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ABSTRACT Non-small cell Lung Cancer (NSCLC) is one of the most common types of lung cancer,
accounting for approximately 80% to 85% of lung cancer cases, and survival prediction in this cancer is an
essential medical task. Traditional survival prediction methods, which only rely on demographic and clinical
variables, fail to fully characterize patients’ pathological characteristics and clinical factors, thus limiting
the prediction effect. With the development of medical imaging technology and genomic methods, survival
prediction studies have ushered in new analytical perspectives in recent years. However, most of the existing
advanced techniques only rely on one class and few classes of medical data, which do not comprehensively
characterize patients’ pathological features and clinical conditions, and similarly limit the predictive effect.
To this end, in this paper a new method is proposed to solve this problem, that is, using flexible interpretable
graph structure to fuse and model the multimodal data (including clinical data and CT images, etc.) of
patients, so as to solve the problem of fragmentation and one-sidedness among multi-class data of survival
prediction. A new multi-modal fusion graph convolutional network (FGCN) is proposed according to the
characteristics of multi-modal graph data. The main body of the network structure is composed of a SAGE
graph convolution layer with the self-attention mechanism, which accelerates the convergence of the model
compared to the traditional one and ensures that the risk predicted by the model is as close to the actual
situation as possible. More importantly, this study is the first to introduce the TopKPooling strategy in this
model to address the problems of feature redundancy and excessive noise features arising from multimodal
data fusion and to reduce the model complexity. A large number of ablation and comparison experiments
and analyses on public non-small cell lung cancer datasets show that the method proposed in this paper
achieves better prediction results, with a C-index value of 0.76, which exceeds the currently known advanced
techniques, and fully proves the effectiveness and superiority of the method in this paper.

INDEX TERMS Survival prediction, multimodal fusion, CT, deep learning, graph convolutional networks.

I. INTRODUCTION
Non-Small Cell Lung Cancer (NSCLC) is one of the most
common types of lung cancer, accounting for approximately
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80% to 85% [1] of lung cancer cases. The widespread exis-
tence of this type of cancer poses a serious challenge to the
medical community. Survival prediction helps doctors and
patients to develop individualized treatment plans jointly.
By knowing what to expect from patients, doctors can bet-
ter weigh the pros and cons of different treatment options
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to obtain the best treatment effect. For the treatment and
management of NSCLC patients, good survival prediction
is crucial. This predictive information can not only help
patients better cope with the disease, but also help to allo-
cate medical resources more effectively. However, survival
prediction in NSCLC is not an easy task, and many complex
factors, including clinical and pathologic differences between
patients, the disease progression rate, and the diversity of
therapeutic regimens, challenge this task. Inaccurate sur-
vival predictions may not only lead to inappropriate clinical
decisions, but also reduce clinicians’ confidence in com-
municating with patients [2]. Despite the many difficulties,
patients’ survival rates and quality of life are expected to
improve further with medical research advancement and new
treatment strategies.

Over the past decades, clinicians have relied on clinical
covariates, biomarkers, and clinical experience for cancer
survival prediction [3]. TNM [4] staging and gene expres-
sion profiling were widely used in almost all solid cancers
to predict prognosis and assist in clinical treatment deci-
sions. For example, researchers Cai et al. [5] constructed
a model containing eight messenger RNA prognostic sig-
natures for identifying potential molecular biomarkers in
esophageal cancer patients suffering from lymph node metas-
tasis (LNM) [6], [7]. The model proved to be a good indicator
of prognosis and contained biomarkers such as VEGF [8],
cyclin D1 [9], Ki-67 [10], and squamous cell carcinoma
antigen [11] that play an essential prognostic role in patients
with esophageal squamous cell carcinoma who underwent
surgical resection, which was derived from pathological anal-
ysis of tumor samples. However, there is still a large group
of physically unresectable, inoperable, or refusing to operate
patients in the actual clinical setting, who are not amenable
to biomarker testing, and thus, there is an urgent need for
a non-contact method of predicting survival risk through
medical imaging.

With the continuous advancement of computer vision [12]
and medical imaging technologies [13] in recent years, clin-
icians are gradually recognizing the importance of using AI
techniques as decision support tools for cancer survival pre-
diction. Hundreds of prediction models for different cancer
types have emerged as a result [14], [15]. These mod-
els are based on a variety of data sources, including gene
expression data [16], clinical data [17], biomarkers from
pathology samples, and radiomics features extracted from
medical imaging [18], [19], [20]. Han et al. [21] designed a
deep learning model combining deep genomics and radiomic
features that could group patients with high-grade gliomas
into long-term and short-term survivors. Howard et al. [22]
evaluated whether a machine-learning model could iden-
tify patients with intermediate-risk head and neck squamous
cell carcinomas and assess the effectiveness of chemother-
apy for them. Zhong et al. [23] used multi-task deep
learning radiomics and preoperative MR images to con-
struct a diagnostic criterion for identifying the prognosis
of patients under different treatment regimens, based on

which the optimal treatment regimen was recommended.
Deep features obtained from chest CT scans using a con-
volutional neural network were recently used to classify
COVID-19 pneumonia infections with 95.1% accuracy [24].
In addition, Xie et al. [25] used subregional andwhole-region
radiomics features of planning CT to predict the overall sur-
vival of patients with esophageal squamous cell carcinoma
who received concurrent radiotherapy. In 2022, Akbar et al.
proposed a deep learning prediction model for anticancer
peptides, cACP-DeepGram [26], which achieved a maximum
accuracy of 96.94%. In 2023, Akbar et al. proposed machine
learning models pAtbP-EnC [27] and AIPs-SnTCN [28] for
anti-tuberculosis peptide prediction and anti-inflammatory
peptide prediction, respectively, and the prediction accura-
cies reached 97.80% and 92.04%, which were superior to
the existing methods and predictors at that time. In 2024,
Akbar et al. proposed another new computational model
called Deepstacked-AVPs [29] for accurate differentiation
of antiviral peptides, which achieved a prediction accuracy
of 96.60%, an area under the curve (AUC) of 0.98, and a
precision-recall (PR) value of 0.97 when using the training
samples.

