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ABSTRACT This work proposes three novel Pre-Model Interpretability metrics: HaRIA, ARIA, andGeRIA.
They aim to assess the potential utilization of features in machine learning models prior to the training
phase, by quantifying the Relative Information Availability. These metrics integrate Mutual Information
and ANOVA F-values, scaled using Maximum Absolute Scaling. This allows to evaluate the potential of
a feature being used in the learning process efficiently and effectively without the computational expense
of model training. The metrics are designed to provide a holistic view of feature relevance by capturing
both the non-linear dependencies and variance effects among features. Validation of these metrics across
multiple datasets demonstrates their capability to approximate the importance assigned by more complex
models, as evidenced by their strong correlation with traditional feature importance measures and SHAP
values obtained post-model training. The consistency observed in various datasets underscores the potential
of RIA metrics to facilitate early-stage model development decisions, offering a cost-effective tool for
feature evaluation in scenarios where computational resources are limited or rapid prototyping is necessary.
However, some discrepancies, especially with complex models like ANNs, indicate areas for future research
and refinement. The introduction of these metrics marks a significant step toward enhancing the efficiency
and transparency of AI development by enabling a better understanding of data characteristics and potential
model behavior before actual model deployment.

INDEX TERMS Data characteristics, feature relevance, feature utilization, machine learning, model
behavior, pre-model interpretability.

I. INTRODUCTION
In the beginning, there is data. Having good data allows
one to perform different learning tasks. These are broadly
categorized as supervised learning, unsupervised learning,
and reinforcement learning [1]. The focus of this paper is on
supervised learning in classification.

The main idea in supervised Machine Learning (ML) is to
use data to make models that can determine something (Y)
based on some information (X). To perform its task, an ML
algorithm summarizes X to the form of T. The best summary
T should give us as much information about Y as possible
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while keeping only the important parts of X [2]. How well
an ML algorithm can learn depends on two aspects: model
complexity and training samples - both their amount and the
quality of the information they carry. TheMLmethods need a
number of samples to train the model to obtain good outputs.

The Vapnik-Chervonenkis (VC) dimension measures how
complicated a model can get. It looks at how many different
ways one can separate or classify the available data points.
If the model can make a lot of different splits, it has a high VC
dimension. In practice, when the data provides a multitude
of features, the model becomes more complex. But more
complexity does not always translate into better performance.
Amodel should be ‘just right’, e.g. not too simple, and not too
complex [3].
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To achieve better performance, practitioners attempt to
reduce complexity, by feature selection, dimensionality
reduction, or by adjusting hyperparameters, like the number
of neurons, layers, trees, etc., to find the right balance [3].
Additionally, regularization techniques are employed to
prevent overfitting [4]. This helps ensure the model gen-
eralizes well to new, unseen data. Finally, effective model
training employs cross-validation, where the data is split into
multiple subsets to validate the model’s performance [5].
By balancing complexity and training data effectively,
MLmodels can achieve robust performance, offering reliable
results. However, as ML and AI technologies started being
employed in crucial areas of human endeavor, the users
realized that the results were not the only things that mattered,
and more issues emerged: the security of deployed AI
models and the fact that many of them work as a black
box, without providing any clue on how they reached the
decisions [6]. An explainable/interpretable AI (xAI) system
has an ability to demystify its processes, providing the why
and the how of its decisions in a language understandable
to its observers. While currently there is an ongoing debate
on the terminology - drawing distinctions between closely
related terms such as ‘‘explainability,’’ ‘‘interpretability’’,
‘‘understandability’’, ‘‘comprehensibility’’, ‘‘intelligibility’’,
and ‘‘transparency’’ [7], [8], in this paper the terms will be
used interchangeably - so as not to take a side in the argument
until the terms coagulate.

Explainability is crucial for several reasons [9], [10]:
• It helps identify and eliminate the ‘‘Clever Hans’’
models, where, as only the results are visible but not
the process, the process is a hack. This transparency
accelerates development and reduces the risk of faulty
models.

• xAI ensures reliability by allowing regular verification
of models and data, addressing issues like Concept Drift
and Data Decay.

• It also builds trust in AI systems, especially in
high-stakes decisions like medical diagnoses, where
understanding the reasoning behind a decision is
essential.

• xAI reduces bias and promotes fairness by revealing
unwanted biases in datasets, aligning AI models with
modern ethical standards.

• It provides deeper insights into the domain, uncovering
unknown relationships within the data and facilitating
new discoveries, thus proving invaluable to the scientific
community.

These aspects of xAI are deemed important in the subject
literature.

One cannot help but notice that all those points are just as
important before any model is trained.

A. PROBLEM STATEMENT
All factors contributing to the significance of xAI retain
their importance throughout the initial stages of model
development, prior to the onset of any training.

It is crucial to identify features in the data that may lead the
model tomake decisions based on spurious correlations rather
than genuine insights. This involves analyzing the relevance
and contribution of each feature to potential outcomes.

Prior to training, verifying the integrity of the data and the
assumptions underlying the modeling approach is essential.
This includes checking for data quality, consistency, and
distributions that match the expected patterns.

Before deploying ML models, it is important to rectify
any biases in the dataset. This can involve statistical analyses
to identify and address disproportionate representations or
prejudiced patterns in the data, ensuring that the model
training process starts from an equitable foundation.

Analyzing the relationships between features and their
impact on the target variables can reveal complex interactions
and dependencies, which are invaluable for domain under-
standing.

And finally, establishing mechanisms for transparency
starts with a clear understanding of the characteristics of the
data, and how they are expected to influence model behavior.

It is logical that addressing these aspects before model
training not only streamlines the development process but
also enhances the effectiveness, fairness, and reliability of AI
systems.

Thus, a conundrum emerges: similar requirements which
provide the domain pressure to develop methods to open the
black box of AI, are present even before any model is trained.
This constitutes pre-model interpretability (PMI) - methods
of understanding the characteristics of data, and the potential
behavior of ML models without the computational cost of
training them. Traditional post-hoc approaches, like SHAP or
feature importance scores, require a trained model. They look
at the model, which is fitted to the data; however, without
understanding what information was available in the data
in the first place, there is no way to compare these metrics
against a ground truth.

B. PRE-MODEL INTERPRETABILITY
An understanding of how a potential model could behave
before undertaking training is particularly beneficial in the
early stages of project feasibility studies, during dataset
exploration, or when training is costly and computation-
ally intensive, and when selecting features for high-stakes
applications where interpretability and understanding are as
crucial as performance.

