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ABSTRACT To improve the prediction accuracy of monocular depth estimation networks and address
issues such as edge blurring and excessive artifacts in the generated depth maps, this paper proposes a
deep network architecture based on a global-local feature fusion module and a residual pooling module.
The encoder utilizes a Hierarchical Transformer, while the decoder incorporates a U-Net structure model
that combines multi-dimensional attention features aggregation and residual pooling. The residual pooling
module facilitates better extraction of background contextual information from the feature maps to obtain
more precise scene depth information. The global-local feature fusion module enables the network to learn
features that encompass both global and local information. Experimental evaluations conducted on the NYU
Depth V2 and KITTI datasets demonstrate that the proposed method achieves a δ1 of 0.916 on the NYU
Depth V2 dataset, along with enhanced generalization ability and robustness. Furthermore, the effectiveness
of each module is validated through ablation studies on the NYU Depth V2 dataset.

INDEX TERMS Computer vision, convolutional neural networks, image processing, monocular depth
estimation, residual pooling.

I. INTRODUCTION
Monocular depth estimation is the technology of predicting
the distance (depth) from the scene to the center of the camera
imaging using a single RGB image and generating a depth
image containing depth information. A technology has wide
application prospects in 3D reconstruction [1], robotics [2],
and autonomous driving [3]. However, monocular depth esti-
mation faces the challenge of uncertainty in image scale,
as the same input image can correspond to numerous different
3D scenes. To address this issue, researchers typically adopt
two approaches. One approach is to use real depth maps
as supervision for training and evaluation of depth, while
the other approach involves learning the depth structure and
geometric information of the scene from a single image to
achieve depth estimation.

Following the pioneering work of Saxena et al. [4] in
using segmented plane structures in the scene and Markov
random fields to predict depth, the academic community
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began studying supervised learning-based monocular depth
estimation. Subsequent research introduced methods such as
conditional random fields (CRF) [5], [6], modified loss func-
tions [2], and multi-scale feature fusion [3]. Unsupervised
depth estimation does not require depth labels or other super-
vision information. Godard et al. [7] proposed Monodepth,
which performs depth estimation by learning the ego-motion
and depth information of monocular images, capable of han-
dling cases with texture scarcity and high scene complexity.
Subsequently, Godard et al. [8] introduced Monodepth2,
which uses minimal reprojection loss to alleviate occlusion
issues and employs an auto-masking loss to filter out moving
objects with the same speed as the camera.

As research progresses, researchers have gradually rec-
ognized the importance of global and local information in
generating high-quality depth images [9]. Therefore, there is
a need for the ability to comprehend the global scene while
fully utilizing local information.

To further improve the accuracy of depth estimation
and generate depth maps with clear boundaries, this paper
proposes a new network architecture. Firstly, Hierarchical
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Transformer is built as an encoder to construct global rela-
tionships to efficiently capture multi-scale context features.
Subsequently, a U-Net structured model is designed in the
decoder, incorporating the Aggregated Multi-Dimensional
Attention Feature Module (MAMF) and Residual Pooling
Module (RPM). The MAMF adaptively adjusts the weights
of various channels and spatial positions in the feature map
through attention mechanisms to extract pertinent infor-
mation. Following this, the Global-Local Feature Fusion
Module (GLFFM) is utilized to construct multi-scale fea-
ture concatenation paths combining the network’s global and
local features. However, using only MAMF and GLFFM
module-designed decoder layers with shallow depth can
lead to inadequate decoding of depth information in cer-
tain scenes. To address this issue, the RPM is introduced,
which retains information from the original input during
the learning process while reducing the number of param-
eters. Skip and cross-stage connections are also employed
to better interconnect these modules. To validate the effec-
tiveness of the proposed network architecture, extensive
experiments are conducted on the NYU Depth V2 [10] and
KITTI [11] datasets. Experimental results demonstrate that
the proposed network model improves depth accuracy and
boundary prediction accuracywith only 61Mparameters. The
effectiveness of the model and each module is qualitatively
and quantitatively verified, showing good generalization and
robustness in cross-dataset testing.

The main contributions of this paper can be summarized as
follows:

1. A Global-Local Feature Fusion Module was designed to
enhance edge information and depth prediction accuracy by
effectively utilizing the global and local feature information
of the depth map.