As mentioned above, current studies have demonstrated
the feasibility of survival prediction modeling and prognosis
of numerous cancer patients from preprocessed measurement
features of medical imaging [21], [22], [23], [24], [25], [26],
[27], [28], [29], and can predict survival in patients who
are difficult to perform invasive modalities, and contribute
to helping physicians make clinical treatment decisions, set
appropriate treatment goals, and alleviate the anxiety of
patients and their relatives. However, the same problem faced
is that survival prediction analysis is a multifactorial-based
task, and relying on only one category and a few cate-
gories in medical data does not fully characterize patients’
pathological features and clinical conditions, thus limiting
the prediction effect. From previous studies and literature,
there are few studies that utilize multimodal fusion of clinical
data and CT images for survival prediction, therefore, it is
particularly important to explore the relationship within and
between the modalities of the two types of medical data in
order to provide more detailed evidence-based support for
survival prediction.

In this article, this study will use a combination of quan-
titative and qualitative methods to fully explore the hidden
information in multimodal medical data and propose a new
survival prediction model based on the COX proportional
risk model [30], as well as conduct in-depth experiments and
analyses on real data to verify the validity and stability of the
proposed model.

The main contribution of this work can be summarized as
follows.

1. Aiming at the problem that traditional survival pre-
diction methods are split between modal survival
data when analyzing, this paper innovatively adopts
the multimodal feature fusion technique, which uti-
lizes the graph structure to model the multimodal
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fusion of patients’ clinical data and cancer CT images.
This method can retain the importance of each data
feature factor and the internal correlation between
data features, and successfully solves the problem
that traditional data cannot comprehensively describe
the patient’s pathological characteristics and clinical
factors.

2. Aiming at the characteristics of multimodal graph data,
this study improve the existing GraphSAGE graph con-
volutional network and name it FGCN, aiming at more
effective inter-modal and intra-modal interactions. The
main structure of the model consists of a graph con-
volutional layer with a self-attention mechanism and
a well-designed TopKPooling module, as well as a
gradient-augmented loss function, which enables the
structure to be further adapted to the multifactorial
problem of survival prediction. A large number of
ablation and comparison experiments and analyses on
public non-small cell lung cancer datasets show that the
method proposed in this paper achieves better predic-
tion results, with a C-index value of 0.76.

3. Aiming at the issue of unfavorable influence of noise
features on the prediction results in both survival data
and multimodal graph data, this paper innovatively
introduces the TopKPooling module to the graph con-
volution model. This strategy is firstly applied to the
survival prediction study of multimodal fusion. The
TopKPooling strategy is actually a pruning operation
on the graph structure data, selecting the low-scoring
ones to be eliminated, and then recomposing a new
graph structure. By introducing the TopKPooling strat-
egy, this study is able to better handle the fused
multimodal data feature maps, fully explore the key
features, reduce the computational complexity of the
prediction network, prevent the overfitting of the pre-
diction model, and then improve the expressive ability
and prediction performance of the model.

4. Aiming at the problem that COX proportional risk
regression suffers from a serious drop in the itera-
tive gradient during the training process, this study
designed a gradient-enhanced loss function. This loss
function is an optimization and improvement of the
original COX proportional risk regression loss function
by updating the gradient and introducing a new weight
factor α to control the degree of influence of gradient
changes on the loss function. This method allows the
model to converge to the optimal solution faster, mak-
ing the predicted risk of the model closer to the actual
observed risk.

II. RELATED WORKS
A. SURVIVAL PREDICTION
Over the past decades, clinicians have typically relied
on clinical covariates and clinical experience for cancer
survival prediction. Pu et al. [31] conducted a population-
based retrospective study using data from the Surveillance

Epidemiology and End Results (SEER) database to establish
a risk and prognostic column chart for YBCLM to help
clinicians accurately predict the occurrence and survival of
LM in YBC. However, with the continuous advancement of
computer vision and medical imaging technologies, clini-
cians have come to realize the importance of using artificial
intelligence techniques as decision support tools for can-
cer survival prediction. As a result, significant progress has
been made in survival analysis and survival prediction in
recent years, with the emergence of hundreds of advanced
predictive models for different cancer types. These models
are based on a variety of modal data. To further improve the
performance of AI-based survival prediction, several studies
have begun to experiment with combining clinical records
and genomic profiling data with medical imaging data.
Syed and Ma [32]. Their brain atrophy diagnostic model uses
novel deep learning and multivariate mathematical models
to detect, segment and classify atrophic regions and pre-
dict lesions. In 2022, Lin et al. [33] from Xiamen University
used deep learning to model the interactions between patho-
logical features and clinical information of 285 esophageal
cancer patients and used it for the survival prediction task.
Their experimental results showed that the method achieved
a C-index index of 0.72. Hou et al. [34] proposed a new
hybrid graph convolutional network, HGCN, equipped with
an online mask autoencoder for robust multimodal cancer
survival prediction.