This would constitute another step in the ML pipeline
outlined at the beginning of this section, PMI would be in
the vicinity of exploratory data analysis (EDA) and feature
selection (FS). There would be some overlap with both EDA
and FS: both PMI and EDA focus on gaining insights into
the data before proceeding with modeling. Both EDA and
PMI would use visual tools to uncover relationships between
variables and understand data structure, and descriptive
statistics would play a crucial role in both EDA and PMI.
However, while EDA is used to form hypotheses and guide
subsequent steps of analysis, including data cleaning and
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transformation, PMI specifically aims to understand how
features may influence model behavior and decisions. This
not only involves looking at data distributions but also
assessing potential feature importance and interactions in the
context of modeling, which helps in estimating the predictive
power of each feature, and subsequent model evaluation.

EDA is more about using intuition and visual tools to
understand the data. It is an open-ended process used to make
sense of data characteristics. PMI is more structured in its
approach and focuses on understanding how data features
will interact with ML algorithms, to predict how features
could affect model outcomes. The insights gained from EDA
are generally used to modify the dataset (e.g., removing
outliers, handling missing values) and choose appropriate
transformations. In PMI, the insights are used to anticipate
how well features will convey information in a model, and
ensure that the models built are interpretable and aligned with
business goals.

C. PRE-MODEL INTERPRETABILITY, EXPLORATORY DATA
ANALYSIS AND FEATURE SELECTION
It is important to emphasize that the primary goal of PMI is
to understand data characteristics and the potential behavior
of models on this data, before any model is built or trained.
It aims to provide insights into the dataset itself, helping
to anticipate how different models might interpret or weigh
features. As such, it is distinct from feature selection, which
aims to reduce the number of input variables to use in the
final model. FS focuses on improving model performance
by removing irrelevant or redundant features that could lead
to overfitting or unnecessarily complex models. FS directly
impacts model efficiency and effectiveness, often driven
by the need to optimize computational resources and
improve model accuracy, robustness, and generalization.
FS employs algorithms and techniques such as recursive
feature elimination, feature importance scores, and selection
criteria based on model performance. PMI focuses on
the understanding and explanation of feature roles and
relationships without necessarily aiming to optimize any
particular model’s performance - rather to be able to provide
a ground truth, an initial understanding of what is in the
data. To be able to compare the understanding of data with
what the model is doing after training. It is important to
distinguish PMI from FS and acknowledge PMI relationship
to FS, especially the filter methods. In fact, the proposed
metrics stem directly from two filter methods - Mutual
Information (Information Gain) and ANOVA. However, the
unique perspective of the application of PMI is in its capacity
to provide a foundational understanding before any predictive
modeling occurs. This early-stage insight can influence the
choice of the model, guide feature engineering efforts, and
shape the overall strategy for data analysis. PMI thus acts as
a critical step in ensuring that the models developed are not
only effective but also understandable and aligned with the
specific objectives of the project.

Ultimately, PMI, EDA and FS all aim to enhance the
quality of the ML models, but they do so from different
stages and different perspectives of the model development
process. The position of PMI in relation to EDA and FS is
showcased in Fig. 1. PMI helps to set a strong foundation for
all subsequent ML steps, ensuring that the modeling is done
on a well-understood and appropriately structured dataset.

D. RESEARCH QUESTIONS
With this background, the following research questions are
formulated:

RQ1 Can potential feature utilization in an ML model be
reliably assessed before any model training?

RQ2 Can pre-model interpretability metrics provide a reli-
able estimation of feature importance that aligns with
traditional post-model training evaluations?

RQ3 Can the proposed pre-model interpretability metrics
provide a reliable estimation of what features will
be utilized by the trained model, that aligns with
traditional post-hoc xAI evaluations?

E. MAJOR PAPER CONTRIBUTIONS
To answer these questions, this paper offers the following
major contributions:

1) The proposition of three PMI metrics, which incor-
porate two filter methods: Mutual Information (MI)
and ANOVA F-values, scaled with MaximumAbsolute
Scaling and combined, to estimate feature importance
effectively before model training. These metrics aim to
blend the strengths of different statistical measures to
provide an estimated evaluation of feature importance
free from the peculiarities of model-specific metrics.
Their usefulness in the PMI context is assessed and
stacked against feature importance scores and SHAP
values.

2) The proposed metrics were tested and validated across
a variety of datasets, demonstrating their capability to
align well with traditional model-based metrics, but
without the cost of model training. This validation
suggests that these metrics can provide reliable esti-
mates similar to those derived from computationally
expensive model training processes.

3) The paper provides a statistical analysis, showing
how the proposed pre-model metrics correlate with
traditional post-model feature importance scores and
xAI metrics across multiple datasets.

4) The paper outlines potential future research to include
synergistic relationships between features. This would
address scenarios where the combined knowledge
of two or more features significantly enhances the
predictability of a target variable, beyond what could
be inferred from each feature individually.

5) The proposed metrics offer a novel approach by
assessing potential feature utilization before any model
training occurs. By doing this, they provide a baseline
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FIGURE 1. PMI in relation to the ML pipeline.

of what features are inherently important based on
their information content and variance, independent
of any specific model biases or constraints. This
baseline could serve as a ground truth for comparing
how post-training model explanations (like SHAP
values), and feature importance scores align with what
is inherently expected from the data. This objective
baseline is crucial for xAI as it provides a non-biased
point of reference to judge whether the explanations
generated by xAI methods post-training truly reflect
the underlying data dynamics or are artifacts of the
modeling process.

6) By extension, an overview of feature importance free
of model artifacts can help pinpoint if the modeling
process goes according to the domain intuition and,
by the same token, by divorcing the evaluation of data
from the modeling process, help spot discrepancies in
the data itself.

By providing insights into feature relevance before the
expenditure of computational resources on model training,
the proposed metrics allow for more efficient data analysis
workflows. They might be particularly valuable in scenarios
requiring rapid prototyping or where computational resources
are constrained. Thus, the research addresses a significant gap
in the machine learning workflow.

This research, via the proposed metrics, not only aims
to conserve computational resources but also enhances the
efficiency of the model development process by enabling
better-informed decisions early in the development lifecycle.
By providing this early insight, the metrics contribute to a
more transparent, trustworthy, and equitable AI development
process. This might be especially important in domains
where understanding the basis of model decisions is critical.
Thus, this research not only aims to provide tools for ML
practitioners, but also to advance the discourse on xAI by
advocating the divorcing of model explanations from the pre-
model explanations, which analyze the information content
of data the model will fit to.