2. A Residual Pooling Module was designed, utilizing
max-pooling to capture background information of the depth
image and employing residual methods to ensure that the
output information is not solely dependent on the network’s
learning capacity.

3. The effectiveness of the proposed method was exper-
imentally validated on the NYU Depth V2 [10] and
KITTI [11] datasets, exhibiting greater robustness compared
to previous networks. Additionally, excellent generalization
capabilities were demonstrated on the indoor dataset SUN
RGB-D [12].

II. RELATED WORK
The choice of network architecture in monocular depth esti-
mation directly influences the model’s ability to accurately
infer depth, particularly in how it processes and integrates
spatial and contextual information. Most of the research in
monocular depth estimation is based on encoder-decoder net-
work architectures. For the design of the encoder, features are
primarily extracted through convolutional neural networks
(CNN), Transformers, or a hybrid of both methods.

Eigen et al. [1] were the first to apply CNN to monocular
depth estimation research, proposing a network structure that

combines coarse-scale and fine-scale depth predictions to
generate dense pixel-wise depth estimates. This research laid
the foundation for subsequent studies in monocular depth
estimation and advanced the field. Early studies primarily
utilized convolutional neural networks based on VGG [12];
however, the VGG network faces issues of parameter redun-
dancy and high computational complexity. Yin and Shi [14]
achieved state-of-the-art performance in monocular depth
estimation research by replacing the VGG model’s network
architecture with ResNet [15]. ResNet tackles the problem
of vanishing and exploding gradients by introducing residual
connections, addressing the issues present in the VGGmodel.
Laina et al. [2] utilized ResNet as the encoder and proposed
a fully convolutional residual network with BerHu loss [16],
enabling the network to generate dense pixel-wise depthmaps
with improved resolution in simpler scenarios. Lee et al. [17]
introduced a novel network architecture utilizing multiple
stages of novel local planar guidance layers in the decoding
stage for full-resolution depth estimation. Kumari et al. [18]
incorporated residual connections and introduced perceptual
loss in the encoder-decoder CNN network architecture, con-
sidering high-level features at different scales to aid themodel
in faster convergence.

Transformer can replace traditional convolutional neural
networks for feature extraction. The self-attention mecha-
nism with multi-layer perceptrons in Transformer allows for
modeling global relationships, enabling more accurate cap-
turing of long-range dependencies in images. Bhat et al. [19]
proposed a structure combining a CNN-based encoder and
Transformer blocks to divide the depth range into adaptive
estimated center values for each image, converting the depth
estimation task into a classification task and demonstrat-
ing state-of-the-art performance. Shao et al. [20] introduced
uncertainty-aware cross distillation between Transformer and
CNN as an encoder, leveraging Transformer branches for
establishing long-range correlations and CNN branches for
focusing on local information. Gordon et al. [21] presented an
unsupervised monocular depth estimation method based on
the Transformer network architecture, effectively integrating
and fusing features of different scales and resolutions.

Following the success of the Vision Transformer [22] in
image classification tasks, researchers have widely applied it
in the field of monocular depth estimation in recent years.
Ranftl et al. [23] utilized a network architecture based on
Vision Transformer-CNN as an encoder, providing more
fine-grained and globally consistent predictions, but the
model training requires large datasets and takes longer train-
ing times. Zheng et al. [24] demonstrated the advantage of
Vision Transformer in dense prediction tasks. Subsequently,
Xie et al. [25] proposed the SegFormer model, a Transformer-
based segmentation framework with a simple, lightweight
MLP decoder, better suited for application in monocular
depth estimation. Wu and Wang [26] achieved promising
results in monocular depth estimation using the SegFormer
model; however, the large model parameters may lead to poor
generalization capabilities. Lie et al. [27] also employed
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FIGURE 1. Overview of the proposed network architecture. The framework of our network is the encoder-decoder design. The Vision
Transformer is considered as the encoder, with which sufficient multi-level global features are extracted. In the decoder, these modules
guide the network to better predict full resolution depth maps with clear structure details.

the SegFormer model, but the shallow decoder layers could
result in inadequate depth information decoding for certain
scenarios.

