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ABSTRACT Despite the impressive performance of current deep learning models in the field of medical
imaging, transferring the lung segmentation task in X-ray images to clinical practice is still a pending task.
In this study, the performance of a fully automatic framework for lung field segmentation in chest X-ray
images was evaluated. The framework is rooted in the combination of the Segment Anything Model (SAM)
with prompt capabilities, and the YouOnly Look Once (YOLO)model to provide effective prompts. Transfer
learning, loss functions, and several validation strategies were thoroughly assessed. This provided a complete
benchmark that enabled future research studies to fairly compare new segmentation strategies. The results
achieved demonstrated significant robustness and generalization capability against the variability in sensors,
populations, disease manifestations, device processing, and imaging conditions. The proposed framework
was computationally efficient, could address bias in training over multiple datasets, and had the potential to
be applied across other domains and modalities.

INDEX TERMS Biomedical X-ray imaging, image segmentation, lung, deep learning.

I. INTRODUCTION
Medical imaging plays a pivotal role in clinical practice
and biomedical research because of its potential to pro-
vide advanced visualization of the inside of the human
body, offering valuable information that contributes to early
diagnosis and personalized medical care. Medical images,
acquired through a variety of technologies, such as radiog-
raphy, magnetic resonance imaging, computed tomography,
and ultrasound, are essential tools for diagnosis, disease
monitoring, computer-assisted surgery, and treatment plan-
ning [1]. The subfield of medical image segmentation is
part of routine examinations. Accurate image segmentation
techniques cover the automated identification and annotation
of medical regions of interest (ROI) delivering critical infor-
mation about the volumes or shapes of anatomic structures
or medical abnormalities. Automated image segmentation is
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an important step in medical image analysis and an essential
stage of computer-aided diagnosis (CAD) systems [2].

In recent decades, numerous researchers have developed a
wide array of automatic segmentation techniques for medical
imaging, customized to the specific imaging modality and
body part being studied. The first approaches were based
on conventional digital image processing techniques (such
as thresholding, edge detection, or region-based methods)
[3]. Later, artificial intelligence, through automatic learning
techniques with hand-crafted features, became a dominant
approach for years [4]. These techniques based on feature
engineering require a significant effort and need experts to
identify the proper features to be fed into a learnable decision
algorithm [5]. Currently, the rise in computational power, the
availability of large datasets, and advanced model training
algorithms have boosted Deep Learning (DL) as a subfield
of machine learning able to replace handcrafted engineering
with efficient unsupervised or semi-supervised feature learn-
ing algorithms [6]. DL takes advantage ofmultiple processing
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layers to learn data representations with different levels of
abstraction, identifying and learning suitable input features in
a fully data-driven manner. This approach delivers impressive
performance compared to traditional ML methods [7].

DL models can handle raw data, generalize to unseen
images, and eliminate the need for handcrafted features by
domain experts [8]. Besides segmentation, DL-based models
have proven significant success in various medical imaging
tasks, supporting clinical decision-making [9].

Lung segmentation, defined as the computer-based process
of delineating lung boundaries from surrounding thoracic
tissue, is a prerequisite for the automated analysis of radio-
logical lung images to assess pulmonary lesions [10]. Despite
the wide range of DL-based lung segmentation approaches,
and the sophisticated pipelines developed in recent years
demonstrating effectiveness in medical imaging and other
domains, their clinical applicability across different patholo-
gies remains limited [11].
Several factors contribute to the limited clinical applicabil-

ity of existing lung segmentation approaches. Most current
methods perform adequately when the lungs show minimal
or no pathological conditions. However, in the presence of
moderate to severe abnormalities such as pleural effusions,
consolidations, opacities, or masses, these models often pro-
duce inaccurate segmentation, impeding the use of CAD
systems in clinical settings [10].

Furthermore, developing accurate DL-based automated
systems necessitates sufficient annotated data, which requires
highly qualified experts and is tedious and time-consuming
work [12]. The tasks of reading, labeling, and creating
annotations for image masks in chest X-rays (CXRs) and
computed tomography (CT) scans are exponents of this sit-
uation. Additionally, it is usual that when annotated datasets
exist, they are limited to healthy subjects, individuals without
severe pathology, or patients with a dominant pathology [11].
This lack of data variability leads to trained models that

struggle to generalize the segmentation task beyond the spe-
cific cohorts they were trained on. This limitation hinders the
effectiveness of segmentation tasks on new and unseen data,
contributing to dataset bias. Dataset bias has become a major
challenge in medical image segmentation [13].