B. GRAPH CONVOLUTIONAL NETWORK
Graph Convolutional Network (GCN) is a deep learning
model based on graph-structured data, which has been widely
used in recent research. Themain feature of GCN is the ability
to propagate and aggregate node features over the graph,
thus enabling effective learning and representation of graph
data. The network uses the node’s neighbor information and
node features to update the representation of each node, thus
encoding the information of the graph into the node’s vector
representation. Through multiple layers of graph convolu-
tional layers, the GCN is able to gradually fuse information
between different nodes to obtain richer and more complex
graph representations.

Graph Convolutional Networks have significant advan-
tages in the prediction task, GCN can effectively fuse the
structural information of graph data and encode the global
information of the graph into each node’s representation
through the connectivity relationship between nodes and fea-
ture propagation of neighboring nodes, for incomplete nodes
in the graph data, GCN is also able to perform effective
inference to fill in the missing values and make predictions.
This makes GCN show good robustness in dealing with miss-
ing data, since GCN retains the structural information of the
graph during node feature propagation, its prediction results
have good interpretability and can reveal the correlation and
influencing factors between nodes.

The advantages of Graph Convolutional Networks in pre-
diction tasks make them a powerful tool for processing
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FIGURE 1. The Schematic of The Construction of Multimodal Information Graph. 1. for the CT image data s, this study extract its pixel spacing
(dx, dy) and slice thickness (dz) from it, and combine it with the segmentation mask map to calculate the tumor volume GTV. 2. for the clinical
feature data data c, this study normalize its Z-score as a way to avoid the influence of the scale difference between the features on the modeling,
and at the same time, this study construct from the clinical data the feature-to-feature Edge relations ED={EB,EE} are constructed from the
clinical data.3. S and C are used as the nodes of the graph structure data, and ED is used as the edge relations between the nodes to construct a
complete multimodal information graph.

graph-structured data, which plays an important role espe-
cially in the fields of social network analysis, bioinformatics,
drug prediction, and chemicalmolecule prediction. For exam-
ple, Kipf andWelling [35] first proposed the concept of GCN
and applied it to a semi-supervised chemical molecule classi-
fication task.Wu et al. [36] constructed a graph-convolutional
testing framework called MoleculeNet for evaluating the
performance of molecular machine learning algorithms in
several chemical tasks, including drug prediction, molecular
property prediction, etc.

C. MULTIMODAL FUSION
Multimodal fusion refers to the integration and fusion of
information from different data sources or different modali-
ties to obtain more comprehensive and accurate information.
In research papers, multimodal fusion has become a research
area of wide interest, and it has demonstrated excellent supe-
riority in various fields. The superiority of the multimodal
fusion strategy lies in its ability to make full use of the com-
plementarity and correlation between different modal data,
thus improving the characterization ability and information
richness of the data. In the field of computer vision, mul-
timodal fusion can combine multiple data sources such as
images, text and speech for tasks such as image description
generation and cross-modal retrieval. Liu et al. [37] proposed
a method called multimodal mutual attention and multimodal
mutual decoder to solve the reference image segmenta-
tion problem. In the field of medical imaging, multimodal
fusion can fuse different medical image data (e.g., CT, MRI,

PET, etc.) for disease diagnosis and prediction. Li et al. [38]
used attention-guided deep supervisory nets for adaptivemul-
timodal fusion to grade hepatocellular carcinoma. By taking
full advantage of the correlation between different modal
data, multimodal fusion can improve the efficiency of data
processing and analysis, and bring more breakthroughs and
advances in research and applications in various fields.

III. METHODOLOGY
In this paper, this study adopt an innovative approach that uses
flexible interpretable graph structure to fuse and model the
multimodal data (including clinical data and CT images, etc.)
of patients, so as to solve the problem of fragmentation and
one-sidedness among multi-class data of survival prediction.
This study propose a novel Multi-modal fusion graph convo-
lutional network approach (FGCN) for the characteristics of
multimodal graph data, aiming at more effective inter- and
intra-modal interactions. The network framework consists of
three key components.

Firstly, this study design a method to fuse multi-modal data
into graph-structured data. This method solves the problem
of separating clinical data from image data in traditional data
models, and can more flexibly capture the complex nonlinear
relationship and interaction between data.

Secondly, this study also design a SAGA module with
a self-attention mechanism [39], which is dominated by
a SAGE graph convolutional layer [40] and innovatively
introduces a TopKPooling [41], [42], [43] strategy, which
successfully solves the problems of data redundancy and
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excessive noise nodes that may be brought about by multi-
modal data fusion and retains the critical feature information
while reduces the computational complexity of the model,
improves the generalization ability of the model, and makes
the model more lightweight.

Finally, this study design a gradient-enhanced loss function
for the survival prediction network. The new loss function
makes the predicted risk of the model as close as possible to
the actual observed risk, thus better explaining and analyzing
the survival probability of the sample.

