches to high-criticality mode, some
studies have proposed reducing the worst-case execution time
(WCET) of low-criticality tasks in high-criticality mode [16],
[17], [18]. The elastic task model [19], [20], [21], [22] or
multi-rate [23], [24] retains the execution of low-criticality
tasks by extending their periods and relative deadlines.
Dynamic models [25], [26] that improve system utiliza-
tion are proposed in MC systems. Additionally, graceful
degradation for low-criticality tasks [27], [28], [29] and
mixed-criticality systems executing on varying-speed proces-
sors [30], [31], [32], [33] has also been studied. Burns and
Davis [34] provided a comprehensive summary of various
studies on mixed-criticality systems in 2022.

In research on hierarchical scheduling for non-mixed-
criticality systems, Sha et al. [35] proposed the periodic
server, which is invoked at fixed periods and has a fixed
server capacity for each period. The deferrable server was
first introduced in [36], enhancing the periodic server by
allowing the server capacity to be preserved when the server
is invoked but no tasks associated with it are ready to exe-
cute. Lehoczky et al. [36] conducted a schedulability analysis
of deferrable servers based on the preemptive fixed-priority
algorithm. Subsequently, Strosnider et al. [6] derived the
worst-case response time of tasks running on a deferrable
server under the preemptive FP algorithm. For both the peri-
odic server and the deferrable server, Hamann et al. [37]
proposed an exact response time analysis method for tasks
under preemptive FP algorithms. Martinez et al. [3] pre-
sented an exact response time analysis method for tasks
on a sporadic server, considering hierarchical systems with
multiple levels. Insik and Insup [4] proposed a periodic
resourcemodel based on component interfaces and conducted
schedulability analysis for tasks under both the FP and EDF
algorithms.

Research on mixed-criticality systems with hierarchi-
cal frameworks has primarily focused on uniprocessor
platforms. Gu et al. [8] proposed an interface-based
mixed-criticality periodic resource (MCPR) model for
mixed-criticality components. They derived a DBF-based
schedulability test for component tasks using the EDF-VD
algorithm. Yang and Dong [10] introduced a resource
degradation model for low-criticality components executed
on a virtual processor. This model reduces the resource
budget for each resource period when the execution time
requirements of low-criticality components degrade in high-
criticality mode. In their work, the task model within the
low-criticality components was non-mixed-criticality. Build-
ing on Yang and Dong’s work [10], Arafat et al. [11] con-
sidered a mixed-criticality task model within low-criticality
components and assumed that the criticality of the resource
model and the workload were independent. They proposed

four execution modes for the system based on this
assumption.

III. SCHEDULING MODEL
In this paper, we focus on the preemptive scheduling of a
set of MC tasks on the mixed-criticality deferrable server.
Additionally, we assume discrete time throughout this paper.
Therefore, all parameters representing time units are integers.

A. TASK AND COMPONENT
Each task τi in the system is represented by a quintuple,
τi =

(
CLO
i ,CHI

i ,Di,Ti, χi
)
. Task τi releases two consecutive

jobs with the minimal separation interval Ti. Each job of τi
must complete execution withinDi time units after its release,
where Di ≤ Ti. The worst-case execution time (WCET) of τi
has two estimates: CLO

i is the estimate under less pessimistic
system behavior and CHI

i is the estimate under the most
pessimistic system behavior. In this paper, we assume that
the tasks are of dual criticality. For high-criticality tasks (for
which χi = HI ), CLO

i < CHI
i . Conversely, for low-criticality

tasks (which have χi = LO), the WCETs meet CLO
i > CHI

i
and = 0. For simplicity, we refer to low-criticality tasks as
LO-Tasks and high-criticality tasks as HI-Tasks.

Our system consists of m independent components
with dual criticality. Each low-criticality component com-
prises a set of low-criticality tasks as described above,
while each high-criticality component consists of a set
of mixed-criticality tasks. Notably, there is at least one
high-criticality task in each high-criticality component.
To independently schedule tasks within components, we allo-
cate a mixed-criticality deferrable server to each component
to ensure isolation between components. The real-time
scheduling requirements for dual-criticality components can
be summarized as follows:

• Initially, the system starts in a low-criticality mode
(referred to as LO-Mode), where the execution time of
jobs in all components does not exceed CLO

i time units.
If all jobs within a component meet their deadlines, the
component is considered to meet its real-time require-
ments in LO-Mode.

• If a job of a high-criticality task executes for CLO
i

time units without reporting completion, the sys-
tem switches to high-criticality mode (referred to as
HI-Mode), where the execution time of all tasks does
not exceed CHI

i time units. In HI-Mode, if every job
of each HI-Task within a high-criticality component
meets its deadline, the component’s real-time require-
ments are satisfied.

B. MIXED-CRITICALITY DEFERRABLE SERVER
In our system, each mixed-criticality deferrable server DS
is assigned a unique priority and is scheduled by a global
FP scheduler. The DS is represented by a quadruple DS =(
2LO
DS , 2

HI
DS , 5DS , ϒDS

)
, where 5DS denotes the replen-

ishment period of the server, and ϒDS ∈ {HI ,LO}
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indicates the criticality of DS. 2LO
DS is the server capacity

in low-criticality mode (LO-Mode), and 2HI
DS is the server

capacity in high-criticality mode (HI-Mode). The server
capacity represents the maximum execution time that the
server can consume within one server period [5]. TheMC-DS
is based on the deferrable server and uses the same capacity
preservation mechanism as ordinary deferrable servers [6].
Specifically, when there are no ready tasks to execute on the
server, the MC-DS preserves its capacity until the end of the
server period.