F. PAPER STRUCTURE
The paper is structured as follows: Section II reviews the
related work, Section III describes the materials andmethods,
detailing the statistical tools and algorithms used, including
Mutual Information, ANOVA F-values, and ML models like
Random Forests and Artificial Neural Networks. Section IV
introduces the proposedmetrics, explaining their components
and computation. Section V outlines the experimental setup,
including data preparation, model training, and the metrics
used for evaluating feature importance. Results are presented
in Section VI, showing the effectiveness of the proposed

metrics through various visualizations and statistical anal-
yses. Finally, the conclusion in Section VII summarizes
the findings and discusses future directions for research in
enhancing pre-model interpretability metrics

II. RELATED WORKS
A. FEATURE SELECTION TECHNIQUES
In [11], a novel feature selection methodology aimed at
enhancing model prediction accuracy in high-dimensional
datasets is proposed. The method mixes the Relief filter
algorithm with the multi-criteria decision-making method
TOPSIS (Technique for Order Preference by Similarity
to Ideal Solution) to form a new filter approach that
models feature selection as a multi-criteria decision problem.
Through the Relief method, a decision matrix is generated,
which is then utilized by TOPSIS to rank features from the
most to the least informative, facilitating the identification of
the most significant features while avoiding overfitting.

The authors of [12] propose a novel hybrid optimiza-
tion technique that combines the sine-cosine algorithm
(SCA) with Harris hawks optimization (HHO) to tackle
the challenges of feature selection in both low and high-
dimensional datasets. This method, known as SCHHO, aims
to enhance the exploration capabilities of HHO using the
trigonometric operations of SCA, thereby improving global
search efficiency and convergence speed without incurring
additional computational costs. The approach is thoroughly
evaluated through extensive experiments on the CEC’17 test
suite and sixteen diverse datasets with over 15000 features.

In [13], the author provides a comprehensive overview of
feature selection methods used in data mining and machine
learning, particularly under the challenges and opportunities
presented by big data. The paper reviews various types
of feature selection algorithms, categorizing them primarily
into similarity-based, information-theoretical-based, sparse-
learning-based, and statistical-based methods. It highlights
how feature selection facilitates simpler and more efficient
models, enhances performance, and prepares cleaner data.
The author also discuses the evolution of these methods to
accommodate different data structures like streaming data,
structured data, and heterogeneous data. Further, the survey
introduces an open-source repository that includes many of
these algorithms, promoting further research and application
in the field.

The authors of [14] design a feature selection method
for high-dimensional data, especially suited for classification
tasks. The SA-EFS method combines the results of three
different feature selection algorithms—chi-square test, max-
imum information coefficient, and XGBoost—through sort
aggregation strategies like arithmetic and geometric mean
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to determine the most important features. This ensemble
approach helps overcome biases inherent in using a single
feature selection method, leading to improved classification
accuracy.

In [15], the authors research a dynamic feature selection
method specifically designed for clustering high-dimensional
data streams. This method, which utilizes a dynamic feature
mask (DFM), addresses the challenges posed by feature drift,
where the relevance of features can change as the data stream
evolves. The paper emphasizes that traditional static feature
selection methods are inadequate for data streams due to
their inability to adapt to changing feature relevance over
time. The proposed method is algorithm-independent and
can be integrated with any existing density-based clustering
algorithm, enhancing their performance by dynamically
adjusting the feature set used for clustering.

The authors of [16] explore a feature selection method
that combines feature grouping with Variable Neighborhood
Search (VNS) techniques to address challenges in high-
dimensional datasets. The approach involves using Markov
blankets to group features and a metaheuristic search strategy
to optimize feature selection. This method is tested across
various datasets, including those from microarray and text
mining, showing improved effectiveness over traditional
methods by reducing the dimensionality while maintaining
or enhancing model accuracy.

The survey contained in [17] provides a detailed review
of various feature selection methods particularly applicable
to big data environments. It categorizes these methods
based on their nature, search strategies, and evaluation
criteria, offering a structured taxonomy that highlights
distinctions among similarity-based, information-theoretical,
sparse-learning, and statistical approaches.

Another survey in [18] presents a detailed overview of
feature selection methods employed in data mining and
machine learning. It explores the importance of feature
selection in handling high-dimensional data and improving
the performance of mining algorithms by focusing on
relevant features while discarding redundant ones. The study
categorizes feature selection methods into three main types:
Filter, Wrapper, and Hybrid methods, each with distinct
mechanisms and applications.

The authors of [19] evaluate the effectiveness of various fil-
ter methods for feature selection across 16 high-dimensional
datasets from diverse fields like bioinformatics. The study
assesses 22 filter methods in terms of their runtime and
predictive accuracy. Key findings include the absence of a
universally superior group of filter methods, although some
consistently perform well across multiple datasets.

B. INTERPRETABILITY AND EXPLAINABILITY IN MACHINE
LEARNING
The author of [20] examines the philosophical and method-
ological dilemmas facing the field of interpretable machine
learning (IML). Watson discusses how IML seeks to make

complex algorithms understandable to users, highlighting
three main conceptual challenges: ambiguous fidelity to the
target model versus the data generating process, lack of error
rate control in IML methods, and the predominant focus on
static explanations over dynamic processes. He argues that
most IML tools fail to adequately address these challenges,
which can lead to misleading or unintuitive explanations.

In [21], the fundamental principles for creating inter-
pretable machine learning models are outlined. The authors
argue that interpretability is essential for high-stakes
decision-making and effective troubleshooting. The paper
dispels common misconceptions that interpretability neces-
sarily compromises model accuracy, presenting cases where
interpretable models perform as well as or better than
complex, less interpretable models. The ten challenges
discussed range from optimizing sparse logical models like
decision trees, to enhancing scoring systems, to incorporating
constraints into generalized additive models, and to develop-
ing interpretable reinforcement learning techniques.

The authors of [22] evaluate various methods and
dimensions of interpretability, emphasizing the importance
of making these models understandable and trustworthy,
especially when applied to critical domains like medicine and
autonomous driving. It categorizes existing interpretability
approaches into model transparency, functionality, and post-
hoc explanations, discussing their strengths and limitations.
Moreover, the paper identifies significant gaps in current
methodologies, including the lack of a standard definition of
interpretability, the variability of human expertise, the fact
that there is a need for methods that integrate interpretability
directly into the model training process, and that there is
a lack of robust metrics to measure the effectiveness and
accuracy of interpretations.

In [23], one can find an extensive review of the research
on neural network interpretability. The survey proposes a
novel taxonomy for interpretability organized along different
dimensions, like type of engagement (passive vs. active
interpretation approaches), type of explanation, and focus
(ranging from local to global interpretability). One of the
future directions identified by the paper is that research
could focus on incorporating interpretability directly into the
neural network training process, rather than treating it as an
afterthought.