A. THE CONSTRUCTION OF MULTIMODAL
INFORMATION GRAPH
To address the research questions and objectives, this study
adopted a feature-level extraction fusion approach when per-
forming multimodal feature fusion [44]. This study believe
that the multimodal feature data of a batch of patients should
include at least two modalities M = {C, S}, i.e., the clinical
feature data C and the CT pathology slice S, to characterize
the patient’s physical condition from the clinical level to the
pathology level. To this end, this study designed amultimodal
map networkmodule to fuse the features contained in the clin-
ical data and CT pathology maps into a multimodal feature
map and use it as an input to the subsequent network model
as shown in Figure 1 in the following way.
For CT image data in dicom format, this study took the fol-

lowing steps to obtain the patient’s tumor volume GTV [45].
Firstly, all dicom slices of each patient where loaded to make
a complete CT pathology image, and their pixel spacing
(dx, dy) and slice thickness (dz) were obtained. Then, the
segmentation mask map corresponding to the patient, man-
ually labeled and annotated by the radiation oncologist for
the volume of the tumor nodule, is loaded and converted to a
binary mask map (0 for the background and 1 for the target).
Finally, the patient’s tumor volume GTV was obtained by
calculating the number of all pixels in the mask map with
a pixel value of 1, multiplied by the pixel pitch and slice
thickness. The formula is as follows:

GTV = AllPixel · dx · dy · dz (1)

The resulting GTV for each patient can be represented as
a 1∗1 graph structure, and the set S of GTV graphs for
400 patients is 400∗(1∗1).
As for the clinical characteristics data (age, gender, clinical

stages, medical history, survival time and status, etc.), this
study quantitatively represented the characteristics other than
the survival status with the Z-score standardization method.
The formula is as follows:

Z = (X − µ)/σ (2)

This allows the scale of each feature to be scaled
between 0 and 1, avoiding the impact of scale differences
between features on modeling. This leads to the conclusion
that the clinical characteristics of each patient can be repre-
sented as an 8∗1 graph structure, while the graph set C of the

clinical characteristics of 400 patients is 400∗(8∗1). At the
same time, this study construct the edge index ED of the
graph by the relationship between each feature in the clinical
data. To establish the connection of the graph, this study use
the indexes of the source node(EB) and the target node(EE).
The edge of the graph institutional data can be represented
as ED={EB, EE}. After the above preprocessing of the two
parts of the data, new clinical data C and image feature data
S are obtained respectively, when C={c1, c2, c3. . . . . . ci},
S={s1, s2, s3. . . . . . si} (i denotes the patient number). Next,
put x={ci,si}, which can be abstractly understood as a con-
catenation operation of ci and si. At this point, a graph
structure can be expressed as m={x, ED}, and the set of
graphs of all patients M contains all patients m. This kind
of graph structure contains both the CT image features of the
patients as well as the clinical information features, which is
used as the input of the subsequent model to realize the effect
of using the two kinds of data at the same time.

B. THE MULTI-MODAL FUSION GRAPH
CONVOLUTIONAL NETWORK
1) FGCN
In this study, this study aim to utilize multimodal information
fused into graph-structured data to better capture the intrinsic
connections between different feature nodes and obtain better
prediction results. To achieve this goal, this study propose
a framework called Multi-modal fusion graph convolutional
network (FGCN), as shown in Figure 2, which consists of the
following modules and methods.

First, this study map the node matrix x(9, 1) of the con-
structed multimodal graph structure data to an embedding
layer matrix with a hidden dimension of 128 to obtain x0
(9, 128). Next, this study perform feature extraction and
transfer of graph structure information through a combined
SAGA module. In this study, due to the low complexity of
the feature nodes and the real-time nature of clinical survival
prediction, this study choose the SAGE graph convolution as
the convolutional layer of SAGA. The SAGE graph convo-
lution uses a learnable aggregation function to aggregate the
features of the neighboring nodes and update the features of
the target node through this function.

After the SAGE convolutional layer, this study adopt a
TopKPooling strategy for the feature vector matrix x0 to
filter out the noisy node features, thus obtaining the updated
x0 (7,128). Then, this study introduce the self-attentionmech-
anism as an additional information fusion layer and feedback
layer, and finally, since this study need to extract the global
features of the graph data, this study perform a global average
pooling (GAP) operation on x0. to obtain a layer of con-
volutional global features x1. This study repeat the above
convolutional and filtering operations twice to obtain x2 and
x3, which represent global features on different convolutional
scales, respectively. Specifically, it can be represented as:

x1 = gap (τ (E (x0))) (3)

x2 = gap (τ (τ (E(x0)))) (4)
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FIGURE 2. The Schematic of FGCN. 1. The node matrix x(9, 1) is mapped to an embedded row matrix E with hidden dimension 128 to obtain x0
(9, 128), where 9 is the number of feature nodes and 128 is a hyperparameter. 2. x0 is processed through the SAGA module, firstly, the features are
extracted and passed through the SAGE convolutional layer; then the TopKPooling layer is utilized to interact with it and filter the features; then the
self-attention mechanism is added as an additional information fusion layer and feedback layer; finally, a global average pooling layer is connected to
extract the corresponding global features, and the output x1 is outputted and passed. 3. After three layers of SAGA module, three different scales of
global features x1, x2, x3, respectively, and sum up the three global features to get the final global feature x. Finally, x is mapped to the label y through
the fully connected layer to get the risk matrix β, and input into the Cox survival prediction module for the prediction of survival risk.