Initially, the system starts in LO-Mode. In this mode,
the MC-DS replenishes its capacity by 2LO

DS time units
for each server period. When a high-criticality task trig-
gers a mode switch at time instant s, the low-criticality
servers cease operation. High-criticality servers then receive
an additional capacity replenishment for the server period
during which the mode switch occurred (defined as a
mode-switch server period). From the next server period
onward, the server replenishes its capacity by 2HI

DS time units
for each server period. Importantly, when a task triggers
a mode switch, all mixed-criticality servers in the system
exhibit high-criticality behavior simultaneously.
Definition 1 (Mode-Switch Server Period): If the arrival

time ae of a server period is less than or equal to the
mode-switch time instant s and its end time ah is greater than
s, we refer to it as a mode-switch server period.
Definition 2 (Incomplete Server Period): If the arrival

time ain of a server period is less than or equal to t and its
end time ain + 5DS is greater than t , we refer to it as an
incomplete server period during the time interval [0, t].
Now, we detail the rules for supplementing additional

capacity in a mode-switch server period. To better illus-
trate this mechanism, we define Lse as the gap between
the mode-switch time instant s and the start time ae of the
mode-switch server period, i.e., Lse = s − ae. The rules for
the additional replenishment mechanism are as follows:

If Lse < 2LO
DS , we supplement 2HI

DS − 2LO
DS time

units of additional server capacity at time instant s for
the mode-switch server period. Otherwise, if Lse ≥ 2LO

DS ,
no additional capacity replenishment is performed for this
period. Starting from the next server period, each server
period will replenish 2HI

DS time units of server capacity.
Notably, this replenishment mechanism is the same as that
of MCPR [8].

C. SCHEDULING ALGORITHM
In two-level hierarchical systems, a global scheduling
algorithm is employed to allocate execution resources to
components, while a local scheduling algorithm selects ready
tasks within the selected component for execution. At the
global level, we utilize the preemptive FP algorithm to sched-
ule servers. The preemptive FP algorithm offers flexibility
and is sufficiently straightforward to allow for the construc-
tion of efficient embedded real-time operating systems [38].
At the local level, we employ the earliest deadline first with

virtual deadlines (EDF-VD) algorithm [13], [14], [15], [16] to
determine which task to execute on the server. This algorithm
is widely adopted for scheduling mixed-criticality tasks.

1) EDF-VD SCHEDULING STRATEGY
In LO-Mode, each task τi is assigned a virtual relative
deadline denoted as Dvi . Specifically, for each HI-Task,
Dvi ≤ Di whereas for each LO-Task, Dvi = Di. When the
system switches to HI-Mode, the relative deadlines of all
tasks are updated to their actual relative deadlines. Setting vir-
tual deadlines ensures that all executing high-criticality jobs
have enough remaining time to fulfill additional execution
demands caused by the mode switch. We set virtual deadlines
for tasks according to ECDF algorithm [15].

IV. EXISTING COMPUTATION METHODS FOR SBF
In this paper, we use the EDF scheduler to manage tasks
within each component. Under the EDF algorithm, there
are two main approaches for performing schedulability
analysis: the utilization-based approach and the demand
bound function-supply bound function (DBF-SBF) analysis.
We focus on the DBF-SBF analysis.

The DBF describes themaximum processor execution time
required by the component tasks over a specific time interval.
The SBF defines the minimum processor execution time that
can be guaranteed for a component over a specific time inter-
val. Since the calculation of the DBF for mixed-criticality
tasks has been extensively studied [14], [15], [39], we can
directly apply them in the schedulability test of compo-
nent tasks. Our research focuses on providing new SBF
calculations.

A. THE SBF OF THE NON-MIXED-CRITICALITY RESOURCE
MODEL
The periodic resource model R (2, 5) [4] was proposed to
abstract the execution of non-mixed criticality components.
The SBF of R (2, 5) during a specific time interval 1 is
defined as:

SBFR (1)

=

 0, if1 ≤ 2 · (5 − 2)⌊
1 − (5 − 2)

5

⌋
· 2 + ε, otherwise

(1)

where

ε = max
{
0, 1 − 2 (5 − 2) − 5

⌊
1 − (5 − 2)

5

⌋}
(2)

SBFR (1) assumes that the resources are exhausted exactly
at 0, and the workload must wait 5 − 2 time units for
resources to be supplied again. ε calculates the resource
supply of R in its last period, assuming that the resource
budget for this period is consumed 5 − 2 time units after
the period’s release.
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The schedulability test for non-mixed-criticality com-
ponents under the EDF scheduling algorithm based on
DBF-SBF is described in Theorem 1.
Theorem 1 (Theorem 1 in [4]): A non-mixed-criticality

workload W scheduled by the EDF algorithm receives exe-
cution resources from 0. W is schedulable if and only if, for
every time interval within a hyperperiod, the resource demand
of W does not exceed the resource supply of 0,i.e.,

∀0 < t ≤ 2 · LCMW : DBFW (t) ≤ SBF0(t) (3)

where LCMW is the hyperperiod of the workload, DBFW (t)
represents the maximum execution time required by work-
load W over the interval t , and SBF0(t) represents the
minimum execution time provided by 0 over the same
interval.

A non-mixed-criticality system executes in a single sys-
tem mode, so it is sufficient to test schedulability for every
t ∈ ( 0, 2 · LCMW ]. However, in a mixed-criticality system,
the mode switching can occur at any time. It is necessary to
verify the schedulability for all potential mode switch points
within the time interval t .

B. THE SBF OF MIXED-CRITICALITY RESOURCE MODEL
To schedule mixed-criticality components, Gu et al. [8] pro-
posed the mixed-criticality periodic resource (MCPR) model
based on the periodic resource model [4]. The MCPR can
be abstracted as a periodic task I = (T ,L,C), where T
represents the period, L ∈ {LO,HI } denotes the criticality
level of the corresponding component, and C =

{
CL ,CH

}
represents the resource budget for each period. In the low-
criticality mode (or high-criticality mode), I provides at least
CL(or CH ) time units of the budget every T time units.
The execution time supplied by the mixed-criticality peri-

odic resource I during the time interval [0, t] is discussed
in two scenarios: the first scenario is when I operates in a
stable low-criticality mode, meaning that the mode switch
time instant s equals t; the second scenario is when I under-
goes a mode switch during the interval [0, t], meaning that
0 ≤ s < t . The SBF of I in LO-Mode is defined by (1). They
focused on the SBF of I when it experienced a mode switch.

Gu et al. [8] considered two possible supply patterns of I
that guarantee the minimal execution time for high-criticality
components when 0 ≤ s < t , namely pattern A and pattern B.
The minimum resource supply in pattern A, SBFAI (s, t), and
the minimum resource supply in pattern B, SBFBI (s, t), are
computed by (4) and (5), respectively:

SBFAI (s, t)

=



nLOA · CL
+

(
nA − nLOA

)
· CHI

+ sbf IN (nA, t)

, if s− a < CL(
nLOA + 1

)
· CL

+

(
nA − nLOA − 1

)
· CHI

+sbf IN (nA, t) , if s− a ≥ CLand a ̸= b

nLOA · CL
+ min

(
sbf IN (nA, t) ,CL

)
, if s− a ≥ CLand a = b

(4)

FIGURE 2. The worst-case resource supply for MCPR’s last resource
period.