In summary, the CNN encoder-decoder network architec-
ture exhibits inaccuracies in depth prediction, low precision
in scene boundary predictions, and large model param-
eters. Conversely, utilizing a combination of CNN and
Transformer- based encoders increases computational com-
plexity, affecting training speed and leading to significant
memory overhead. Therefore, we propose using the more
efficient Hierarchical Transformer as an encoder and appro-
priately widening the decoder to focus on rich global and
local features in feature maps, aiming to achieve more precise
depth estimation performance.

III. METHODOLOGY
The purpose of the depth estimation model is to accurately
predict the depth map O∈R3×w×h of a given RGB image
I∈R1×w×h. Our depth estimation network consists of an
encoder and a decoder, and the specific depth estimation
model is shown in Figure 1.
Encoder:We use the SegFormer [25] model as the encoder

due to its efficiency in capturing multi-scale contextual

features through a series of Transformer-based blocks. The
encoder of the SegFormer model is composed of a series of
Transformer-based blocks, with each Transformer Block con-
nected through residual connections and layer normalization
operations. Additionally, it reduces the computational cost
of self-attention mechanisms through Shifted Window and
utilizes the Patch Embedding [22] method to divide the input
image into multiple small blocks for encoding. Initially, the
input image undergoes Patch Embedding processing to obtain
feature maps f0, which are then sequentially input into the
Transformer Block to obtain feature maps f1, f2, f3, and f4.
Their corresponding channel numbers and image sizes are
f1: 64 × 112×144, f2: 128 × 56×72, f3: 320 × 28×36, f4:
512 × 14×18. Simultaneously, during the encoding process,
it is capable of generating multi-scale features for use in the
decoding stage.
Decoder: To achieve accurate depth map estimation

results, we construct a novel decoder structure based on the
U-Net architecture to restore features to a size of 1 × H ×

W . Additionally, to fully utilize the high-level semantic fea-
tures extracted by the encoder, we increase the width of the
decoder. In this paper, we first adaptively adjust the weights
of various channels and spatial positions in the feature maps
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through theMAMFmodule to reduce the number of channels.
Subsequently, by stacking and concatenating the GLFFM
and RPM sub-modules, we gradually extract features at
different levels and perform scale feature fusion to better
capture multi-scale and multi-level features of the target. The
designed decoder can focus on both global and local feature
information separately, thereby improving the accuracy and
robustness of depth estimation. Local feature information is
achieved through inter-stage connections, establishing con-
nections between feature maps at different stages to facilitate
information transfer and fusion. Additionally, the proposed
sub-modules need to construct decoding paths through skip
connections to more accurately restore the target depth map.
Section III-A, III-B and III-C provide a detailed introduction
to these modules.

A. MULTI-DIMENSIONAL ATTENTION FEATURE MODULE
(MAFM)
TheMulti-Dimensional Attention Feature Aggregation Mod-
ule amplifies the respective advantages of channel attention
and spatial attention by combining them. It mainly leverages
the channel information and spatial positional information
of feature maps and is illustrated in the model architecture
diagram shown in Figure 2.

FIGURE 2. Multi-dimensional attention feature module.

Channel attention is used to enhance the channel corre-
lation of feature maps. It acquires background information
of the channels through average pooling and obtains atten-
tion weights for each channel using a sigmoid activation
function. Finally, these attention weights are multiplied by
the input feature map to enhance the representation capacity
of important channels. Spatial attention, on the other hand,
is utilized to enhance the spatial correlation of feature maps.
The attention weights obtained through a sigmoid activation
function are multiplied by the input feature map to enhance
the representation capacity of important spatial positions. The
entire process can be represented by the following formula:

xchannel = xn × Sigmoid(MLP(max pool(F))). (1)

xspatial = xn × Sigmoid(W 7×7([max pool(F); avgpool(F)])).
(2)

xout = xchannel + xspatial . (3)

where F is the input feature map, xin is the feature value at
the corresponding position on the input feature map F , MLP
is 1 × 1 Conv-ReLU-1 × 1Conv, and M7×7 represents the
weight matrix of the 7 × 7Conv.