FIGURE 3. The Schematic of TopKPooling strategy. Input: when x0 is convolved by SAGE, a new feature mapping matrix Xρ (9,128) and its adjacency
matrix Aρ (8,8) are obtained. Filtering: this study multiply Xρ with a set of trainable weight parameters p(128,1) to obtain a corresponding score
matrix y(9,1). Based on the score of y, this study choose to retain a number of K rows with the largest scores, in this experiment K=7. Next, this study map
to Xρ based on the retained 7 rows, which in turn yields the desired retained feature matrix X̃ (7,128). OUTPUT: Finally the filtered X̃ is weighted to get
the final feature matrix Xρ+1 (7,128). At the same time its adjacency matrix Aρ is also updated in the same way to get the new adjacency matrix Aρ+1.
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x3 = gap (τ (τ (τ (E(x0))))) (5)

x = x1 + x2 + x3 (6)

where E denotes the mapping operation on the input, and τ

denotes the composite of the convolution and subsequent
operations. In summary, this study obtain three global fea-
tures x1, x2 and x3, and then sum them up to get the final
global feature x. The global features learned by the model are
mapped to the label y through the full connectivity layer to get
the risk matrix β. After that, the result is inputted into the Cox
survival prediction module for the prediction of survival risk.

2) TopKPooling STRATEGY
As shown in Figure 3, when dealing with the fused multi-
modal data feature maps, this study introduce an innovative
TopKPooling strategy, which successfully solves the prob-
lems of feature redundancy and excessive noise features that
may occur after multimodal data fusion. By adopting the
TopKPooling strategy, this study are able to effectively reduce
the dimensionality of the data features, which significantly
reduces the discrete nature of the data features and further
reduces the complexity of the model. The specific method is
as follows.

In this study, this strategy is introduced for the first time
in the study of survival prediction with multimodal fusion.
The TopKPooling strategy is actually a pruning operation
on the graph structure, selecting the low-scoring ones to be
eliminated, and then recomposing them into a new graph
structure. It retains the K nodes that are most similar to the
maximum score point based on the scoring information of
each node, while discarding other features that are not related
to it. This approach allows us to focus on key features, avoid-
ing the processing of excessive redundant features and noise,
thus improving the processing efficiency and accuracy of the
feature map. Compared to the method of pooling in CNN
using null convolution, TopKPooling is more suitable for this
kind of graph-structured data with the same density and graph
convolutional networks, and the amount of computation is
much smaller.

By introducing the TopKPooling strategy, this study is able
to process the fusedmultimodal data featuremaps better, fully
explore the key features, reduce the computational complex-
ity of the prediction network, prevent the overfitting of the
prediction model, and then improve the expressive ability and
prediction performance of the model.

Compared to some of the existing state-of-the-art pooling
methods, such as the hierarchical pooling method Hierarchi-
cal Pooling [46], which is applicable to the aggregation of
information at multiple levels and is not applicable to the
aggregation of features among the information of a single
patient. In addition, the most used state-of-the-art pooling
method is Graph U-Net Pooling [47], which is based on graph
structure, but it is suitable for segmentation of images and not
for regression and survival prediction tasks. Since this study
needs to explore the internal interrelationships and local rela-
tionships among the features of each patient, TopKPooling

is more suitable for survival prediction tasks with multimodal
fusion. In the subsequent experimental results and discus-
sion section of this paper, the data in Table 3 visualize the
comparison of this strategywith other existing state-of-the-art
strategies, further proving the positive effects and advantages
of this strategy for the model.

3) GRADIENT-ENHANCED LOSS FUNCTION
In this study, this study used the Cox proportional risk regres-
sion model for the application of the survival prediction
network module. First, this study extracted global features
from the sample data through the FGCN module, and then
added a fully connected layer to connect the global features
and the risk coefficients. A single sample i has global char-
acteristics xi and event occurrence time ti, and a coefficient β
exists. The model equation for Cox proportional risk regres-
sion can be expressed as:

hi (t) = h0 (t) · exp (β· xi) (7)

where h0 (t) is the baseline risk function, which represents the
risk when the covariate (global feature) xi is 0, which is the
same for all individuals, and the difference in risk between
individuals is only caused by the difference in the global
feature xi. hi (t) is the risk function of sample i at time t ,
which represents the product of the probability of an event
occurring at time t and the baseline risk function h0 (t)). The
coefficient β is a parameter to be learned tomeasure the effect
of the global feature xi on the risk function. exp(β ·xi) denotes
the variation of the effect of the global feature xi on the risk
function on an exponential scale.

Next, this study can use negative log-biased likelihood
estimation as a loss function to minimize the model’s error.
Suppose this study have d event times t and d correspond-
ing event state variables E, where Ei = 1 means the event
occurred and Ei = 0 means the event did not occur. Then,
the loss function of Cox proportional risk regression can be
expressed as:

L(β) = −

∑n

i=1

(
Ei ·

(
β · xi − log

(∑
jϵR(ti)

eβ·xj
)))

(8)

where R(ti) denotes the set of samples with events occurring

before time, the risk set, and log
(∑

jϵR(ti) e
β·xj

)
is the loga-

rithm of the sum of the risk functions of samples with events
occurring before time ti.