FIGURE 3. The worst-case resource supply for MC-DS’s incomplete server
period.

where nLOA represents the number of complete resource peri-
ods within the interval [0, s], and nA indicates the number
of complete resource periods within the interval [0, t). The
term sbf IN (n, t) denotes the processor execution time pro-
vided by the last resource period within interval [0, t], where
sbf IN (nA, t) =

[[
t −

(
2T − CL

− CH
)
− nA · T

]]
0.

SBFBI (s, t)

=


(
nLOB + 1

)
· CL

+

(
nB − nLOB − 1

)
· CHI

+sbf IN (nB, t, l) , if a ̸= b

nLOB · CL
+ min

(
sbf IN (nB, t, l) ,CL

)
, if a = b

(5)

where sbf IN (nB, t, l) denotes the processor execution time
provided by the last resource period in pattern B, where
sbf IN (nB, t, l) =

[[
t − l −

(
T − CH

)
− nB · T

]]
0. l denotes

the length of shifting the time interval [0, t] in pattern A to
the right, becoming pattern B. This shift length l is given by
l = ⌈s/T ⌉ · T − s.

Therefore, a safe lower bound of SBF when 0 ≤ s < t is
defined as follows:

SBFI (s, t) = min
(
SBFAI (s, t) , SBFBI (s, t)

)
(6)

C. PESSIMISM IN THE EXISTING METHOD
According to the SBF calculation method in [8], they assume
that the resource budget in the incomplete resource period is
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not available until the end of the resource period. As shown
in FIGURE 2, if the time instant t is close to the start time of
the last resource period, the processor time guaranteed by this
period within the time interval [0, t] is 0. This is a pessimistic
assumption.

To address this issue, we propose the MC-DS to guarantee
processor time for MC components. With the worst-case
response time analysis forMC-DSs, we determine the longest
time for a server period to guarantee the server capacity
in different system modes, which makes the lower bound
of processor supply for the last server period less pes-
simistic. As shown in FIGURE 3, the last (incomplete)
server period executes in HI-Mode and the WCRT of this
server period is RHIDS . Therefore, processor time guaranteed
by this period within the time interval [0, t] is
t − ain −

(
RHIDS − 2HI

DS

)
.

Here, we examine the case where the incomplete server
period runs in HI-Mode. This approach applies to server
periods in other modes as well.

V. WORST-CASE RESPONSE TIME ANALYSIS FOR
MIXED-CRITICALITY DEFERRABLE SERVERS
To meet the varying processor requirements of mixed-
criticality components and independently verify each
component, we propose the mixed-criticality deferrable
server (see details in Section III). We now develop
the worst-case response time (WCRT) analysis for the
MC-DS. In subsection A, we perform WCRT analysis
for mixed-criticality deferrable servers in stable modes.
In subsection B, we analyze the WCRTs for mixed-criticality
servers that experience a mode switch. Combining the results
from subsections A and B, we present the schedulability test
based on the WCRT for MC deferrable servers in Theorem 2.

A. WORST-CASE RESPONSE TIME IN STABLE MODES
In stable modes, the interference caused by an MC-DS on
lower-priority servers is the same as the interference caused
by a non-mixed-criticality deferrable server. The maximum
interference generated by a non-mixed-criticality deferrable
server S within the interval t is calculated as follows [1]:

2S +

⌈
t − 2S

5S

⌉
2S (7)

In stable LO-Mode, each MC-DS DS (including high-
criticality servers and low-criticality servers) guarantees2LO

DS
time units of capacity for each server period. Therefore, the
maximum interference generated by each higher priorityMC-
DS X within the interval t is 2LO

X +
⌈(
t − 2LO

X

)
/5X

⌉
2LO
X .

The WCRT for DS in stable LO-Mode is as follows:

RLO,n+1
DS

= 2LO
DS +

∑
∀X∈hp(DS)

(
2LO
X +

⌈
RLO,n
DS − 2LO

X

5X

⌉
2LO
X

)
(8)

where hp (DS) denotes the MC deferrable servers (includ-
ing high-criticality servers and low-criticality servers) with

higher priority than DS. RLODS represents the WCRT of DS
executing 2LO

DS time units of capacity in stable LO-Mode.
RLODS starts recursion with RLO,0

DS = RLODS , and ends when
RLO,n
DS > 5DS or R

LO,n+1
DS = RLO,n

DS . If RLO,n
DS > 5DS , then DS

is not schedulable. Otherwise, if RLO,n+1
DS = RLO,n

DS , RLO,n+1
DS

is the WCRT of DS.
In stable HI-Mode, each high-criticality server DS guaran-

tees 2HI
DS time units of capacity for each server period, while

low-criticality servers stop executing. Therefore, DS suffers
interference only from high-criticality servers with higher
priority than itself. The WCRT for DS in stable HI-Mode is
as follows:

RHI ,n+1
DS

= 2HI
DS +

∑
∀X∈hpH (DS)

(
2HI
X +

⌈
RHI ,nDS − 2LO

X

5X

⌉
2HI
X

)
(9)

where hpH (DS) denotes the high-criticality servers with
higher priority than DS. RHIDS represents the WCRT of DS
executing 2HI

DS time units of capacity in stable HI-Mode. The
calculation steps of RHIDS is similar to the calculation of RLODS .

B. WORST-CASE RESPONSE TIME DURING A MODE
SWITCHING
When a server period of high-criticality MC serversDS expe-
riences a mode switch, it is affected by interference from the
two factors below:

(1). IDSL : the interference caused by the low-criticality
server DSL, which has higher priority than DS. IDSL
is defined in Lemma 1.

(2). IDSH : the interference caused by the high-criticality
server DSH , which has higher priority than DS. IDSH
is defined in Lemma 2.

Lemma 1: When the mode switch occurs at time instant s,
where 0 ≤ s < t , the maximum execution time demand IDSL
of DSL is:

IDSL =

(
1 +

⌈
s− 2LO

DSL

5DSL

⌉)
2LO
DSL (10)

where s = 2LO
DS when s < 2LO

DS , and s = t when
2LO
DS ≤ s < t .
Proof: Since low-criticality servers stop executing when

a mode switch occurs, the execution time demand of DSL
during the time interval [0, t] is restricted to interval [0, s].
During the interval [0, s], there are

⌈(
s− 2LO

DSL

)
/5DSL

⌉
+

1 periods that demand 2LO
DSL time units within each period.