The authors of [24] provide a thorough investigation of
Explainable Artificial Intelligence (xAI) within the context of
cybersecurity, particularly focusing on deep learning and AI
techniques. It is a comprehensive overview of xAI methods,
emphasizing their significance and benefits in cybersecurity.
The authors systematically map the potential future research
directions through a methodical study, identifying and
exploring the integration possibilities of xAI in cybersecurity.
This investigation compiles various insights and concludes
with the potential trajectories for future research and the
integration of xAI into cybersecurity practices, making
significant strides towards improving transparency, trust, and
efficiency in AI-driven security systems.
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The authors of [25] emphasize the need for machine learn-
ing algorithms to provide insights into their decision-making
processes to ensure fairness, identify biases, and verify
performance expectations. The paper explores various meth-
ods and challenges in developing effective explanations for
AI systems, particularly in deep learning. It critiques the
lack of standardization in explanations and suggests future
research directions to improve transparency and trust in AI
applications.

The authors of [26] are the first ones to point out that
given that the foundation of any model is the data it is
built upon, comprehending the dataset is crucial for both
explainability and interpretability in the context of pre-model
explainability. The paper presents techniques designed to
provide insights into datasets for building more effective ML
models. It reviews traditional methods such as univariate and
multivariate exploratory data analysis (EDA) techniques.

III. MATERIALS AND METHODS
This section outlines the tools and methods employed to
explore and validate the proposed metrics.

A. MUTUAL INFORMATION (MI)
is an information-theory quantity expressing how much
the knowledge of one variable can reduce the uncertainty
of another variable. MI of zero characterizes independent
variables, and the higher the value, the more reduction in
uncertainty one variable can provide about the other.

MI quantifies the highest possible amount of information
to be extracted from one variable in order to decrease uncer-
tainty about another [27]. This is important since, as it will
be shown in the experiments, ML algorithms rarely utilize all
the information available to them, as indicated by MI.

B. ANOVA F-VALUE
The F-statistic, or the F-value is a ratio of the mean squares
of two variances, reflecting the various sources of variation
in a set of data. In ANOVA F-test it is expressed as a ratio
of between-group variability to the within-group variability.
In the context of feature selection, ANOVA F-value is used
to assess the significance of each feature in relation to the
target variable. Features with high F-values contribute more
to differentiating between the classes [28], [29]. The ANOVA
F-value is one of the filter methods, a go-to method of feature
selection.

C. RANDOM FOREST (RF)
is an ensemble, supervised ML algorithm which excels
in both classification and regression tasks. The method
constructs an array of decision trees, trains them on different
subsets of the data, and then aggregates their outputs to
estimate the final outcome. Each decision tree is trained
on a random sample and a random selection of features.
This technique - bootstrap aggregation (bagging) - inhibits
overfitting and boosts the ability to generalize. On inference,
the algorithm pushes each test sample through every decision

tree and uses the majority vote to determine the final
outcome [30], [31]. The sci-kit learn implementation of
RF provides insights into the significance of each feature,
calculated through the average and standard deviation of the
impurity reduction across each tree in the ensemble [32].

D. EXTRA TREES (ET)
classifier builds multiple unpruned decision trees using
random selections of attributes and split points for each
node. This extreme randomization reduces variance more
effectively than traditional methods and ensures compu-
tational efficiency. The strength of randomization can be
adjustedwith a parameter, making the algorithm robust across
different datasets [33]. In the scikit-learn implementation [32]
of ET, the attribute feature_importances delivers the relative
importance of features within the model, quantified by the
normalized total reduction in Gini Impurity.

E. MAXIMUM ABSOLUTE SCALING
is a scaling technique based on the maximum absolute
value observed in the set. This method ensures that the
maximal absolute value of each feature is adjusted to 1.0,
without shifting or centering the data. This preserves inherent
sparsity. MaxAbs Scaling is a fundamental preprocessing
step in ML, bringing numerical data to a common scale. For
positive values, MaxAbs Scaler brings the data to the [0,1]
range, which enhances the comparability across different
variables [32].

F. ARTIFICIAL NEURAL NETWORKS
The astounding versatility of Artificial Neural Networks
(ANNs) has been demonstrated across an abundance of
fields. From their inception [34], through the innovation of
Convolutional Neural Networks (CNNs) [35] and Recurrent
Neural Networks (RNNs) [36], these models have become
indispensable in applications like data mining, biometrics,
natural language processing, shape recognition, face recog-
nition, and intrusion detection, among many others. Today,
neural networks are a backbone in many domains requiring
rigorous data analysis.

The foundational idea behind ANNs is in their partial
mimicry of biological neural networks [37]. This mimicry
enables ANNs to recognize and extract meaningful patterns
from data, a crucial capability when dealing with vast
datasets.

ANNs refine their understanding of data by adjusting
weights and biases through training. This involves iterating
over data batches and tweaking parameters to minimize the
error between the network’s outputs and the actual outcomes,
a process guided by a supervisory signal [38].

G. SHAPLEY ADDITIVE EXPLANATIONS (SHAP)
SHAP values are designed to attribute an importance value
to each feature for a specific prediction, rooted in game
theory’s Shapley values, ensuring that feature attributions
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are consistent and locally accurate. The framework proposed
in [39] unifies several existing methods. The authors propose
new approaches to calculating SHAP values, for better
computational performance and better alignment with human
intuition. The SHAP values reported in this paper are not
local explanations but aggregated total absolute contributions
across all the features estimated via SHAP over the entire
training set.

IV. PROPOSED NEW METRIC: RELATIVE INFORMATION
AVAILABILITY
The proposed ‘‘Relative Information Availability’’ (RIA)
metrics are a set of three composite metrics that combine
different aspects of features to provide an understanding
of their possible contributions to the learning process prior
to model training. These metrics leverage the reduction of
uncertainty that a feature provides about the target value
and a quantification of the influence of the feature on a
categorical target measured by evaluating the variability in
the feature values across the categories defined by the target.
Those values are obtained relative to the dataset - the terms
are scaled using the absolute maximum value obtained per
feature. The terms of the proposedmetric are combined in one
of three ways: using either arithmetic, harmonic, or geometric
means.

The proposed ‘‘Relative Information Availability’’ metric
offers several advantages.

• The proposed metrics combine the strengths of filter
methods (speed and simplicity) with the potential
to capture interactions through the used aggregation
methods (arithmetic, harmonic, geometric means). They
provide amore rounded evaluation of feature importance
that acknowledges different properties.