B. GLOBAL-LOCAL FEATURE FUSION MODULE (GLFFM)
The Global-Local Feature Fusion Module leverages informa-
tion related to image depth in both the global pathway and
local pathway, rather than focusing excessively on texture
information of objects in the image. The model structure
diagram is shown in Figure 3.

FIGURE 3. Global-local feature fusion module.

The global features and local features are concatenated
using the concat operation. Subsequently, the feature map
from the 5 × 5 Conv-Batch Normalization-ReLU layer and
the feature map from the 3 × 3-Batch Normalization layer
are added to the result from the 5 × 5-Batch Normalization
layer to obtain a dual-channel feature map. Finally, the global
features are added to the local features multiplied by the
results of each channel, emphasizing the important locations
in the feature map. The 5×5 convolutional kernel can capture
broader contextual information, while the 3 × 3 convolution
focuses on details and local information. This module helps
refine global and local feature information, effectively uti-
lizing the depth information of the image and enhancing the
efficiency of the decoder.

C. RESIDUAL POOLING MODULE (RPM)
The Residual Pooling Module can preserve the most sig-
nificant features and output fused feature maps with rich
spatial information, enabling the network to extract and learn
features more effectively in subsequent layers. The model
structure diagram is shown in Figure 4.
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FIGURE 4. Residual pooling module.

This module consists of two pooling blocks, each con-
taining a max pooling layer and a convolutional layer. The
convolutional layer acts as a weighted fusion operation, learn-
ing weights to adapt to the pooling blocks during the training
process. Alternating between max pooling and convolution
operations can enhance themodel’s representational capacity,
reduce the number of parameters, and improve computational
efficiency. The output feature maps of all pooling blocks are
fused with the input feature map through residual connections
by summation. This allows the network to retain information
from the original input during learning, rather than solely
relying on the network’s learning capacity. The specific com-
putational process is as follows:

xi = C(P(xi−1)), i = 1, 2. (4)

xout =

∑2

x=0
xi. (5)

Xout = xlocal × R(C3(xout )) + xglobal × R(C3(xout )) (6)

where C represents 1×1Conv, P represents 5×5 maxpool, R
represents ReLU, C3 represents 3×3Conv, and x0 represents
the feature after being processed by 3 × 3Conv-ReLU.

D. DATA AUGMENTATION
Data augmentation is an effective technique for alleviating
overfitting by increasing the effective number of training
samples. In the field of monocular depth estimation, methods
such as CutDepth [28] and CutFlip [20] are commonly used
for data augmentation. The CutDepth method replaces parts
of the input image with ground truth depth maps, providing
multiple possibilities for the input image and allowing the net-
work to focus on high-frequency components. On the other
hand, the CutFlip method vertically splits the input image
into two parts and flips them along the vertical direction,
in order to weaken the correlation between depth and the
vertical position of the image.

However, monocular depth estimation models heavily rely
on vertical image positions [29] to infer depth, often over-
looking other cues such as apparent size, which can lead to
reduced model generalization. In order to prevent overfitting
and enable the network to focus on high-frequency regions,
we employed the CutDepth method along with a combination
of random data augmentation techniques, including a 50%
probability of horizontal flipping, random brightness, random

gamma transformation, and adjustments to hue and saturation
values. It should be noted that color augmentation is only
applied to the input images and not to the synthetic images.

E. TRAINING LOSS
To facilitate the computation of the error between the pre-
dicted depth map Y ∗ and the ground truth depth map Y ,
we adopt the scale-invariant logarithmic scale loss 0 to train
the model. This method has advantages such as fast conver-
gence, high prediction quality, and low loss. Specifically, the
training loss equation can be expressed as:

loss =
1
n

∑
i

d2i −
1
2n2

∑
i

d2i (7)

where di = logyi − logy∗i , yi, and y
∗
i represent the i-th pixel

in Y and Y ∗.

IV. EXPERIMENT
To substantiate the model’s performance, we performed
comprehensive experiments and evaluations on both the chal-
lenging indoor NYU Depth V2 and diverse outdoor KITTI
datasets. We compared our model with existing methods
through quantitative and qualitative assessments, and per-
formed ablation experiments to verify the effectiveness of
each module’s contribution.