Since the mode-switch server period has two types of capac-
ities, we consider IDSL in two cases and maximize it under
these two cases by setting the value of s to its maximum value.
The first case is when s < 2LO

DS , where the mode-switch
period supplements extra capacity. Another case is when
2LO
DS ≤ s < t .
Lemma 2: When the mode switch occurs at time instant s,

where 0 ≤ s < t , the maximum execution time demand IDSH
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of DSH is:

IDSH =

(
1 +

⌈
t − 2LO

DSH

5DSH

⌉)
2HI
DSH (11)

Proof: For the high-criticality server DSH , the server
period that ends before s demands at most 2LO

DSH time
units of execution and the server period that ends after s
demands at most 2HI

DSH time units of execution. To upper
bound IDSH , we assume that s = 0. In this case, there are⌈(
t − 2LO

DSH

)
/5DSH

⌉
+ 1 periods that demand 2HI

DSH time
units within each period.

Based on Lemma 1 and Lemma 2, we derive the WCRT of
the high-criticality server DS as follows:

RMC,n+1
DS

= 2 +

∑
∀X∈hpL(DS)

(
1 +

⌈
s− 2LO

X

5X

⌉)
2LO
X

+

∑
∀Y∈hpH (DS)

(
1 +

⌈
RMC,n
DS − 2LO

Y

5Y

⌉)
2HI
Y (12)

where 2 = 2LO
DS and s = RMC,n

DS , if the mode-switch period
of DS does not provide additional capacity. However, if the
mode-switch period supplements additional capacity, then
2 = 2HI

DS and s = 2LO
DS . The calculation steps of RMCDS is

similar to those of RLODS .
Then, we derive the WCRT-based schedulability analysis

of a set of MC deferrable servers in Theorem 2.
Theorem 2: MC systems consisting of MC-DSs are

schedulable at the global level under the FP algorithm if each
MC-DS DS satisfies the following condition:

RLODS ≤ 5DS ∧ RHIDS ≤ 5DS ∧ RMCDS ≤ 5DS (13)

whereRLODS represents theWCRT ofDS in LO-Mode, which is
defined by (8). RHIDS represents the WCRT of DS in HI-Mode,
which is defined by (9). And RMCDS represents the WCRT of
DS during a mode switch, which is defined as the maximum
value in the two cases described in (12).

VI. SCHEDULABILITY ANALYSIS FOR COMPONENT
TASKS
In this section, we develop a schedulability test for tasks
within each component based on the DBF-SBF method.
We assume that MC-DSs in the system are schedulable.
Based on this assumption, we focus on task scheduling within
individual components. Since our task scheduling strategy
is the same as in [15], the formulas from that reference are
directly used to calculate DBF. Our main focus is on deriving
the SBF.

In section A, we introduce two possible arrival patterns
that the MC-DS guarantees to provide a minimum SBF.
In sections B and C, we perform specific calculations for the
SBF in these two patterns. In subsection D, we derive the
upper bound tMAX of the time interval that needs to be verified
in the schedulability analysis (see Theorem 3). To make the

TABLE 1. Notations.

derivation process more concise, we use notations listed in
Table 1.

A. WORST-CASE ARRIVAL PATTERN
To establish a lower bound of the resource supply for
mixed-criticality deferrable servers during a specific time
interval.We initially determine the worst-case arrival patterns
of component tasks on the MC servers. These arrival patterns
ensure that the MC-DS guarantees the minimum execution
time. Given that we follow the same capacity replenishment
rules as MCPR [8], we consider applying the arrival patterns
proposed in that work. Subsequently, we demonstrate that
these arrival patterns are suitable for our analysis.

The first arrival pattern, referred to as pattern A, is shown
in FIGURE 4. In this pattern, tasks arrive at time instant 0,
preciselywhen the server capacity ofMCS has just exhausted.
The tasks must wait for 5MCS − 2LO

MCS time units to receive
available server capacity making aAf = 5MCS − 2LO

MCS .
In pattern A, if we shift the time interval [0, t](including time
instant s) to the left, it increases the SBF. However, if we shift
the interval [0, t] to the right by x time units, the mode-switch
server period no longer receives additional capacity replen-
ishment (as shown in interval

[
aBe , a

B
h

]
in FIGURE 5), which

may lead to a decrease in the SBF. We refer to this situation
as pattern B. In pattern B, tasks arriving at 0 must wait for
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FIGURE 4. A high-criticality server MSC executes under Pattern A during the time interval ⌈0, t⌉, where a mode switch occurs at time instant s.

FIGURE 5. A high-criticality server MSC executes under Pattern B which is obtained by shifting the time interval ⌈0, t⌉ in Pattern A to the right by x
time units.

5MCS − 2LO
MCS − x time units to receive available capacity.

Therefore, aBf = 5MCS − 2LO
MCS − x. And x is defined as

⌈s/5MCS⌉ · 5MCS − s [8].
When x > 5MCS − 2LO

MCS , shifting the interval [0, t] to
the right by x time units under Pattern A is equivalent to
shifting [0, t] to the left by some time units. This results in
an increase in the SBF. Therefore, we only consider the SBF
under Pattern Awhen x > 5MCS−2LO

MCS . We define themin-
imum execution time provided byMCS when the component
executes under pattern A as SBFAMCS (s, t). Similarly, themin-
imum execution time provided byMCS when the component
executes under pattern B is denoted as SBFBMCS (s, t). Thus,
the SBF ofMCS is defined as follows:

SBFMCS (s, t) =


SBFAMCS (s, t) ,if x > 5MCS − 2LO

MCS

min
(
SBFAMCS (s, t) , SBFBMCS (s, t)

)
,if x ≤ 5MCS − 2LO

MCS

(14)

where SBFAMCS (s, t) is derived in (22) and SBFBMCS (s, t) is
derived in (25)

Although the above analysis is for high-criticality servers,
it can also be directly applied to low-criticality servers. Since
low-criticality servers cease to operate after a mode switch,
the SBF calculation under pattern A can be used directly.
Based on the DBF and SBF calculations, we derive the
schedulability test for mixed-criticality components, as stated
in Theorem 3.