• The metrics combine the relative information content of
a feature with its relative variance, providing a balanced
perspective onwhat makes a feature important and likely
to be relevant in model training. By integrating the quan-
tification of different aspects of the features, the metrics
gain expressiveness of the captured complexities.

• While MI can capture non-linear relationships, the
F-value can reinforce the importance of features with
significant variance effects between classes.

• The metrics provide significant pre-model insights that
can guide subsequentmodel complexity and architecture
decisions, potentially improving model performance by
focusing on genuinely informative features right from
the start. It allows the user to check if the intuition
of the information expected from the captured features
aligns with what is actually present in the data and
available for the AI/ML models to leverage, forming the
end-user expectation of the model behavior before any
computational effort is spent on training.

• Since these metrics do not rely on a specific model, they
can provide a more objective baseline that is not biased
by the peculiarities of a particular modeling algorithm.

V. CALCULATING THE PROPOSED NOVEL METRIC:
RELATIVE INFORMATION AVAILABILITY
A. DECREASE IN UNCERTAINTY ABOUT THE TARGET
VARIABLE
The first term of the equation contained in Eq. 1, known as
Mutual Information, quantifies the amount of information
that one random variable contains about another random
variable. It measures the reduction in uncertainty about one
variable given knowledge of the other. It quantifies the
dependency between two variables. A high value indicates a
strong relationship, where knowing the value of one variable
provides significant information about the other.

It is always a non-negative value. When it equals zero,
it means that the variables are independent, and there is no
information shared between them.

The term is related to statistical measures. For instance,
it is related to the Pearson correlation coefficient in that both
measure how variables relate, but unlike correlation, the term
can capture non-linear relationships and is not limited to
linear dependencies. The term does not require assumptions
about the distribution of the data (such as normality). p(x, y)
is the probability that X takes the value of x and Y takes the
value of y simultaneously. It represents how often pairs of
values (x,y) occur together. p(x,y)

p(x)p(y) This ratio compares the
joint probability of x and ywith the product of their individual
probabilities. If X and Y are independent, this ratio will be
1. The log function translates probabilities into information
content. When this ratio is 1, it indicates independence, and
the logarithm of 1 is 0, meaning nomutual information.When
the ratio deviates from 1, the logarithm captures the extent of
dependence or independence between X and Y.∑

y∈Y

∑
x∈X

p(x, y) log
(
p(x, y)
p(x)p(y)

)
(1)

B. ANALYSIS OF DIFFERENCES BETWEEN CLASS MEANS
The second term, contained in Eq. 2 is a value quantifying
the differences between group variances in a dataset. The
goal is to measure the influence of a feature on a target
value by examining the variability in the feature values
across the categories defined by the target value. The term
indicates whether the means of the feature across different
categories of the target are different. First, the data for each
feature is grouped based on the target categories, then the
observations for each feature are split into groups. Two
sub-terms are used to produce the value. The nominator
measures the variance due to the interaction between the
different categories of the target and the feature. Essentially,
it is about how much the group means deviate from
the overall mean. The denominator measures the variance
within each category of the target. It reflects the spread
of the feature values within each category. A high value
indicates that the between-group variance is significantly
larger than the within-group variance, suggesting that the
feature effectively differentiates between the categories of the
target. In statistics, this term is known as ANOVA F-value.
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A high value of the term signifies that the features are
considered more predictive and may be prioritized in model
training because they show significant differences across
the target categories. A low value of the term signifies that
the features are less useful in predicting the target variable,
as they do not vary much across the target categories.

1
k−1

∑k
i=1 ni(X̄i − X̄ )2

1
N−k

∑k
i=1

∑ni
j=1(Xij − X̄i)2

(2)

In Eq.2, k is the number of groups and represents the total
number of different categories in the dataset. N is the total
number of observations (data points) across all groups.
ni is the number of observations in a class.
i is the count of data points in the i-th group.
X̄ is the mean of all observations across all classes.
X̄i is the mean of a class i.

C. MAXIMUM ABSOLUTE SCALING (MaxAbs SCALING)
A scaled first term value close to 1 indicates that the feature
associated with this value has the strongest association with
the target variable compared to all other features being
considered. This is because the scaling factor is the maximum
absolute value of the term among all features. This is visible
in Eq. 3, where each MI for feature f is scaled by the
highest obtained MI value. This makes the metric much more
readable but alsomakes all the readings relative to a particular
set of features. Scaling highlights the relative importance of
features in the context of the information structure of the
dataset. ∑

y∈Y
∑

x∈Xf p(x, y) log
(

p(x,y)
p(x)p(y)

)
maxf ∈F

(∑
y∈Y

∑
x∈Xf p(x, y) log

(
p(x,y)
p(x)p(y)

)) (3)

Max Absolute Scaling normalizes the values to a [0,1]
range (de-facto MaxAbs scales to [−1,1], but both the terms
in the metric equation are always positive). A value near one
signifies that the information gain (reduction in uncertainty
about the target variable) provided by this feature is the
highest obtainable in the given dataset. It effectively allows
for easier comparison between features. In practical terms,
the scaled value suggests that the feature is highly valuable for
predicting the target variable, relative to all the other features
in that dataset.

The second term, when scaled with MaxAbs, identifies
the feature which has the highest between-class variance to
within-class variance ratio and assigns it the value of one.
This suggests the most significant feature from the variance
perspective among the available features, as seen in Eq.4.

1
k−1

∑k
i=1 ni(X̄i,f −X̄f )

2

1
N−k

∑k
i=1

∑ni
j=1(Xij,f −X̄i,f )

2

maxf ∈F

(
1

k−1
∑k

i=1 ni(X̄i,f −X̄f )2

1
N−k

∑k
i=1

∑ni
j=1(Xij,f −X̄i,f )

2

) (4)

With both terms having a range from zero to positive infin-
ity, Maximum Absolute Scaling ensures their comparability,
forcing them into the range [0,1].

D. FORMULATING THE METRIC
With the two terms - one expressing the value of a feature
in decreasing the uncertainty about the target value, and the
other describing the variability in the feature values across
the classes, both scaled to be in the same range, there exist
a couple of ways of combining them that behave slightly
differently.

Arithmetic Mean used in the ARIA (Arithmetic Relative
Information Availability) formula in Eq. 5, as shown at the
bottom of the next page, offers a straightforward average,
a balance between the two terms of the equation, assuming
equal significance of both terms.