A. DATASET
NYU Depth V2 [10] is an indoor dataset collected by
Microsoft Kinect’s RGB and Depth cameras, with a resolu-
tion of 640 × 480 for indoor images and a depth range of
0 to 10 meters. We follow the official training/testing seg-
mentation method to evaluate the performance of the model,
using approximately 24K images randomly cropped to 576×

448 for network training, and evaluated on 654 images.
KITTI [11] is the most commonly used dataset for cap-

turing outdoor scenes from moving vehicles, with images
having a resolution of 352 × 1216 and depth values ranging
from 0 to 80 meters. We follow the data segmentation method
of Eigen et al. [1], using approximately 23K training set
images randomly cropped to 704× 352 for network training,
and evaluated on 697 test set images.

B. EVALUATION
We adopt five common evaluation metrics [1] used in
monocular depth estimation to compare our method with
state-of-the-art models. Among them, n represents the total
number of obtainable pixels in the ground truth depth map,
dp represents the predicted depth given at pixel p, and d∗

p
represents the true depth at pixel p. |. | returns the number of
elements in the input set. The evaluation metrics are defined
as follows:

REL =
1
n

∑n

p=1

∣∣∣dp − d∗
p

∣∣∣
d∗
p

(8)
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TABLE 1. Accuracy evaluation of different methods tested on NYU Depth V2 dataset.

RMSE =

√√√√√1
n

∑n

p=1

∣∣∣dp − d∗
p

∣∣∣2
d∗
p

(9)

RMSE log =

√
1
n

∑n

p=1

∣∣∣lg dp − lg d∗
p

∣∣∣2 (10)

δi =
1
n

∣∣∣∣∣{d ∈ n| max

(
d∗
p

dp
,
dp
d∗
p

)
< 1.25t

}∣∣∣∣∣× 100%

(11)

C. IMPLEMENTATION DETAIL
This experiment uses the PyTorch framework to conduct
experiments on an NVIDIA TITAN Xp GPU with 12GB of
memory. The training epoch is set to 25, and the batch size
is set to 4, with the same settings applied to both the NYU
Depth V2 and KITTI datasets.

To train the network, we use a single-cycle learning rate
strategy with the Adam optimizer [30]. The learning rate is
dynamically adjusted using an LR scheduler, with a decay
exponent of 0.9 to slow down its growth. We set the learn-
ing rate range from 3e-5 to 1e-4, and calculate the current
learning rate using linear interpolation based on the model’s
training progress (the ratio of global steps to total steps) and
exponential decay. The learning rate is adjusted between the
minimum and maximum values, with a tendency to increase
first and then decrease as training progresses. This learning
rate adjustment strategy can improve the training effect and
convergence speed of the model.

D. COMPARISON WITH STATE OF THE ARTS
NYU Depth V2: Table 1 presents the comparison of our
proposed method with some state-of-the-art methods on the
NYU Depth V2 dataset. ‘‘Params’’ represents the model’s
parameter count, the third column shows the pixel-level
accuracy of the predicted depth maps at thresholds δi of
1.251, 1.252, and 1.253, where higher values indicate better

performance. The fourth column presents three error met-
rics, where lower values indicate better performance. From
the table, it can be observed that our proposed model has
only 61M parameters. Additionally, five out of the six met-
rics demonstrate good performance. Xue et al. [31] used
the Sobel operator for edge detection to induce boundary
information generation, leading the model to focus on bound-
ary information while neglecting overall depth information.
Lee et al. [17] introduced multi-scale local plane guidance,
requiring a large amount of training data. Patil et al. [32]
proposed a method based on segmented plane priors, which
may suffer from generalization issues in complex scenes.
Patil et al. [32] introduced a monocular depth estimation
method based on a multi-scale vision transformer, which
might increase the computational complexity of training and
inference. Bhat et al. [19] partition depth values during depth
estimation, which can affect the accuracy of the depth estima-
tion. Ranftl et al. [23] require a large number of parameters,
increasing the model’s computational cost. Kim et al. [9]
utilized a lightweight decoder, which may result in a shallow
decoder unable to meet the demands of different scenes.
Lei et al. [27] may exhibit inaccurate boundary information
predictions in scenes such as mirrors and doors. Wu and
Wang [26] lacked experiments on the robustness and gen-
eralization ability of the model. Among all the compared
methods, our proposed model demonstrates advanced per-
formance in most evaluation metrics, which we attribute to
the proposed architecture, enabling better extraction of depth
information from images.