To make the model’s predicted risk as close as possible
to the actual observed risk, this study need to optimize the
loss function above to make the model converge faster to
the optimal solution. To do this, this study use the gradient
enhancement method for optimization. First, this study need
to compute the gradient of the loss functionwith respect to the
coefficient β. The gradient is obtained by taking the partial
derivative with respect to β for the loss function L(β)):

η =
∂L
∂β

= −

∑n

i=1
(Ei · xi −

∑
jϵR(ti) Ej · xj∑
jϵR(ti) e

β·xj
) (9)

123242 VOLUME 12, 2024



X. Ma et al.: Survival Prediction for NSCLC Based on Multimodal Fusion and Deep Learning

Then, this study introduce the gradient information and add
the gradient information as a weighting factor to the loss
function, and update the loss function as follows:

L(β) = −

∑n

i=1
(Ei · (β·xi − log(

∑
jϵR(ti)

eβ·xj ))) + α·η

(10)

Here, α is the weight factor of the gradient information,
which is used to control the degree of influence of the gradient
on the loss function. The value of α can be adjusted according
to the actual situation to balance the weights of the gradi-
ent and the loss function. During the training process, the
gradient η is calculated by backpropagation and then added
to the loss function to further adjust the model parameters.
Similarly, in the subsequent Experimental Results and Dis-
cussion section of the paper, the data in Table 4 visualize the
improvement that the new loss function brings to the model.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. DATASET
This study performed a validation evaluation of the pro-
posed method on Lung1 [48], a public dataset of non-small
cell lung cancer in the TCIA [49] database. The dataset
brings together available information on 400 patients with
non-small cell lung cancer (NSCLC) from the Lung1 study
published in Nature Communications. Table 1 lists the
details of the dataset. In addition, each patient’s computed
tomography scans included DICOM radiographic structure
set (RTSTRUCT) and DICOM segmentation files (SEG),
where theDICOMsegmentation filesweremanual depictions
of three-dimensional volumes of the primary tumor vol-
ume (‘‘GTV-1’’) and selected anatomical structures (lungs,
heart, and esophagus) by radiation oncologists, and experi-
enced radiologists were Review. 1 in the STATUS column
of Table 1 indicates that the death occurred, while 0 indicates
that the death did not occur. IIIa and IIIb in Table 1 denote
stage III of the TNM staging of cancer and are both moder-
ately advanced stages of cancer, but IIIb lesions are larger and
may invade vital organs and blood vessels or metastasize to
more distant lymph nodes and are usually more severe.

B. EXPERIMENTAL SETTINGS
Execution Details: The constructed graph-structured dataset
is divided into training and test sets in the ratio of 8:2.
The loss function of the model is used with ADAM opti-
mizer, the batch size is set to 32 and the learning rate is
set to 0.0005. The label y of the regression model is set
to the survival state and the ratio K threshold for Top-
KPooling is set to 0.8 and 0.7. The model uses an ADAM
optimizer with a batch size set to 32 and a learning rate set
to 0.0005. An NVIDIA RTX 3090Ti graphics processor was
used throughout the training process, and this study allowed
early termination with the maximum number of training
epochs set to 500. During the validation of the model, this
study terminated training for optimization when the loss in
the validation set could not be further reduced. In order to

TABLE 1. Distribution of features in the dataset.

fully evaluate the performance of the proposed model and the
comparisonmethod, this study adopt a 5-fold cross-validation
approach. Since there is an imbalance of positive and negative
samples in the dataset, the problem is solved by using random
oversampling, i.e., increasing the number of samples with a
survival status category of 0 by replicating them. As illus-
trated in Table 2, there are additioanal paremeter settings
for this model. In this study, gradient descent, early stopping
method, and hyper-parameter tuning are utilized to inversely
adjust and optimize the parameters.
Experimental Procedure: First, this study standardized

eight features of the clinical data of 400 NSCLC patients.
These features included patients’ age, gender, clinical stages,
medical history, and survival time. At the same time, this
study calculated GTV (total tumor volume) from all CT
sections and segmentation mask images of each patient.
Next, this study fused these two kinds of data into a
graph-structured dataset according to the multimodal graph
structure construction method shown in Figure 1.

Next, the graph structure data of each patient is sequen-
tially mapped to the corresponding feature matrix x(9,1)
and embedded into the row matrix by hiding the dimension
of 128, mapped to x0(9,128), at which point each feature row
is equivalent to a row of 128-dimensional vectors. Then, the
SAGE graph convolutional layer will update and convolve
each row vector of x0. Immediately after the update, x0 goes
through TopKPooling pooling to sieve out the noisy nodes,
and at this point, x0 is (7,128). After that x0will be updated by
the self-attention layer and global average pooling to output
a 128-dimensional row vector, which is the global feature x1.
Similarly, two more rounds of this process at different scales
yield x2, x3 respectively, while the global feature x is the sum
of x1, x2, x3. Finally the output through the fully connected
layer is a one-dimensional vector and mapped to the survival
state label y to get the risk matrix β. Optimizing the survival
function and the Cox predictive model through β and with
the gradient augmented loss functionmakes the predicted risk
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TABLE 2. Parameter list of the model.

of the model as close as possible to the actual observed risk,
thus better explaining the sample and analyzing the survival
probability of the sample.