Harmonic Mean present in the HaRIA formula in Eq. 6, as
shown at the bottom of the next page, favors the lower of the
two terms, thus it can be particularly useful in scenarios where
both scores need to be sufficiently high to consider a feature
truly relevant. This can pinpoint features that are informative
and likely to be utilized by the model.

The Geometric Mean in the GeRIA formula in Eq. 7, as
shown at the bottom of the next page, provides a balance
that is less sensitive to extreme values than the ARIA, which
can be useful when combining terms that happen to have
different distributions. Naturally, this makes it similar to the
ARIA in this context, as with MaxAbs Scaling employed in
the pipeline the possibility of encountering extreme values
is minimal. It is included in the evaluation for the sake of
completeness.

VI. EXPERIMENTAL SETUP
A. DATASETS
The proposed metrics were tested on 7 different datasets
with ranging properties, including ML classics like Wine and
Iris, but also e.g. a real-world cybersecurity Netflow dataset
‘ToN’. The full list of employed datasets is collected in Tab.1.

All the experiments are completed in the framework of
a 10-fold cross-validation, and the reported metrics are
averages over all 10 folds.

In each fold, the data was preprocessed with sci-kit learns
StandardScaler.

The 9/10th training sets are used to train 3 classifiers:
RF, ET, and an ANN (using TensorFlow). The network has
2 hidden layers, both using the ReLU activation function,
64 neurons on the first layer, 32 on the second layer, softmax
output, and categorical cross-entropy as the loss function. The
optimizer was ADAM. The choice of hyperparameters was
grounded in previous research and could be subject to further
refinements. However, since the aim of the research was not
to present the best classifier but to propose a PMI metric, the
most optimal hyperparameter setup for all the tested datasets
was not pursued.

The purpose of training the models is to evaluate how they
assign importance to different features learning to classify.

Various methods are employed to compare feature impor-
tance both pre- and post- model training. Mutual Information
and ANOVA F-values provide statistical measures of feature
relevance. Model-specific feature importance scores are
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TABLE 1. Detailed overview of datasets used in the analysis with specific file references.

extracted directly from ensemble tree models (Random-
ForestClassifier and ExtraTreesClassifier). SHAP (SHapley
Additive exPlanations) values are computed to explain the
output of the models, particularly the contribution of each
feature to the classification.

To make the comparison more evident, scores scaled with
maximum absolute scaling are provided. This allows for a
direct comparison across different metrics and models.

The relationships among the gathered results are show-
cased using Parallel Coordinate Plots and Heatmaps.

VII. RESULTS
In the parallel coordinate plots, each vertical line represents
a different metric for assessing the features. From left to
right, the labels represent: ScaledMutual Information (Scaled
MI), Scaled F (Scaled ANOVA F-values), Scaled Random
Forest Importance (RF Importance Scaled), The MaxAbs
scaled aggregated SHAP value (RF Scaled Agg Abs SHAP),
Feature Importance and scaled aggregated SHAP for the
Extra Trees Classifier, scaled aggregated SHAP for the ANN,
and then the three proposed metrics - the HaRIA, the ARIA
and the GeRIA. Each line represents a different feature,
marked by a distinct color. The way the lines cut across
the plot indicates how each feature ranks according to the
different metrics. This plot is valuable for understanding how
different metrics assess the feature value or contribution to the

classification, underlining either consistency or discrepancies
between established methods and the proposed metric.

While the parallel coordinate plots provide a high-
level overview, the heatmap of scaled values is especially
informative. In this case, all the values are in the range
between zero and one. This allows for a direct comparison
between the measures, one that is even easier to understand
thanks to the seaborn’s [48] coloring capabilities, which allow
one to set blue colors to values nearing zero, and red colors
to values near one.

A. ANALYSIS OF RESULTS
In Fig. 2, a noticeable pattern present in the Diabetes dataset
is the high variability of some values across different metrics.
These features score very high in certain metrics (like RF
Importance-Scaled) but lower in others (like Scaled MI
or Scaled F). The three proposed metrics (HaRIA, ARIA,
GeRIA) show a convergence trend where the extremes
of importance seen in earlier metrics are moderated. This
indicates that the proposed metrics tend to provide a more
balanced view that potentially averages out the extremities
observed in individual assessments. The most important
aspect of the proposed metrics (the three values on the
right), which is very visible in the case of this dataset,
is that they correlate strongly with the model-based impor-

ARIA(Xf ,Y ) =

∑
y∈Y

∑
x∈Xf

p(x,y) log
(

p(x,y)
p(x)p(y)

)
maxf ∈F

(∑
y∈Y

∑
x∈Xf

p(x,y) log
(

p(x,y)
p(x)p(y)

)) +

∑k
i=1 ni(Xi,f −Xf )

2

k−1

maxf ∈F

(∑k
i=1 ni(Xi,f −Xf )

2

k−1

)
2

(5)

HaRIA(Xf ,Y ) =

2

( ∑
y∈Y

∑
x∈Xf

p(x,y) log
(

p(x,y)
p(x)p(y)

)
maxf ∈F

(∑
y∈Y

∑
x∈Xf

p(x,y) log
(

p(x,y)
p(x)p(y)

))
) ∑k

i=1 ni(Xi,f −Xf )
2

k−1

maxf ∈F

(∑k
i=1 ni(Xi,f −Xf )

2

k−1

)


( ∑
y∈Y

∑
x∈Xf

p(x,y) log
(

p(x,y)
p(x)p(y)

)
maxf ∈F

(∑
y∈Y

∑
x∈Xf

p(x,y) log
(

p(x,y)
p(x)p(y)

))
)

+

 ∑k
i=1 ni(Xi,f −Xf )

2

k−1

maxf ∈F

(∑k
i=1 ni(Xi,f −Xf )

2

k−1

)
 (6)

GeRIA(Xf ,Y ) =

√√√√√√
∑

y∈Y
∑

x∈Xf p(x, y) log
(

p(x,y)
p(x)p(y)

)
maxf ∈F

(∑
y∈Y

∑
x∈Xf p(x, y) log

(
p(x,y)
p(x)p(y)

)) ·

∑k
i=1 ni(Xi,f −Xf )2

k−1

maxf ∈F

(∑k
i=1 ni(Xi,f −Xf )2

k−1

) (7)
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FIGURE 2. The diabetes dataset parallel coordinate plot.

FIGURE 3. The diabetes dataset heatmap.

tances (RF-importance, ET-importance), providing simi-
lar importance scores, without the need of any model
training.