In addition to dataset variability and annotation issues,
there are other significant barriers. These include the diversity
of medical equipment used for image acquisition and the
complexities associated with sharing data across different
medical centers. Legal, ethical, and privacy concerns often
obstruct the seamless sharing of medical image data [14].

Despite advancements in automatic lung segmentation
systems, their transfer to clinical practice remains limited.
Routine image studies still heavily rely on semi-automatic
segmentation methods or human inspection of automatically
generated organ masks [15]. These challenges underscore
the ongoing complexity of integrating advanced segmentation
technologies into everyday clinical workflows.

Chest X-ray (CXR) is indeed one of the most extended
medical imaging modalities to examine for pulmonary and

heart disorders the chest’s anatomical structures, including
the heart, lungs, blood vessels, airways, bones, and spine.

Therefore, the development of CAD systems is crucial for
supporting healthcare professionals, particularly pulmonolo-
gists and radiologists, in the assessment of pulmonary and
cardiac conditions.

As a core part of these systems, the task of segmenting
the lung fields is critical to enable the automatic delivery of
precise information about the anatomical structures identifi-
able in CXR images (e.g., quantification of lung nodules [16],
detection of lung disease [17], or assessment of heart
failure [18]).

Notwithstanding the crucial importance of lung segmen-
tation in CXR, achieving accurate segmentation remains a
significant challenge. CXR interpretation is widely acknowl-
edged as one of the most complex tasks in radiography [19],
and the development of a generic automated solution that
can reliably operate in routine clinical settings without expert
intervention is still pending [20].

In this context, DL-based frameworks have emerged as
a promising alternative for achieving precise and clinically
relevant segmentation of lung fields. Pre-trained foundational
models are revolutionizing the segmentation landscape by
enhancing flexibility, adaptability, and accuracy across var-
ious scenarios, often outperforming specialized models [21].
These foundational models can be fine-tuned using tech-
niques such as prompt engineering, where prompts like
points, bounding boxes, or masks guide themodel to facilitate
downstream tasks.

Implementing a prompt-guided foundational model frame-
work enables the incorporation of designed data cues,
enhancing the model’s ability to generalize effectively to new
data distributions even without prior exposure—a concept
known as zero-shot generalization [22].
As a reference, the Segment Anything Model (SAM)

stands out as a foundational model that has shown promis-
ing zero-shot segmentation results across various natural
image datasets [23]. However, while foundational models
have achieved remarkable success with regular images, their
application to medical images faces significant challenges.
The computational requirements pose significant barriers to
the accessibility and scalability of real-world clinical appli-
cations. Visual prompt-based models, such as SAM, which
utilize high-performing image encoders, demand substan-
tial throughput processing capabilities to ensure practicality.
Furthermore, foundationalmodels in vision face general chal-
lenges related to training complexity, network architecture,
privacy considerations, and bias [21]. Addressing these obsta-
cles is crucial for deploying effective and trustworthy systems
in clinical settings.

To tackle these challenges, we propose implementing a
fully automatic framework for segmenting lung fields in
CXR images. This framework combines the strengths of the
SAMmodel, which excels in zero-shot segmentation with its
prompt capabilities, and the You Only Look Once (YOLO)
model, known for its efficient single-stage object detection
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approach [24], crucial for real-time applications in clinical
settings where rapid analysis is essential.

We hypothesized that the approach based on identifying
bounding boxes as prompts to eliminate background noise
and mitigate side effects by isolating specific areas of interest
has the potential to significantly influence the model’s ability
to generalize across datasets of varying scales. Our research
specifically delves into transfer learning methods and opti-
mizing the process of selecting the most efficient prompts to
unravel relationships between prompts and outcomes.

The main contributions of this study are as follows:

(a) Integration of foundational models and DL algorithms.
This study implements a fully automatic framework
that combines SAM with the YOLO model. This com-
bination leverages the high-performing image encoders
of SAM with the prompt capabilities of YOLO,
improving segmentation accuracy and generalization
across different datasets.

(b) Utilization of diverse benchmark datasets. We evaluate
the framework using five benchmark datasets which
include chest X-rays with varying pathologies such as
COVID-19, pneumonia, and tuberculosis, enhancing
the model’s generalization capability and robustness.

(c) Providing a fair benchmarking. The study reports high-
performance metrics, demonstrating the effectiveness,
robustness, and generalization of the proposed method
given the variability in devices, imaging conditions,
populations, and disease manifestations. As a result of
this thorough assessment, a valuable benchmark for fair
comparison in future research is provided.

(d) Addressing clinical applicability. The study tackles
the challenge of clinical applicability by focusing on
transfer learning methods and optimizing the process
of selecting effective prompts. This approach aims to
reduce background noise and isolate specific areas of
interest, showing potential to improve the model’s per-
formance in real clinical settings.