Theorem 3: A mixed-criticality component CO is sched-
uled by the EDF scheduler in the mixed-criticality deferrable
server MCS. Then, MC tasks in CO are schedulable if they
satisfy the following condition:

∀0 < t ≤ tMAX , 0 ≤ s ≤ t : DBFCO(s, t) ≤ SBFMCS (s, t)

(15)

where SBFMCS (s, t) is performed in (14), and DBFCO(s, t) is
derived in [15].

Next, we will discuss how to calculate SBFAMCS (s, t) in
section B and how to calculate SBFBMCS (s, t) in section C.

B. SUPPLY BOUND FUNCTION UNDER PATTERN A
Initially, MCS operates in LO-Mode, where each server
period (as shown in periods within time interval

[
0, aAe

]
in

FIGURE 4) contributes a processor budget of 2LO
MCS time

units to the component. When a mode switch occurs, the exe-
cution budget contributed by the mode-switch server period
(time interval

[
aAe , a

A
h

]
as shown in FIGURE 4) needs further

discussion. After the mode-switch server period ends, MCS
operates in stable HI-Mode, where each server period (as
shown in periods within time interval

[
aAh , a

A
in

]
shown in

FIGURE 4) contributes a processor budget of 2HI
MCS . More-

over, there is an incomplete server period (as shown in time
interval

[
aAin, t

]
in FIGURE 4) within [0, t] whose contributed

processor execution time also requires further discussion.
Therefore, the focus and challenge in calculating the supply
bound function lie in determining the minimum processor
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execution time contributed by the mode-switch server period
and the incomplete server period.

In pattern A,MCS replenishes its first server period at time
instant aAf during time interval [0, t], where aAf is detailed in
section A. Then, we derive the start time of the mode-switch
server period aAe and the start time of the incomplete server
period aAin. These values are calculated as follows:

aAe =

⌊
s+ 2LO

MCS

5MCS

⌋
· 5MCS − 2LO

MCS (16)

aAin =

⌊
t + 2LO

MCS

5MCS

⌋
· 5MCS − 2LO

MCS (17)

Since the mixed-criticality system considers the mode
switch at every time instant within time interval [0, t], imply-
ing that 0 ≤ s ≤ t [15], the value of aAe must be less than or
equal to aAin. According to the value of aAe and aAf , we divide
the server periods within time interval [0, t] into parts with
different system modes.

We first consider the processor time guaranteed by
server periods executing in stable LO-Mode and stable
HI-Mode.

During the time interval
[
0, aAe

]
, server periods operate

in LO-Mode with at least max
(
0,
⌊(
aAe − aAf

)
/5MCS

⌋)
server periods. Therefore, the execution time guaranteed by
server periods in LO-Mode is calculated by sbf LO

(
aAf , a

A
e

)
as follows:

sbf LO
(
aAf , a

A
e

)
= max

(
0,

⌊
aAe − aAf
5MCS

⌋)
· 2LO

MCS (18)

where aAf = 5MCS − 2LO
MCS , and a

A
e is calculated by (16).

After the mode-switch server period ends at time instant
aAh ,MCS operates in stable HI-Mode and replenishes capacity
of 2HI

MCS time units for each server period. As shown in
FIGURE 4, there are at least max

(
0,
⌊(
aAin − aAh

)
/5MCS

⌋)
complete server periods executing in stable HI-Mode. The
minimum execution time guaranteed by these periods is cal-
culated by sbf HI

(
aAh , a

A
in

)
as follows:

sbf HI
(
aAh , a

A
in

)
= max

(
0,

⌊
aAin − aAh
5MCS

⌋)
· 2HI

MCS (19)

where aAh = aAe + 5MCS and aAin is calculated by (17).
Next, we consider the processor execution time con-

tributed by the mode-switch server period (as shown in
time interval

[
aAe , a

A
h

]
in FIGURE 4).

When the mode switch occurs before aAf , the mode-switch
server period guarantees 0 processor since the server capac-
ity has been exhausted in the worst-case assumption. When
the mode switch occurs after aAf , there are two types of
the mode-switch server period. The first type is shown in
FIGURE 4, where the end time of the mode-switch server
period is no greater than t . In this case, the minimum exe-
cution time guaranteed by the mode-switch server period
is calculated in Lemma 3. The second type is shown in

FIGURE 6. The mode-switch server period is an incomplete server period.

FIGURE 6, where the end time of the mode-switch server
period is greater than t . Then, the mode-switch server period
is also an incomplete server period, and the processor execu-
tion time it contributes is obtained from Lemma 4.
Lemma 3: If the end time of themode-switch server period

is greater than aAf and less than t , the execution time guaran-
teed by this period is calculated as follows:

sbfmcp
(
aAe , s

)
=

{
2LO
MCS , if s− aAe ≥ 2LO

MCS

2HI
MCS , if s− aAe < 2LO

MCS
(20)

where aAe denotes the start time of the mode-switch server
period, and is calculated by (16).
Proof: According to the rules of the MC-DS (as detailed

in section III), the mode-switch server period does not
replenish extra capacity when s − aAe ≥ 2LO

MCS . Therefore,
it contributes 2LO

MCS time units of execution time. However,
if s−aAe < 2LO

MCS , the mode-switch server period replenishes
server capacity to 2HI

MCS .
Finally, we discuss the minimum processor time con-

tributed by the incomplete server period in Lemma 4.
Lemma 4: The incomplete server period during the time

interval [0, t] guarantees the minimum execution time as
follows:

sbfinp
(
s, t, aAe , a

A
in

)

=



0, if aAin < 0

max
(
0,min

(
t − aAin,R

HI
MCS

)
−

(
RHIMCS − 2HI

MCS

))
, if aAin ̸= aAe
max

(
0,min

(
t − aAin,R

LO
MCS

)
−

(
RLOMCS − 2LO

MCS

))
, if s = t

max
(
0,min

(
t − aAin,R

MC
MCS

)
−

(
RMCMCS − 2LO

MCS

))
,if aAin = aAe , s− aAe ≥ 2LO

MCSand s ̸= t

max
(
0,min

(
t − aAin,R

MC
MCS

)
−

(
RMCMCS − 2HI

MCS

))
,if aAin = aAe , s− aAe < 2LO

MCSand s ̸= t

(21)
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where aAin denotes the start time of the incomplete server
period and is calculated by (17). aAe denotes the start time
of the mode-switch server period and is calculated by (16).
Notably, aAe ≤ aAin.
Proof:When s = t , MC-DS executes in LO-Mode during

the time interval [0, t]. Next, we consider the cases when
s ̸= t . Case 1(aAin < 0): According to (17), aAin < 0 indicates
that time instant t is smaller than 5MCS − 2LO