C. ASSESSMENT METRICS
First, this study use the consistency index (C-index),
as assessment metrics. The C-index will compare the sequen-
tial relationship between the actual observed survival time
and the predicted survival time, and calculate the degree of
consistency between the predicted risk ordering and the actual
observed risk ordering. The C-index is calculated as follows:

S = {(i, j)|1 ≤ i < j ≤ n} (11)

M = {i|1 ≤ i ≤ n,Ei = 1} (12)

U = {(i, j) ∈ S|i ∈ M&j ∈ M} (13)

C = {(i, j) ∈ U|t i > t j&pi > pj} (14)

C-index = |C|/|U| (15)

n is the total number of patient individuals, and S is the
set of pairs, denoting the ensemble of all possible pairs of
individuals. M is the set of individuals with event state 1. U is
the set of useful pairs, denoting the set of pairs that satisfy the
condition that the temporal state of both individuals in the
pair of individuals is 1. C is the set of predicted consistent
pairs, where ti and tj denote the actual observed survival times
of individuals i and j, and pi and pj denote the predicted
survival times of individuals i and j. The value of the C-index
ranges from 0 to 1, where 0 indicates that the model predicts
a completely wrong ordering and 1 indicates that the model
predicts a completely correct ordering.

Second, this study assessed absolute prediction using the
Brier score (Br), which represents the mean squared error
between the observed survival state and the predicted prob-
ability of survival. Br is a value between 0 and 1, where 0 is
the optimal value.

D. ABLATION EXPERIMENT
In order to evaluate the effectiveness of various pooling strate-
gies, this study used a series of widely used and newer pooling
methods and compared them with the TopKPooling strategy
this study introduced. Keeping other experimental settings
constant, this study compared and analyzed the model results
produced by different pooling strategies as shown in Table 3.

The C-index value of model without any pooling strategy,
i.e., Baseline, is only 0.642, and with MaxPooling and Mean-
Pooling strategies, the C-index is 0.625 and 0.656, respec-
tively. And the C-index for Hierarchical Pooling is 0.672.
whereas, with introduced TopKPooling strategy, the C-index
of the model improves to 0.696. Similarly, the Br value is
better than the other strategies. The experimental results show
that the TopKPooling strategy is superior in performance
and is able to better focus on the learning of key features
compared to other pooling strategies, while effectively sup-
pressing the influence of redundant features.

Additionally, for the task of prognosis prediction of
non-small cell lung cancer (NSCLC) patients, this study
conducted a series of ablation experiments on two critical
components of the model, mainly focusing on the applica-
tion of gradient-enhanced loss function and TopKPooling
strategy. In this section, the results of these experiments will
be elaborated in detail and analyzed as an example of ablation
experiments on the model components in Table 4, in order to
better reveal the enhancement effect of these methods on the
model quality.

TABLE 3. Comparison of several pooling strategies.

The experimental results show that both of this study
proposed methods have a positive impact on the prediction
results. Baseline 1 here refers to the base model, the FGCN
that does not use the improved loss function as well as the
TopKPooling pooling strategy. The data shows that using
only the Gradient-enhanced loss function, the C-index of the
model gains some improvement to 0.683. This demonstrates
the advantages of the gradient-enhanced loss function in
accelerating model convergence and reducing complexity.
In addition, in order to profoundly investigate the role of the
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TABLE 4. Ablation experiments of gradient-enhanced loss and TopKPooling.

TABLE 5. Comparison of FGCN results with other advanced models.

TopKPooling strategy in model quality enhancement, based
on the basic model, this study conducted a comparative study
between Baseline 1 and Baseline 3 (using only the Top-
KPooling strategy). The experimental results show that the
C-index of Baseline 3 is significantly improved to 0.696,
while that of Baseline 1 is only 0.642. This demonstrates
the effectiveness of the TopKPooling strategy in mining key
features, which further improves the prediction quality of
the model. The experimental results also show that with
the simultaneous application of the gradient-enhanced loss
function and the TopKPooling strategy, this study achieve
a significant improvement of 12.7% in C-index relative to
Baseline 1. On the other hand, this study also conducted an
in-depth analysis of the Brier score, and the results show that
both of the proposed methods positively impact the reduction
of the Br score. This further validates the critical role of these
two methods in model performance improvement.

In conclusion, through the systematic analysis of ablation
experiments, the results clearly demonstrate that the intro-
duction of the TopKPooling strategy and gradient-enhanced
loss function has significant performance improvement for
prognostic prediction of NSCLC patients, which provides a
strong support for personalized treatment decision-making in
the medical field.

Additionally, In order to evaluate the overall performance
of the synthesized model, this study let its comparison with
several state-of-the-art survival models and used a 5-fold
cross-validation method, as shown in Table 5.
To ensure comparability of the comparison, this study

applied the same preprocessing steps, such as normaliza-
tion, to these methods and kept the other model settings
unchanged. The data inTable 5 show that this study proposed
model obtains the highest C-index of 0.769 and the best
prediction performance under the same conditions. Of partic-
ular note, the model improved the C-index by 18.3%, 2.9%
and 11.1% compared to the clinical approach and DeepSurv,
respectively, suggesting the limitations of traditional clinical

approaches and relatively simple machine learning models
in coping with the physiologic and lesion complexity of
non-small cell lung cancer. In addition, Table 5 shows that
compared to other deep learning methods such as ResNet3D,
GSCNN, UOCM, and HGCN, this study proposed FGCN
model improves the performance by 8.7%, 5.7%, 4.5%,
and 2.9%, respectively, and for the Br score, this study result
of 0.185 is second only to the HGCN’s 0.177. These encour-
aging results clearly demonstrate the superior performance of
the FGCN model.