These contributions collectively advance the state of the art
in lung segmentation on chest X-rays by improving accuracy,
generalization, and clinical applicability through innovative
model integration, preprocessing techniques, and evaluation
methodologies.

The rest of the manuscript is organized as follows.
In Section II, a review of existing literature on lung segmen-
tation in CXR is provided.

Section III outlines our methodology, encompassing
details on the datasets used for training and validating the DL
models. It describes the preprocessing techniques applied to
CXRs, the SAM architecture, the postprocessing stage, the
validation strategy, the performance metrics calculated for
evaluating the models’ performance, and the experimental
environment regarding the hardware and software resources.

After that, the experimental findings are presented and
discussed in Section IV, including a comparison with

other state-of-the-art approaches and describing the study
limitations.

Lastly, Section V presents the conclusions and considera-
tions for future works.

II. RELATED WORKS
To address the challenges and obstacles associated with lung
segmentation in CXR images, a diverse range of DL-based
techniques has been studied in recent years. Notably, in 2023,
the MWG-UNet framework was presented [25]. MWG-UNet
is based on the Wasserstein generative adversarial network
U-shape network and was designed to segment the lung
fields and heart in CXRs. This approach uses an attention
mechanism to improve the performance of the segmentation
process.

Also in 2023, the lung segmentation in CXRs was
addressed using semantic segmentation and five different
methods based on vision transformers. These methods used
attention mechanisms and differentially weighed the signifi-
cance of each part of the data input sequence [26].

In 2022, a two-stage model was proposed for lung seg-
mentation in CXRs. The preprocessing stage included a deep
learning model combining a Deep Belief Network and K-
Nearest Neighbor, while the refinement stage utilized an
improved principal curve method and a machine learning
method [27]. In the same year, the typical U-Net architecture
was adapted by replacing the convolution block with a dilated
convolution block to extractmulti-scale context features, each
with different receptive field sizes [28].

Furthermore, an unsupervised tile-wise autoencoder
(T-AE) pretraining architecture was assessed for acquiring
transferable knowledge, followed by fine-tuningwith aU-Net
segmentation model [29]. In the same year, HybridGNet,
another UNet-based architecture, was introduced [30].

In 2021, a multi-scale adversarial domain adaptation
network (MS-AdaNet) was introduced to enhance the
cross-domain lung segmentation task, providing foundational
knowledge for the field [31]. In 2019, an approach featuring
two deep convolutional neural network models (an AlexNet-
based CNN and a ResNet-based CNN) was evaluated to
address the problem of dense abnormalities in CXRs [32].

In 2018, three fully convolutional architectures were
described, including the introduction of the Inverted-Net
fully convolutional network for the automated segmentation
of anatomical organs in CXRs, such as lungs, clavicles,
and heart [33]. Additionally, the SegNet network, with
its encoder-decoder architecture, was assessed for similar
tasks [34].

III. METHODOLOGY
The approach proposed in this study included several steps.
The process began with data acquisition from public datasets,
followed by essential preprocessing steps such as image
resizing, enhancement, and augmentation. Subsequently, the
YOLO and SAMmodels were developed and evaluated using
various validation approaches.
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FIGURE 1. Examples of chest X-ray images extracted from the used datasets. In each case, the X-ray image is illustrated at the top, and the
ground-truth mask at the bottom: (a): Darwin v7 dataset; (b): Shenzhen dataset; (c): Montgomery dataset; (d): RSUA dataset; (e): JSRT dataset.

A. DATASETS
Five public datasets were used to train the proposed lung
segmentation approach and evaluate its performance using a
wide range of validation techniques.

The Montgomery dataset (MC) [35] comprises 138 pos-
teroanterior CXRs, with 80 showing normal conditions and
58 exhibiting various degrees of tuberculosis manifestations.
The images are represented in 12-bit grey-scale format and
have a size of 4020 × 4892 pixels.
The Shenzhen (SZ) [35] dataset consists of 662 frontal

CXRs, with 326 normal cases and 336 cases showing tuber-
culosis manifestations. The image size varies, but the average
size is around 3000 × 3000 pixels.

The Japanese Society of Radiological Technology (JSRT)
dataset [36] includes 247 posteroanterior CXRs with a reso-
lution of 2048× 2048 pixels. Among these, 154 cases exhibit
lung nodules, while 93 cases do not.