MCS ( which is
equal to aAf ). Since the server capacity is exhausted at 0 and
will be replenished at5MCS−2LO

MCS , the execution time guar-
anteed by this period within time interval [0, t] is 0. When
aAin ≥ 0, as shown in FIGURE 4, the incomplete server period
starts at time instant k ∗ aAf , where k ≥ 0. We must consider
if a mode switch occurs within the incomplete server period
since the mode switchmay result in additional replenishment.
We analyze this in Case 2 and Case 3. Case 2(aAin ̸= aAe ):
Since aAe ≤ aAin and aAin ̸= aAe indicates that aAe < aAin.
In this scenario, the mode-switch server period starts before
the incomplete server period, implying the incomplete period
starts with the stable HI-Mode. The worst-case response time
of this period guaranteeing 2HI

MCS time units of capacity is
RHIMCS . If t − aAin ≥ RHIMCS , the server capacity has been fully
consumed before t . Otherwise, if t−aAin < RHIMCS , we assume
that the high-criticality server capacity 2HI

MCS is consumed at
the very end of the interval RHIMCS . Case 3(aAin = aAe ): As
depicted in FIGURE 6, the mode switch occurs within the
incomplete server period. According to the executing rules of
the MC-DS, if s− aAe ≥ 2LO

MCS , the incomplete server period
does not supplement additional capacity. If s − aAe < RLOMCS ,
the MC-DS replenishes the server capacity to 2HI

MCS . The
WCRT of the mode-switch server period is derived by (12).
In the analysis above, we categorized the server periods

within [0, t] into four types: ① periods running in stable low-
criticality mode, ② periods running in stable high-criticality
mode, ③ the mode-switch server period, and ④ the incom-
plete server period. Notably, when the mode-switch server
period coincides with the incomplete server period (which
means aAe = aAin), we only need to consider one of them.
Therefore, the calculation of SBFAMCS (s, t) is as follows:

SBFAMCS (s, t)

=



sbf LO
(
aAf , a

A
e

)
+ sbf HI

(
aAh , a

A
in

)
+sbfmcp

(
aAe , s

)
+ sbfinp

(
s, t, aAe , a

A
in

)
, if aAe ̸= aAin

sbf LO
(
aAf , a

A
e

)
+ sbfinp

(
s, t, aAe , a

A
in

)
, if aAe = aAin

(22)

where sbf LO
(
aAf , a

A
e

)
represents the execution time con-

tributed by server periods executing in stable LO-Mode,
and its value is derived from (18). sbf HI

(
aAh , a

A
in

)
represents

the execution time contributed by server periods execut-
ing in stable HI-Mode. Its value is derived from (19).
sbfmcp

(
aAe , s

)
calculates the execution time guaranteed by the

mode-switch server period, and its value is derived from (20).

The execution time contributed by the incomplete server
period is denoted as sbfinp

(
s, t, aAe , a

A
in

)
, and its value is

derived from (21).
This formulation accounts for the different contributions of

each type of server period within the interval [0, t], ensuring
an accurate and comprehensive calculation of the processor
execution time guaranteed by MC-DSs.

Then, we employ a similar method in deriving SBF under
Pattern A to calculate the SBF under Pattern B.

C. SUPPLY BOUND FUNCTION UNDER PATTERN B
When x (see section A for details) is less than or equal to
5MCS − 2LO

MCS , we shift the interval [0, t] of Pattern A to the
right by x time units, resulting in the processor execution time
contributed by the mode-switch server period decreasing,
as shown in FIGURE 5. For pattern B,MCS first replenishes
server capacity at time instant aBf during time interval [0, t].
The value of aBf is given by:

aBf = aAf − x (23)

Similarly, for MCS running in Pattern B, the start time
aBe of the mode-switch server period, the end time aBh of
the mode-switch server period, and the start time aBin of the
incomplete server are calculated as follows:

aBe = aAe − x, aBh = aAh − x, aBin = aAin − x (24)

By applying the shift, we align the timing of critical server
periods with the new arrival pattern B, thus providing an accu-
rate basis for computing the SBF in this pattern. The detailed
contributions of processor execution time in pattern B can
now be computed using these adjusted timings. This ensures
that our analysis accurately reflects the dynamics of server
replenishments and mode transitions under pattern B.

SBFBMCS (s, t)

=



sbf LO
(
aBf , a

B
e

)
+ sbf HI

(
aBh , a

B
in

)
+sbfmcp

(
aBe , s

)
+ sbfinp

(
s, t, aBe , a

B
in

)
, if aBe ̸= aBin

sbf LO
(
aBf , a

B
e

)
+ sbfinp

(
s, t, aBe , a

B
in

)
, if aBe = aBin

(25)

where sbf LO
(
aBf , a

B
e

)
can be derived from (18).

sbf HI (aBh , a
B
in) represents the execution time contributed by

server periods that start after the mode switch and com-
plete before time. Its value can be derived from (19).
sbfmcp

(
aBe , s

)
can be derived from (20). The execution time

contributed by the incomplete server period is denoted as
sbfinp

(
s, t, aBe , a

B
in

)
, and its value can be derived from (21).

D. UPPER BOUND OF THE TEST TIME INTERVAL
In this section, we derive the upper bound for tMAX in
Theorem 3. For notational simplicity, we define utilization
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of component CO as follows:

ULO
LO =

τi∈CO∑
χi=LO

CLO
i /T i,ULO

HI =

τi∈CO∑
χi=HI

CLO
i /T i (26)

UHI
=

τi∈CO∑
χi=HI

CHI
i /T i,ULO

= ULO
LO + ULO

HI (27)

where ULO
LO denotes the low-criticality utilization of

LO-Tasks, ULO
HI denotes the low-criticality utilization of

HI-Tasks, ULO denotes the low-criticality utilization of all
tasks, and UHI denotes the high-criticality utilization of
HI-Tasks.

The utilization of the MC server S is defined as follows:

UBLO = 2LO
S /5S ,UBHI = 2HI

S /5S (28)

where UBLO denotes the low-criticality utilization of
MC-DSs and UBHI denotes the high-criticality utilization of
MC-DSs.