E. ANALYSIS
1) KAPLAN-MEIER SURVIVAL CURVES
In this section, this study will show the performance of FGCN
in another essential task in the field of survival prediction by
categorizing NSCLC patients into two subgroups based on
this study predicted outcomes (risk coefficients). Specifically,
this study use the median of the predicted outcomes as a
threshold to categorize all patients into low-risk and high-
risk groups. As shown in Figure 4, this study plotted the
Kaplan-Meier survival curves [54], from which it can be
seen that patients with longer survival time are classified
as a low-risk group. In comparison, patients with shorter
survival time are classified as a high-risk group. Suppose
the two curves are close or even cross. In that case, it indi-
cates that the model is unable to effectively differentiate
between low-risk and high-risk patients, and vice versa,
it indicates that the model’s prediction results are better, and
this method can vividly demonstrate the model’s prediction
ability.

For a comprehensive statistical analysis, this study
assessed all data consistently. This study used the log-rank
test to measure the difference between the two curves.
P-values less than 0.05 indicate statistical significance, and
p-values less than 0.01 indicate strong statistical significance.
As shown in Figure 4, with the proposed TopKPooling
strategy and gradient-enhanced loss function, this study
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FIGURE 4. Kaplan-Meier Survival Curve and Model Performance Analysis Plot. (a) Baseline 1. (b) Baseline 2.
(c) Baseline 3. (d) Baseline 4, which is the methodological model presented in this paper. The predictions of the
patients used are combined here for a unified analysis. Patients were categorized into high and low-risk groups based
on the median value of all risk coefficients obtained by this study model. In each subplot, the more the two curves
overlap, the lower the model performance. Shaded areas indicate 95% confidence intervals.

FIGURE 5. SHAP visual analytics. The graph presents the contribution of each feature to the predictive model, with larger SHAP
values indicating that the feature contributes more to the results.

obtained a very low p-value of 7.38e−10.Therefore, this study
conclude that this methodological model plays an active role
in survival prediction tasks. It has the potential to be applied

to cancer clinical recommendation systems to help physicians
make decisions regarding early intervention and personalized
treatment strategies for NSCLC patients.
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2) SHAP VISUALIZATION AND ANALYSIS
Cancer survival prediction requires not only high perfor-
mance but also strong justifications to make proper judg-
ments. Benefiting from graph-based modeling of multimodal
data, this study framework can provide rich interpretability
through backpropagation and SHAP analysis on multimodal
graphs. Figure 5 shows the contribution of each feature to
the model prediction, the data shows that GTV and overall
stage have a high value of concern in the model prediction
process, in addition, patient age is also shown to be a key
factor, which is also consistent with the existing knowledge,
the above observations can provide a reference for clinicians
to formulate a treatment plan according to the patient’s needs.

V. CONCLUSION
In this study, this study propose and evaluate a novel sur-
vival prediction model (FGCN) for non-small cell lung
cancer (NSCLC) based on deep learning and multimodal
data. First, this study introduce the TopKPooling strategy to
the survival prediction task of GCN multimodal fusion for
the first time, which allows this study model to focus on
salient features, thus avoiding processing toomany redundant
and noisy features and improving the efficiency and accu-
racy of feature map processing. Second, this study improved
gradient-enhanced loss function accelerates the convergence
of the model and ensures that the risk predicted by the
model is as close as possible to the actual observed risk.
Through ablation experiments and cross-validation, this study
demonstrate the effectiveness of two proposed improved
methods that together contribute to the improvement of the
survival prediction model. The model shows excellent abil-
ity in extracting key feature information from multimodal
data and using it for survival prediction, with a C-index
value of 0.76, which is better than existing state-of-the-art
models.

Additionally, since the model is essentially a predictive
regression network based on graph convolution, by replacing
the corresponding dataset, changing the structure of the graph
data by controlling the informational modality of the inputs,
as well as modifying the model labels and the type of outputs,
the model can be equally applicable to other tasks, such
as cancer diagnostics, classification of the cancer stages or
predictive supplementation ofmissing clinical data. However,
in practice the model still has many limitations, first of all,
the model requires a high level of dataset, both the patient’s
clinical data, but also its supporting image data, which is very
little existing, and at this stage can not achieve a wider dis-
semination. Second, the model only uses two types of modal
information, clinical data and image data, which may not be
able to fully explore the intrinsic interaction between the two
modal information during feature extraction and thus affect
the model performance. Finally the TopKPooling strategy is
only suitable for dealing with feature matrices of the same
density, and cannot have a positive effect on the model if the
density of features known to each patient is different. The
shortcomings and limitations described above are the very

same challenges that this work are going to overcome in the
work next research.

In summary, this study demonstrates the superior perfor-
mance of the FGCN model in the field of NSCLC survival
prediction, which provides new perspectives and methods
for the treatment and management of NSCLC patients, and
opens up a brand new way of thinking about some other
problems in the clinic. In the future, this study plan to collect
relevant datasets on our own and experiment with different
data enhancements to solve the problem of the small sample
size of the dataset of this model and select other evaluation
metrics [55] to test the performance of the model in model
training, e.g., AIC, SBIC, and at the same time, validate
and improve the model on more datasets, and try to add
more modal information, such as genomic information and
therapeutic information, to the model, to further explore its
adaptability and enhance the accuracy of model predictions.
In addition, this study will be adding the tasks of diagnosing
cancer and recommending treatments to this work and apply
it to a wider range of clinical settings.
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