The RSUA dataset [37] comprises 292 CXRs with cor-
responding ground truth annotations by radiologists. This
dataset includes 207 images from COVID-19 patients,
53 depicting pneumonia cases, and 32 showing no abnormal-
ities. The images have a size of 256 × 256 pixels.
Finally, the Darwin V7 dataset (DV7) [38] includes image

heterogeneity in terms of sources, orientations, and resolu-
tions. Image size varies from 156 × 156 pixels to 5600 ×

4700 pixels. The DV7 dataset includes 6106 CXR images
obtained from individuals diagnosed with different respira-
tory diseases.

All these datasets comprise CXRs obtained from patients
with a diagnosis of COVID-19, pneumonia, or tuberculosis.
By including images with varying pathologies and disease
patterns, we aimed to enhance the model’s generalization
capability.

The data for training and validating the models were
derived from expert-annotated images. Experts provided and

curated these annotations, ensuring the ground truth was
highly reliable.

As a result, the models were built and evaluated using
precise and trustworthy reference standards.

Fig. 1 represents a CXR from each dataset used
in this study, along with its associated lung field
mask.

B. DATA AUGMENTATION
Image augmentation is a key technique in DL, which involves
applying transformations to original images to increase the
diversity of the training datasets [39]. Due to the variation
in lung sizes, as illustrated in Fig. 2, data augmenta-
tion methods were used to train and validate the YOLO
model. Augmented images were dynamically generated dur-
ing model training through various techniques, including
rotation (±10 degrees), scaling (±0.05), translation (random
image shifting left, right, up, or down by 10%), left-to-right
flipping (with a 50% probability), and perturbation of the
HSV color space (adjustment up to 1.5% of the full hue
range, 70% of the saturation range, and 40% of the value
range).

Scaling was used to simulate natural variation in lung sizes.
Shifting images horizontally ensured that the model was
exposed to different parts of the lung region during training,
enhancing its ability to identify lung structures regardless of
their position. Random rotations and flips were applied to
simulate different orientations of the lungs, which helped the
model to generalize better and improved its robustness to
anatomical variability. Introducing slight variations in HSV
color space simulated different imaging conditions or subtle
changes in the imaging environment, which could improve
the model’s ability to generalize to variations encountered
in real-world scenarios. Examples of augmented images are
shown in Fig. 3.
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FIGURE 2. Distribution of the size of lung fields in the images used to develop the YOLO model. In each pair, the figure
on the left illustrates the variability in size in the left and right lungs, where the coordinates of each point represent the
center of the box delimiting the right and left lung fields. The figure on the right denotes, for each dataset, the width and
height of the right and left bounding boxes. X and Y axes values are represented in normalized units. (a): JSRT dataset;
(b): Montgomery dataset; (c): Shenzhen dataset; (d): RSUA dataset; (e): Darwin dataset.

FIGURE 3. Examples of augmented images. (a): Original image with pixel
normalization; (b): 10 degrees rotated image; (c): scaled image (x0.95);
(d): shifted image (10% to the right); (e): left-to-right flipped image; (f):
image with increased HSV-hue; (g) image with increased HSV-saturation;
(h): image with increased HSV-value.

C. PREPROCESSING
The images in the datasets were resized to 256 × 256 pixels
to standardize size, reduce memory usage, improve com-
putational performance, and enable fair comparison with
state-of-the-art approaches that commonly use this image
size. Pixel intensity normalization was applied to enhance
convergence during training.

FIGURE 4. Examples of images under different preprocessing techniques.
(a): Original image with pixel normalization; (b): image preprocessed with
contrast-limited adaptive histogram equalization (CLAHE); (c): image
preprocessed with gamma-correction; (d): stacked 3-channel image.
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FIGURE 5. The architecture of the proposed segmentation framework. The full-scale resolution lung radiography image is preprocessed and fed into
the You Only Look Once (YOLO) network to generate the bounding boxes of lung fields. The predicted bounding boxes are used as prompts to the
Segment Anything Model (SAM) model, which receives as input a stacked 3-channel image built with the gamma correction and the contrast
enhancement (CLAHE) techniques. Finally, the lung boundaries provided by the SAM network are post-processed to generate the final segmentation.

Contrast-limited adaptive histogram equalization (CLAHE)
was used to enhance the local contrast of images. CLAHE has
proven effective in improving segmentation performance [40]
by highlighting lung boundaries and enhancing the discrimi-
nation between the lungs and surrounding tissues (Fig. 4b).

Gamma correction was applied to adjust the luminance of
the images. This technique allowed managing the brightness
and contrast, thereby improving the visibility of the lung
structures, particularly in cases with significant differences in
image brightness. Gamma correction can enhance model per-
formance in CXR classification and segmentation supporting
more accurate medical image interpretation (Fig. 4c) [41].

The original normalized, CLAHE-enhanced, and gamma-
corrected imageswere combined to build the 3-channel image
(Fig. 4d), which was then input into the SAM network.