The upper bound of the time interval that needs to be tested
in the DBF-based schedulability analysis is derived using a
method similar to that in [40]. By assuming that the DBF
within a time interval tMAX is larger than the SBF within the
same time interval (implying the system is not schedulable),
we derive the upper bound of tMAX . If the system is schedula-
ble for each possible value of tMAX that is less than its upper
bound, the MC system is schedulable.

Then, the upper bound for tMAX is derived in
Lemma 4.
Lemma 5: Suppose the mixed-criticality component CO

executing on the MC deferrable server S is not schedulable,
ULO < UBLO and UHI < UBHI . Then DBF (s, tMAX ) >

SBF (s, tMAX ) implies that tMAX must follows (29), as shown
at the bottom of the page.
Proof:We assume that a mode switch occurs at time instant

s where 0 ≤ s ≤ t . During the interval [0, t], DBF (s, t) is

upper bound as follows [8]:

τi∈CO∑
χi=LO

× (s/Ti + 1) × CLO
i

+

τj∈CO∑
χj=HI

(
s
Tj

× CLO
j + CHI

j +
t − s− Dj + Tj

Tj
× CHI

j

)

= ULO
LO × s+

τi∈CO∑
χi=LO

CLO
i

+

τj∈CO∑
χj=HI

(
s× CLO

j +
(
t − s− Dj + 2Tj

)
× CHI

j

)
/Tj

≤

τi∈CO∑
χi=LO

CLO
i +

(
ULO

− UHI
)

× s+ UHI
× t + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
(30)

And the lower bound of SBF (s, t) is given by:

s− 2LO
S

5S
× 2LO

S +

(
t−2LO

S

5S
−
s−2LO

S

5S
−1

)
× 2HI

S

=

(
UBLO−UBHI

)
× s+UBHI × t−UBLO × 2LO

S −2HI
S

(31)

Suppose there exists a time instant tMAX such that
DBF (s, tMAX ) > SBF (s, tMAX ), then (30) and (31) deriving
that:

τi∈CO∑
χi=LO

CLO
i + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
+ UBLO × 2LO

S + 2HI
S

tMAX <



τi∈CO∑
χi=LO

CLO
i + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
+ UBLO × 2LO

S + 2HI
S

UBLO − ULO

, if UBLO − UBHI ≤ ULO
− UHI

τi∈CO∑
χi=LO

CLO
i + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
+ UBLO × 2LO

S + 2HI
S

UBHI − UHI

, if UBLO − UBHI > ULO
− UHI

(29)
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>
(
UBHI − UHI

)
× tMAX

+

(
UBLO − UBHI −

(
ULO

− UHI
))

× s (32)

Since we are trying to derive the upper bound of tMAX and
0 ≤ s ≤ tMAX , we eliminate s by considering the value of
UBLO − UBHI −

(
ULO

− UHI
)
.

Case 1: ifUBLO−UBHI ≤ ULO
−UHI , then from (32) we

derive the following equation (33), as shown at the bottom of
the page.

Case 2: if BLO − BHI > ULO
− UHI , then from (32) we

derive the following equation (34), as shown at the bottom of
the page.

VII. EVALUATION
In this section, we evaluate the performance of our proposed
approach through simulations using synthetic task sets. Our
goal is to demonstrate the effectiveness of the proposed
schedulability analysis for component tasks. Specifically,
we evaluate the performance of our schedulability anal-
ysis based on Theorem 3 and compare the results with
the schedulability analysis of the mixed-criticality periodic
resource (MCPR) model [8]. Importantly, for consistency
in the task model, we set TLH = 0 in the MCPR
method. This configuration implies that if any HI-Task
within a component exhibits high-criticality behavior, all
tasks switch to high-criticalitymode. This particular setup has
yielded the most effective results in experiments involving
MCPR.

A. PARAMETER GENERATION
Since our focus is on the schedulability of component tasks,
it is essential to define the resource allocation for each com-
ponent and ensure that this allocation method makes the
system globally schedulable before commencing the exper-
iment. In our experiment, we focus on a system comprising
three mixed-criticality components, with the priorities of the
components decreasing from the first to the third. We specif-
ically experiment with the component having the lowest
priority, i.e., the third component C3. Each component is
assigned either a mixed-criticality deferrable server (using
our method) or a mixed-criticality interface (using MCPR).
For the k-th component in the system, its assigned server
period is denoted by 5k , with a low-criticality budget of
2LO
k and a high-criticality budget of 2HI

k . The server utiliza-
tion in the low-criticality mode is UBLOk , and the utilization
in the high-criticality mode is UBHIk . Based on the server
period and utilization, the server capacity can be calculated as
2LO
k = UBLOk ∗ 5k and 2HI

k = UBHIk ∗ 5k .

1) SERVER PARAMETERS
To better observe the experimental results, we set the exper-
imental component C3 as a high-criticality component. The
high-criticality utilizationUBHI3 is set as 0.4. We give specific
server period and utilization for the MC server associated
with C3 in section B. The specific server allocation for the
other components is set as follows: The high-criticality com-
ponent C1 is assigned a high-criticality server with the server
period 51 = 50, high-criticality utilization UBHI1 = 0.15,

τi∈CO∑
χi=LO

CLO
i + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
+ UBLO × 2LO

S + 2HI
S

>
(
UBLO − ULO

)
× tMAX

→ tMAX <

τi∈CO∑
χi=LO

CLO
i + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
+ UBLO × 2LO

S + 2HI
S

UBLO − ULO (33)

τi∈CO∑
χi=LO

CLO
i + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
+ UBLO × 2LO

S + 2HI
S

>
(
UBHI − UHI

)
× tMAX

→ tMAX <

τi∈CO∑
χi=LO

CLO
i + UHI

× max
χj = HI
τj ∈ CO

(
2Tj − Dj

)
+ UBLO × 2LO

S + 2HI
S

UBHI − UHI (34)
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FIGURE 7. Varying the low-criticality utilization within each component.

and low-criticality utilization UBLO1 = 0.75 ∗ UBHI1 . The
low-criticality component C2 is assigned a low-criticality
server with the server period 52 = 35 and low-criticality
utilization UBLO2 = 0.2. Since all the parameters we use
are integers, if the value of the calculated server budget is
a decimal, we round it up to the nearest integer.

2) TASK PARAMETERS
Our experiments are based on randomly generated MC
tasks. Each task τi is generated using the following
procedure:

• Ti is generated according to the existing method [41]
to ensure that the periods are uniformly distributed in
a given range (Tmax/Tmin = 10). Here, Tmax and Tmin
denote the maximum and minimum periods within a
task set, respectively.