The heatmap inf Fig. 3 shows that certain metrics, like
Scaled MI, have lower correlations with model-specific
metrics (SHAP values, RF importance, ET importance).
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This could indicate a discrepancy in what is considered
important by filter methods versus model-based evaluations.
It is most evident in features 0, 1, 2 and 6, where Scaled
MI of feature 0 is the highest among the features, but it
is not the most important feature according to the RF and
ET importance metrics. The features 1 and 2 are scored
very high by all metrics except Mutual Information. This
could lead to a conclusion that MI is not that important for
feature selection; however, features 6 and 7 demonstrate that
a combination of sufficient MI and variance, as captured by
the F-value, can still render these features important inmodel-
specific assessments, despite not being standout in individual
statistical evaluations. This interplay suggests that both MI
and variance contribute enough unique value that, when
combined, enhances the predictive power of these features
in the context of the employed models, precisely the kind of
interplay the proposedmetrics attempt to capture and express.

The parallel coordinate plot and heatmap for the ToN
NetFlow collection dataset (Fig. 4 and Fig. 5), a real-
world dataset used in ML-based Network Intrusion Detection
(NIDS) research, displays the other side of the coin. The
feature marked ’0’ possesses the highest MI of all the
features, but its F-value is relatively lower, much lower
than the top feature - ’4’. However, the high MI values of
features 1, 2 and 3 are not usable for the ML models since
the F-value is way too low. The proposed metrics moderate
the extremes seen in single metrics, providing a more reliable
indicator of overall feature importance. It is worth pointing
out that the ANN, as indicated by the SHAP value, puts
major importance on feature 4, displaying a different decision
process to the tree-based models. This is expressed in the
proposed metrics, which indicate that both feature 0 and
feature 4 display potential for model learning. It is important
to bear in mind that while the values of RIA might not
pinpoint the exact values reported by posthoc importance
scores or SHAP values, they provide usable and informative
estimates without any costly model training. The proposed
metrics also capture the fact that features 1, 2, and 3 lose the
ability to convey the decrease of uncertainty expressed by MI
due to very low variance.

In the Wine dataset, Fig.6 and Fig.7, there are notable
correlations among model-based metrics (RF, ET, SHAP
values) and the proposed RIA metrics, indicating agreement.
As in the previous instances, the lower variance expressed
by the F-value mitigates the usefulness of features which
might otherwise be very strong, as indicated byMI. However,
feature 2 displays the opposite behavior, where the relatively
low f-value is offset by the high information content (MI),
with most of the model-based metrics and the proposed
metrics clearly indicating the importance of that feature.
Features 0 and 4 maintain high importance across almost all
metrics, suggesting they are crucial for models in this dataset.
This is captured and expressed by the proposed metrics.

In the Drybean dataset, as shown in Fig.8 and Fig.9 the
model-based metrics are aligned with the proposed metrics
in the top-performing features, suggesting that the proposed

metrics are valuable for indicating possible feature contri-
butions. An interesting discrepancy between the tree-based
models’ importance metrics and the calculated SHAP values
is visible in those figures - where the Importance Scores
are much higher than the calculated SHAP contributions of
features 3, 4, 5, 6, and 7. This could arise from several
underlying reasons. RF and ET calculate feature importance
based on how effectively the features contribute to the
model’s accuracy. The metrics rely on the average decrease
in impurity (using Gini) brought about by splits over each
feature across all trees in the forest. If a feature consistently
appears in splits that help in substantially reducing impurity,
its importance score will be high. SHAP values, on the
other hand, measure the contribution of each feature to the
prediction of each individual sample, considering all possible
combinations of features. SHAP values thus offer a value
contribution to the prediction of a specific instance, averaged
over many possible coalitions of feature sets. In tree-
based models, features that interact complexly with other
features might result in higher importance scores because
they significantly affect model performance when used in
splits. However, these features might not show high SHAP
values if the predictive power they contribute is diffused
when averaged across all possible feature subsets, especially
if their effect is highly context-dependent on the presence or
absence of other features. If multiple features carry similar
information, tree-based importance might still attribute high
scores to all such features if they individually help in making
good predictions in different parts of the tree structures.
SHAP values might spread the attribution more thinly among
these features because they account for the presence of
correlated or redundant information.

The proposed metrics not only smooth out extreme
values but also highlight features that consistently appear
important across different methodologies, thereby potentially
increasing their reliability.

Analyzing the parallel coordinate plot and heatmap for the
Iris dataset in Fig.10 and Fig.11, it is apparent that features
0 and 1 maintain a higher importance across the metrics,
including the proposed ones, indicating their important role
in classification. The heatmap shows clearly that the post-hoc
metrics agree with the proposed pre-model metrics as to the
feature importance.

In Fig.12 and Fig.13, the feature metrics for the Rice
dataset are gathered. Similar to the previous evaluations
across different datasets, the figures reveal that while there
is some variance in how the proposed metrics relate to
model-based metrics, they generally follow a similar trend.
This indicates an alignment of the proposed metrics with
the model-based interpretations, reinforcing their practical
applicability understanding the nature of the dataset. One
observation that needs to be addressed in the Rice dataset is
that the ANN chose different features as important, according
to accumulated SHAP values. There is a number of reasons
why this could happen; for example, features that do not
perform well individually in tree splits could be vital in
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FIGURE 4. The ToN NetFlow collection dataset parallel coordinate plot.

FIGURE 5. The ToN NetFlow collection dataset heatmap.

an ANN if they interact synergistically with other features
to affect the output. SHAP values for ANNs are computed
based on the contribution of each feature to the output across
potentially complex nonlinear transformations, reflecting
a cumulative effect of features throughout all the layers.

In contrast, tree-based SHAP calculations directly relate to
the decrease in model error or impurity, typically measured
in a more straightforward manner. It is important to point
out that, according to the experiments presented in this paper,
as showcased in the figures, this happens whenMI scores and
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FIGURE 6. The wine dataset parallel coordinate plot.

FIGURE 7. The wine dataset heatmap.

F-values are relatively high in multiple features, allowing for
the different ways the algorithms learn to be brought to light.

In Fig.14 and Fig.15, it is evident that features 4 and
5 are consistently identified as important across all
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FIGURE 8. The Drybean dataset parallel coordinate plot.

FIGURE 9. The Drybean dataset heatmap.

methods, reinforcing their role as key predictors in the
dataset. The proposed metrics capture well the essential
aspects of those features. The outlier of this dataset is

feature 0, which provides very little variance, but the
highest MI. Thus, it becomes a relatively important feature
as valued by RF Importance, RF SHAP, ET Importance
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FIGURE 10. The Iris dataset parallel coordinate plot.