D. PROPOSED ARCHITECTURE
The proposed architecture, illustrated in Fig. 5, consists of
an ensemble of two models: a lung fields detector based on
YOLO; and a SAM-based segmentationmodel that delineates
the lung contours.

The YOLO model performed the detection and generated
prompts indicating the specific regions of interest (ROIs) in
the CXR images. By accurately identifying potential lung
regions, YOLO guided the SAM model to focus on these
areas for more detailed segmentation.

1) YOU ONLY LOOK ONCE (YOLO) MODEL
A relational module was implemented using YOLO to detect
the left and right lung fields and to consider the connec-
tions between diseases and anatomical components. YOLO

processes the CXR image to detect ROIs, particularly focus-
ing on areas likely to contain lung regions. YOLO generates
bounding boxes around these ROIs, providing precise coordi-
nates that highlight potential lung boundaries. For this study,
the YOLO v5 Ultralytics version was used [42].

The normalized image is input into the YOLO backbone
for feature extraction. The backbone estimates feature maps
of varying sizes which are then fused in the feature fusion
network (neck). These features are forwarded to the predic-
tion head to generate multi-dimensional arrays representing
bounding boxes. These bounding boxes serve as input for the
SAM prompt encoder.

Bounding box coordinates are determined by fitting the
smallest possible bounding box around the original segmen-
tation masks for both lung fields. Each bounding box was
defined by its top-left corner (x itl , y

i
tl) and its bottom-right cor-

ner (x ibr , y
i
br ). The identification of the two largest contours,

representing the left (i= L) and right (i= R) lung fields, was
based on the min-max criterion detailed in Equations 1-2.

x itl = min (x | x = 1) , yitl= min (y | y = 1) (1)

x ibr = max (x | x = 1) , yibr= max (y | y = 1) (2)

Non-maximum suppression was applied to remove redun-
dant bounding boxes. The generalized intersection over union
(GIoU) was used as a measure in the suppression algorithm.
GIoU, as defined in Equation 3, was used to characterize the
similarity between closely spaced detection boxes. It provides
a more comprehensive description of the relative position and
overlapping between two bounding boxes, A and B, com-
pared to traditional intersection over union (IoU). To estimate
GIoU, a minimum rectangle C is circumscribed. The GIoU
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value is not zero if A and B do not overlap.

GIoU =
|A ∩ B|

|A ∪ B|
−

|C\(A ∪ B)|
|C|

(3)

2) SEGMENT ANYTHING MODEL (SAM)
Bounding boxes provided by YOLO were used by SAM
to focus on specific areas and perform segmentation by
applying image encoding techniques and leveraging contex-
tual information. SAM was chosen for its high-performing
image encoding mechanisms, which excel at delineating lung
boundaries in images evenwith limited annotated data, thanks
to its foundation model trained on a vast dataset.

SAM has an encoder-decoder-based architecture. The
decoder block uses prompt self-attention and cross-attention
mechanisms, generating embeddings that focus on the object
of interest [43]. Foundational models, like SAM, can extend
their capabilities to encompass tasks and data distributions,
allowing models to adapt beyond those encountered during
their initial training. This ability, known as task generaliza-
tion, allows models to adapt to new scenarios effectively [23].
Implementing this capability often involves the use of prompt
engineering techniques.

In the realm of vision-languagemodels ormodels driven by
visual input, prompt engineering finds its primary application
in two key areas: first, it facilitates the transformation of
vision datasets into training data that combines both images
and text, enabling human interaction with foundational mod-
els. Second, it empowers the use of vision-language models
for tasks related to visual perception.

In this study, we explored how a geometric prompt
can enhance the SAM model’s generalization. Specifically,
we considered using a bounding box as a prompt to isolate
a particular ROI. This approach aimed to improve object
localization by focusing on relevant areas and reducing back-
ground noise. It also sought to mitigate over-generalization
biases caused by variations in capture conditions (device,
image capture, cables or tubes), human operators, and
anatomical variability among patients and diseases [44].
We hypothesized that this method would enhance the model’s
ability to generalize across different scenarios.

The SAM model was trained using a hybrid unweighted
sum of the soft Jaccard Focal [45] and the Tversky [46]
loss functions. These loss functions complement each other
by refining the pixel-level segmentation, addressing class
imbalance, and improving overlap measures.

The Tversky loss function extends the Dice loss by assign-
ing greater importance to false negatives compared to false
positives. This approach aims to balance precision and recall.