• percentHI denotes the percentage of HI-Tasks in each
generated task set, with percentHI ∈ [0, 1].

• The task utilization ui is randomly generated by the
UUniFast algorithm [42], which efficiently generates
utilizations with uniform distributions. Let ULO repre-
sents the low-criticality utilization of the component,
where ULO

=
∑
uLOi .

• The low-criticality WECT CLO
i = ui · Ti.

• CFHI denotes the factorCHI
i /CLO

i for HI-Tasks. There-
fore, where CHI

i = CFHI · CLO
i .

• The relative deadline Di of each task τi is randomly
generated from

[
Cmax
i + 0.1 ·

(
Ti − Cmax

i

)
,Ti
]
, where

Cmax
i = max

k=i

{
CLO
k ,CHI

k

}
.

B. SIMULATION RESULTS
In each experimental iteration, we generate 1500 task sets.
The y-axis in all figures indicates the percentage of schedu-
lable task sets out of the 1500 generated. To illustrate the
superiority of our method more effectively, we present the
experimental results under various parameter influences.
Unless otherwise specified, the low-criticality utilization of
the task sets in every experiment is set to ULO

= 0.1. Addi-
tionally, each task set contains 16 tasks, with a 0.2 probability

of containing a high-criticality task, where the criticality
factor for such tasks is 2.

1) THE IMPACT OF THE UTILIZATION OF THE COMPONENT
We set the ratio of the low-criticality server utilization UBLO3
to the high-criticality server utilization UBHI3 as 0.8. We con-
figure 53 as 110. The experimental result as shown in
FIGURE 7 indicates that with increasing utilization of the
component in LO-Mode, the acceptance ratio of task sets
significantly declines under both methods. Since the utiliza-
tion of the mixed-criticality server in LO-Mode is slightly
less than 0.35, the component is not schedulable when ULO

exceeds 0.35. It is evident that our approach demonstrates a
more pronounced effect in enhancing the schedulability of
task sets when the utilization is relatively low. As utilization
increases, the execution time demand of tasks within each
time interval rapidly increases. The improvement offered
by our method over the existing method is not sufficient
to overcome the increased execution demand. Therefore,
the gap between the two methods decreases as utilization
increases.

2) THE IMPACT OF THE CRITICALITY FACTOR CFHI
The results of this experiment are shown in FIGURE 8.
In FIGURE 8(a), 53 is set to 110, and in FIGURE 8(b), 53
is set to 130. We configure the ratio of the low-criticality
server utilization UBLO3 to the high-criticality server utiliza-
tion UBHI3 as 0.7. As the criticality factor increases, the
execution time demand of tasks also increases, leading to
a reduction in the number of schedulable task sets. The
superiority of our method decreases with the increase of the
criticality factor due to the rapid rise in execution demand.
Comparing the results in FIGURE 8(a) and FIGURE 8(b),
we observe a decline in the acceptance ratio of task sets
as the server period increases. This is because the server
period represents the frequency of capacity replenishment.
When the server utilization is equal, a server with a larger
period requires more time to replenish its capacity if the
server capacity is exhausted, increasing the risk of task sets
becoming unschedulable. However, the ratio of WCRT to
the server period decreases as the period increases, making
the superiority of our method more pronounced. Specifically,
when 53 = 110, our method shows an average improvement
of 14% in the acceptance ratio compared to the existing
method. However, when 53 = 130, our method demon-
strates an average improvement of 18% in the acceptance
ratio.

3) THE IMPACT OF PERCENTHI
In this experiment, we set the ratio of the low-criticality
server utilization UBLO3 to the high-criticality server uti-
lization UBHI3 as 0.7. In FIGURE.9(a), 53 is set to 110,
and in FIGURE.9(b), 53 is set to 130. We set the x-axis
values to range from 0.1 to 0.6. With the increase in the
percentage of high-criticality tasks, the acceptance ratio of
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FIGURE 8. Varying the criticality factor of HI-Tasks within each component.

FIGURE 9. Varying the percentHI within each component.

FIGURE 10. Varying the number of tasks within each component.

task sets gradually decreases. This trend can be attributed to
the augmented execution demand stemming from the greater
proportion of high-criticality tasks within the component.
Since the execution demand increases relatively slowly when
the utilization is low, the decrease in acceptance ratio also
drops slowly as percentHI increases. Throughout the entire
experiment, our method consistently outperforms the existing
method, exhibiting an average improvement in the acceptance
ratio of approximately 17%.

4) THE IMPACT OF THE NUMBER OF TASKS
In this experiment, the x-axis values range from 6 to 26.
As shown in FIGURE.10, we set53 = 110 in FIGURE.10(a)
and 53 = 130 in FIGURE.10(b). The ratio of the
low-criticality server utilization UBLO3 to the high-criticality
server utilization UBHI3 is 0.7. As the number of tasks
increases, the competition for resources among tasks intensi-
fies, making it more challenging to find a scheduling solution
that meets all tasks’ time constraints. As the number of

VOLUME 12, 2024 123221



D. Ma: Component-Based Mixed-Criticality Real-Time Scheduling on a Single Processor System

tasks increases, the utilization of each task within a task set
decreases. This condition allows our method to demonstrate
superior performance in task scheduling compared to the
existing method.

VIII. CONCLUSION
In this paper, we consider a component-based hierarchi-
cal scheduling framework where components exhibit dif-
ferent criticalities. Each component comprises a set of
constrained-deadline sporadic tasks with dual criticalities.
To efficiently schedule these component tasks, we pro-
pose the mixed-criticality deferrable server (MC-DS). This
server defines its capacity in different modes and spec-
ifies how it replenishes capacity upon a mode switch.
We employ a preemptive fixed-priority algorithm to schedule
the mixed-criticality servers and develop the schedulabil-
ity analysis for the servers based on worst-case response
time (WCRT). Within each MC server, tasks are man-
aged using the earliest deadline first (EDF) scheduler.
We derive a schedulability analysis for components based
on the demand bound function (DBF) and supply bound
function (SBF). In computing the SBF, we integrate the
WCRT calculation of the MC-DS to achieve a more precise
assessment, thereby reducing the pessimism in the existing
schedulability analysis. We conduct extensive experiments
to validate our proposed method for analyzing the schedu-
lability of the component tasks. The experimental results
demonstrate the superiority of our approach over the existing
method.
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