Figure 5 presents the visual results of the NYU Depth V2
dataset in five different indoor scenes (bedroom, bookstore,
living room, office, and computer lab). By comparing the
predicted depth maps, it can be observed that our method
produces clearer and more reasonable results than those
reported in the literature. Our method effectively reduces
depth map artifacts in distant locations such as lamps, tables,
chairs, and door frames, resulting in sharper boundaries
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TABLE 2. Accuracy evaluation of different methods tested on KITTI dataset.

FIGURE 5. Visualise the results of different methods on different indoor scenes on NYU Depth V2 dataset. * indicates the result
obtained in our experimental environment.

and better recovery of the depth information from the
images.
KITTI: To demonstrate the effectiveness and superiority of

the proposed method in this paper, we compared our network
model with recent relevant methods on the KITTI dataset,
and the results are shown in Table 2. It can be observed
from the table that our proposed method achieves advanced
performance in all six metrics on the KITTI dataset.
SUN RGB-D: To evaluate the network’s generalization

ability, we conducted additional testing on the indoor SUN
RGB-D dataset. We trained the network using the NYU
Depth V2 dataset and evaluated it on the SUN RGB-D test
set. Figure 6 presents a qualitative comparison of different
networks on the SUN RGB-D test set. The results indicate
that our proposed network performs better in depth estimation
for distant scenes, and the boundaries of the generated depth

maps are also clearer. This demonstrates the superiority of our
method and its better generalization ability.

E. ROBUSTNESS EXPERIMENTS
Robustness experiments are an effective method for evaluat-
ing the performance of algorithms in the presence of noise,
changes in lighting, occlusions, motion blur, and other con-
ditions. They can also assess the stability and reliability of
algorithms in different environments. To verify the adaptabil-
ity of the proposed network under different conditions and
scenarios, we conduct robustness experiments. We train the
network using the NYU Depth V2 dataset and then test it
on the NYU Depth V2 test set with the addition of Gaussian
noise, motion blur, changes in contrast, and snow, as shown
in Table 3.
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FIGURE 6. Visualise the results of different methods on different indoor scenes on SUN-RGBD dataset. *
indicates the result obtained in our experimental environment.

TABLE 3. Robustness experiment results on corrupted images of NYU Depth V2 dataset.

Observing Table 3, it can be seen that our method still
exhibits strong depth estimation capability when applied to
images with added Gaussian noise, motion blur, changes
in contrast, and snow, demonstrating a certain level of
robustness.

F. ABLATION EXPERIMENTS
This paper improves the method based on the base-
line approach in reference [9]. To validate the effective-
ness of each module, we conduct ablation experiments
by systematically removing components. In this section,
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TABLE 4. Ablation study on model architectures. All the models are trained and tested on NYU Depth V2 dataset.

we experimentally verify the importance of the design
choices for each module in the model by conducting exper-
iments on the NYU Depth V2 dataset, and the results are
presented in Table 4.

Observing Table 4, it can be seen that the addition of the
GNFFM andRPMmodules to the decoder part of the baseline
has resulted in improved accuracy, with a decreasing trend
in error metrics. This indicates that the introduction of these
two modules in this paper has significantly contributed to
the improvement of depth estimation accuracy. Subsequently,
with the addition of the MAFM module, it can be observed
that, except for δ3 and REL, all other metrics have shown a
slight improvement.

V. CONCLUSION
This paper demonstrates outstanding performance on the
KITTI and NYU Depth V2 dataset by introducing MAFM,
GNFFM, and RPM modules, representing a significant
improvement compared to the original network. Specifically,
the GNFFM and RPM modules can more accurately predict
distant objects, possess superior global feature processing
capabilities, and better preserve object details and contour
information in depth maps. However, limitations exist in
accurately predicting reflective objects such as mirrors and
glass, particularly in terms of boundary prediction accuracy.
Additionally, the proposed method sets the channel num-
ber for each feature layer during design, which may not
necessarily be the optimal solution for different scenarios.
Therefore, future research will focus on addressing these
issues to achieve superior results.
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