The Jaccard Focal loss function is an enhanced version
of binary cross-entropy loss, specifically crafted to tackle
class imbalance by prioritizing learning from challenging,
misclassified examples. This loss function drives the model
to focus on correctly segmenting challenging areas, which
is crucial for capturing detailed lung structures across varied
pathologies. The term ‘‘soft Jaccard Focal loss’’ refers to this

loss function’s direct use of predicted probabilities, elimi-
nating the need to threshold and convert them into a binary
mask. Recent studies have expanded on this concept [47],
by applying an exponent to the Dice score or using a hybrid
approach that combines Dice loss with cross-entropy.

The total network loss is denoted by L and mathematically
represented as illustrated in Equations 4-7:

L = LF,γ + LT ,α,β (4)

LF,γ =

∑
c

SJ1/γ (5)

SJ = 1 −

∑N
i=1 picgic + ε∑N

i=1 pic+gic −
∑N

i=1 picgic + ε
(6)

LT ,α,β =

∑N
i=1 picgic + ε∑N

i=1 picgic + α
∑N

i=1 pic̄gic + β
∑N

i=1 picgic̄ + ε

(7)

where LF,γ denotes the soft Jaccard Focal loss and LT ,α,β

represents the Tversky loss component, respectively.
The parameter γ smoothly adjusts the rate at which easy

examples are downweighed, while α and β control the
trade-offs between penalizing false negatives and false posi-
tives. Here, gic represents a one-hot vector for the true labels,
pic denotes a matrix containing the predicted values for each
class, and the indices c and i iterate over all classes and pixels,
respectively. N stands for the total number of pixels in the
image. The term ε was used to prevent division by zero.

E. POSTPROCESSING
The ROIs detected by the SAM model were post-processed
to generate the final output. The Suzuki approach, which
involves topological structural analysis through border fol-
lowing, was used to remove small, disconnected components
from the prediction masks provided by the SAM model [48].
Following this, an opening morphological operation, fol-
lowed by a closing operation, was applied to address
false positive and false negative predictions. Both opera-
tions used a 3 × 3 kernel size to refine the segmentation
results.

F. VALIDATION
Recent literature on lung segmentation reveals a wide vari-
ety of validation techniques used by researchers. However,
there is a scarcity of studies that combine different valida-
tion methods to comprehensively describe the generalization
capabilities of proposed models. To address this gap, our
study applied four distinct validation approaches, providing
a rigorous and fair test bed against which to compare the
results of new lung segmentation strategies. Additionally, this
methodology helps evaluate whether the proposed approach
generalizes effectively across diverse data sources, data distri-
butions, and pathologies that may influence radiologic image
characteristics. These validation strategies are detailed in the
next subsections.
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1) 5-FOLD CROSS-VALIDATION
A 5-fold cross-validation (CV) scheme was used in the MC,
SZ, JRST, and RSUA datasets to assess the robustness of the
framework. In a 5-fold CV, the dataset is divided into five
equal portions. During each iteration, four portions are used
for training, while the remaining one is used for validation.
The average results from these five evaluations are then cal-
culated to estimate the model’s capacity for generalization.

2) DATASETS INTEGRATION
In some studies, researchers have combined various datasets
to create larger composite datasets, addressing potential
biases inherent in the individual datasets. In this study,
we applied a similar approach by merging images from the
MC, SZ, JRST, RSUA, andDV-7 datasets.We then performed
a random split into training and testing sets, using an 80 −

20% ratio.

3) CROSS-DATASET VALIDATION
In this validation strategy, 12 cross-domain combinations
were evaluated: JSRT→SZ, JSRT→RSUA, JSRT→MC,
SZ→MC, SZ→JRST, SZ→RSUA, MC→JRST, MC→SZ,
MC→RSUA,RSUA→JSRT, RSUA→MC, andRSUA→SZ,
where x→ y represents training the network on dataset x and
testing it on dataset y.

4) SEMI-AUTOMATIC VALIDATION USING CROSS-DATASET
A semi-automated evaluation mode was defined to assess
model performance using optimal bounding boxes as
prompts. Instead of generating the bounding boxes using
YOLO, this mode emulated the behavior of an expert who
can accurately annotate the region corresponding to each lung
field. Optimal bounding boxeswere created using the ground-
truth masks.

G. METRICS OF PERFORMANCE
Precision, recall, accuracy, Dice score, and IoU were calcu-
lated to quantify the segmentation results. These metrics are
extensively used for medical image segmentation studies.

Precision measures the proportion of correctly identified
lung pixels among all pixels predicted as lung, with high
precision indicating few non-lung areas misclassified as lung.

Recall gauges the model’s ability to detect actual lung pix-
els, with high recall meaning most lung pixels are correctly
identified.