FIGURE 11. The Iris dataset heatmap.

and ANN SHAP. The proposed metrics undervalue this
feature in this dataset, except for the straightforward
ARIA.

B. STATISTICAL ANALYSIS
The Table 2 shows the Pearson correlation coefficients
between various feature importance measurements derived
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FIGURE 12. The rice dataset parallel coordinate plot.

FIGURE 13. The rice dataset heatmap.

from different ML models and the three proposed metrics
(HaRIA, ARIA, GeRIA) across multiple datasets (ToN_IoT,
Wine, Iris, Diabetes, Rice, Glass, and Drybean). These

correlations indicate how closely the proposed metrics reflect
the importance assigned by the model mechanisms or SHAP
values, which represent the contribution of each feature
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FIGURE 14. The glass dataset parallel coordinate plot.

FIGURE 15. The glass dataset heatmap.

to the model’s prediction. Higher correlations suggest that
the proposed metric effectively captures the importance
that the models attribute to the features. The Iris dataset

shows extremely high correlations for all three proposed
metrics, especially with features’ importance measured by
the RF model. Correlations are nearly perfect, close to 1.
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TABLE 2. Pearson correlation of feature importances measured in different ways with the proposed metrics, across different datasets.

This suggests that for the Iris dataset, all three proposed
metrics (HaRIA, ARIA, GeRIA) are very effective in aligning
with the models’ view on feature importance. For the
ToN and Wine datasets, the proposed metrics also show
strong correlations with the traditional and SHAP-based
feature importance scores, indicating good alignment across
these metrics. Rice, Glass, and Drybean datasets show
generally good correlations, particularly between ARIA and
the model-based importance measures. The results suggest
that the ARIA metric performs consistently well across
different datasets, and when it is surpassed by HaRIA, it still
maintains high performance. The Diabetes dataset presents
a more varied range of correlations, with some metrics like
the ET Scaled Agg Abs SHAP showing very low correlation
scores, especially with GeRIA. This might be the result of
the Diabetes dataset being a regression dataset, which was
treated as a classification dataset to evaluate performance
with a high number of classes but a low number of instances in
those classes. The ANN Aggregated Max-Abs Scaled SHAP
typically shows lower correlations compared to other model-
based importances. This might be due to the different nature
of feature interactions or different importance attribution in
ANNs compared to tree-based models; however, without a
true baseline of how feature importance and contribution are

calculated in ANNs, it is not possible to clearly establish
whether the proposed metrics miss the mark and the ANN
models behave very differently, or if what SHAP shows as
feature importance actually correlates with what happens in
the model. This is definitely an area for future research. This
highlights the challenges in creating a universally effective
metric. Table 2 suggests that while the proposed metrics can
approximate feature importance very well for some models,
they may not capture all nuances.

VIII. CONCLUSION
The proposed metrics - HaRIA, ARIA and GeRIA - facilitate
a comprehensive understanding of which features could be
utilized in learning before engaging in costly model training.
By incorporating MI and F-values, scaled with MaxAbs
Scaling, these metrics effectively quantify the potential con-
tribution of each feature to model performance. The metrics
capture both the non-linear dependencies and variance effects
among features. The proposed RIA metrics provide an
assessment of feature importance free of model peculiarities,
helping to guide both the initial stages of model development
and further analysis of whether the decision-making process
of the model is aligned with what is present in the data.
By providing insights into feature relevance before anymodel
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training, these metrics allow practitioners to make informed
decisions about model architecture and complexity.

The validation of the proposed RIAmetrics across multiple
datasets showcases the applicability of the proposed metrics.
The correlation of RIAmetrics with traditional feature impor-
tancemeasures and SHAP values in model training highlights
their capability to approximate the importance assigned
by complex models effectively. The consistency observed
across various datasets in aligning with model-based metrics
underscores the potential of RIA metrics. Essentially, the
proposed metrics give similar insights but are significantly
less expensive.

Answer to RQ1: Can potential feature utilization in
an ML model be reliably assessed before any model train-
ing? Yes, the proposed RIA metrics—HaRIA, ARIA, and
GeRIA—demonstrate the ability to reliably assess potential
feature utilization before any model training by quantifying
the information content and variance contributions of each
feature.

Answer to RQ2: Can pre-model interpretability metrics
provide a reliable estimation of feature importance that aligns
with traditional post-model training evaluations? Yes, the
validation of RIA metrics shows strong correlations with
traditional post-model training evaluations, such as feature
importance scores from Random Forests or Extra Trees,
indicating that these pre-model metrics can reliably estimate
feature importance.

Answer to RQ3: Can the proposed pre-model inter-
pretability metrics provide a reliable estimation of what
features will be utilized by the trained model, that aligns
with traditional post-hoc xAI evaluations? Yes, the proposed
metrics align well with post-hoc xAI evaluations like SHAP
values across various datasets, thereby providing a reliable
estimation of the features that will be utilized by the trained
model.

The findings suggest that the RIA metrics can be instru-
mental in the early stages of model development, providing a
reliable estimation of feature importance that aligns well with
post-model training evaluations.

However, some discrepancies noted, particularly with
complex models like the ANNs, suggest areas for future
exploration. The lower correlations between RIA metrics
and ANN SHAP values indicate potential differences in how
features are utilized by ANNs versus tree-based models,
or howANNSHAP values are calculated vs. the SHAP values
for tree-based models. This discrepancy underscores the need
for further research.

Additionally, while the metrics perform well across
various datasets, their performance in highly specialized or
unconventional datasets requires further investigation.

HaRIA, ARIA, and GeRIA not only improve the under-
standing of the importance of certain features relative to
other features in a dataset but also provide a measure of
interpretability before any model training is performed. Their
development and validation are a promising direction and
hopefully will bring more research in this field in ML, which

one day could result in providing a solid ground truth for the
current xAI methods.

Future work will incorporate the notion of synergistic
relationships between features. It is possible for there to
be synergy between two features which is not captured by
individual MI, and therefore the RIA metrics. One must
consider a situation where X and Z are two binary variables,
and Y is a third binary variable that depends on both X and
Z in an exclusive or (XOR) relationship. X and Z can both
be 0 or 1. If X and Z are the same, Y=0. If X and Z are
different, Y=1. Knowing X alone provides no information
about Y because Y can be either 0 or 1 regardless of X.
Knowing Z alone also provides no information about Y for
the same reason. However, knowing X and Z allows one to
determine Y perfectly. Information from knowing X and Z
together is greater from knowing X and Z separately. In future
work, this effect will be investigated and incorporated into the
PMI metrics.
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