Accuracy represents the overall correctness of the model’s
predictions, reflecting howwell it distinguishes between lung
and non-lung areas.

The Dice score assesses the overlap between predicted and
actual lung regions, with high values indicating a closematch.

IoU measures the extent of overlap between predicted and
actual lung regions, with high IoU showing good alignment
with the ground truth.

The pixels in the mask output by the proposed archi-
tecture can be classified into four distinct categories based

on their correspondence with the ground truth mask: true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN). Equations 8-12 detail how the selected
performance metrics can be quantitatively estimated from
these categories:

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Dice =
2TP

2TP + FP + FN
(11)

IoU =
TP

TP + FP + FN
(12)

H. EXPERIMENTAL SETTINGS
All models were implemented using the PyTorch platform.
The training was conducted on an Ubuntu 20.04 system using
an NVidia DGX Station, featuring 4 Tesla V-100 GPUs, and
using CUDA 9.0/cuDNN 7.0 (NVIDIA Corporation).

The YOLO v5 model was trained for 200 epochs with
an image size of 256 × 256 pixels and a batch size of 32.
The confidence and IoU thresholds were set to 0.70 and
0.60, respectively. These settings are suitable for scenarios
where additional bounding boxes may overlap or enclose the
primary bounding box.

Default hyperparameters were applied for all other set-
tings. The SAM model was initialized using the pre-trained
ViT-Base model. The prompt encoder was retained to handle
the encoding of the bounding box prompt, and its parameters
were updated during training. For the training stage, bound-
ing box prompts were generated based on the ground-truth
masks.

The learning rate was set at 0.0001 and decreased accord-
ing to a scheduled learning strategy. The Adam optimizer was
used for the pre-training process.

IV. RESULTS
This section presents the results of the proposed framework
for lung segmentation. First, the results of the ablation study,
conducted to determine the best settings for the proposed
approach, are presented. Then, the outcomes of the validation
strategies used to evaluate the framework performance are
presented.

A. ABLATION STUDY
An ablation study is an analysis aimed at understanding the
significance or contribution of individual factors or com-
ponents within a system by methodically removing them
and examining the resulting changes. In this study, the con-
tribution of factors such as preprocessing, loss functions,
and the number of bounding boxes was examined. These
studies were conducted on the MC dataset to examine how
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these variations impacted segmentation performance. Five-
fold cross-validation was used in all cases.

1) CLAHE AND GAMMA CORRECTION
The impact of preprocessing techniques on lung segmentation
performance was assessed. Four experiments were conducted
using 5-fold cross-validation on the MC dataset to estimate
segmentation metrics: a) images without preprocessing, b)
CLAHE-adjusted images, c) gamma-corrected images, and
d) a combination of original, CLAHE-enhanced, and gamma-
corrected images. The results, detailed in Table 1, indicate
that the model using both CLAHE-enhanced and gamma-
corrected images, along with the original images, performed
on par with the model using original and gamma-corrected
images. The Dice and IoU metrics estimated for both combi-
nations outperformed the other preprocessing techniques.

TABLE 1. Results of the ablation study about the use of CLAHE and
gamma correction using 5-fold cross-validation on the Montgomery
dataset.

2) NUMBER OF BOUNDING BOXES
To determine the optimal number of bounding boxes, the
SAM model without bounding box prompting was consid-
ered as the baseline. The improvement achieved using the
YOLO model trained to provide a single ROI encompass-
ing both lung fields was then evaluated (model M1). As a
third approach, the inclusion of two bounding boxes, one for
each lung field, provided by YOLO as prompts to SAM was
assessed. This model (M2) was trained using the standard
Dice loss function.

Additionally, YOLO was trained to provide two bounding
boxes as prompts to SAM, which was trained using the
described hybrid loss function (model M3).

Finally, a semi-automatic mode was explored (see
section III). Two optimal bounding boxes were calculated
from the ground-truth masks and fed to SAM, which was
trained using the hybrid unweighted sum of the soft Jaccard
Focal and the Tversky loss functions (Model M4).

Table 2 summarizes the results. It can be observed that the
accuracy, Dice score, and IoU metric improved substantially
from the baseline model, first with the addition of a single
bounding box as a prompt (Model M1), and later with two
bounding boxes delimiting each lung field (models M2 and
M3). As shown, discrepancies in anatomy and lung-related
diseases can result in inaccuracies in the model outcomes.

TABLE 2. Results of the ablation study to determine the optimal number
of bound boxes to be prompted to the SAM model. A 5-fold
cross-validation on the Montgomery dataset was used.

Fig. 6 illustrates how the utilization of bounding boxes can
address the impact of these factors in our model. The case
MCUCXR_0251 corresponds to a 77-year-old female subject
with right upper lobe fibro-cavitary disease with volume loss
and tracheal deviation to the right, COPD, and scoliosis. The
case MCUCXR_0311 corresponds to an 89-year-old female
subject with tuberculosis and some re-accommodation of
pleural fluid along the lateral left chest wall. When there
are variations in the height and width of the lung fields due
to anatomical differences (case MCUCXR_0251), the use
of two bounding boxes improved the Dice score by 3.5%
and 17.7% compared to using one or no bounding box,
respectively.

The same was true for CXR images of cases with res-
piratory pathologies, which are challenging in automatic
segmentation. In the case of pathological abnormalities (case
MCUCXR_0311), the Dice score increased by 3.8% using
two bounding boxes compared to using only one, and by
5.3% compared to the baseline model. Therefore, it can be
concluded that the combination of the YOLO and SAM
models demonstrates the potential to improve the results
obtained by the SAM single model and to address the main
challenges in lung segmentation, such as the heterogeneity in
the anatomical characteristics of these organs, and the signif-
icant differences that appear in images of healthy subjects or
subjects with different lung pathologies.

3) LOSS FUNCTION TUNNING
Loss functions determine how neural network models com-
pute the overall error of the residuals for each training batch.
In turn, they affect how models adjust their internal weights
during back-propagation. The choice of the loss function
therefore directly influences the model performance. The
SAM model was trained using the sum of the soft Jaccard
Focal and Tversky loss functions. For the soft Jaccard Focal
loss, γ = 2 was used. This value has been found to be
optimal [45].

Regarding the Tversky component, monitoring themodel’s
performance for different combinations of α and β in the
Tversky loss function helped in selecting the best parameters
to ensure that the model effectively handles class imbalance,
improving recall on underrepresented classes. Typical ranges
are α ∈ [0.3, 0.7] and β ∈ [0.3, 0.7]. Consequently, the
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FIGURE 6. Effect on the segmentation performance of using: none (a), one (b), or two (c) bounding boxes
provided as prompts for the Segment Anything Model (SAM). In each case, the image on the left is the
original image, including the output of the YOLO model with the border boxes of the identified lung regions;
the image on the right shows the segmentation result and the Dice score, with the ground truth delineated in
green.

TABLE 3. Results of the ablation study about the loss function tunning in
the SAM model, with 5-fold cross-validation on the MC dataset.

following steps were taken for Tversky parameter tuning.
First, the framework was trained using commonly used loss
functions such as Hausdorff distance, Jaccard Focal (γ = 2),
and Jaccard. Then, models with different α and β combina-
tions were evaluated for both Tversky alone and the hybrid
loss function. A 5-fold CV on the MC dataset was used in
all cases. The performance of each of these combinations
was logged to track metrics over epochs to ensure stable
convergence. The results are shown in Table 3. The loss
function that yielded the highest validation performance used
the sum of the soft Jaccard Focal function with γ = 2 and the
Tversky function with α = 0.7 and β = 0.3.

4) FINAL CONFIGURATION AFTER THE ABLATION STUDY
The settings estimated to provide the best results according
to the ablation study were established. The image size was
set to 256 × 256 pixels. The ablation study confirmed the
contribution of CLAHE and gamma correction to improve
the segmentation results. In addition, the benefits of using
two bounding boxes were validated. Finally, the hybrid
unweighted sum of the soft Jaccard Focal and the Tversky
functions was selected as the loss function given that it pro-
vided the best result in the performed tests.

B. PERFORMANCE EVALUATION
The performance of the proposed SAM-YOLO framework
was evaluated across the various datasets and validation
strategies described in Section III. The results of the 5-fold
cross-validation are shown in Table 4 for each dataset.

TABLE 4. Performance of the method based on SAM with prompts from
YOLO estimated using 5-fold cross-validation.
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Table 5 presents a comparison of the generalization per-
formance achieved by our model across different datasets
(dataset integration).

TABLE 5. Performance of the method based on SAM with prompts from
YOLO estimated using validation with dataset integration.

Table 6 summarizes the model performance estimated
using cross-dataset validation.

TABLE 6. Performance of the method based on SAM with prompts from
YOLO estimated using cross-datasets validation.

Results for the semi-automatic validation using a 5-fold
CV in the MC dataset are shown in Table 2 (model M4).
Table 7 shows the results calculated using cross-dataset
validation. The results highlight the sensitivity of the frame-
work to errors in the lung field detection by YOLO. Both
in the cross-validation on the MC dataset and, more impor-
tantly, in the cross-validation on cross-datasets, the overall
segmentation performance improved when the accuracy of
the contour delineation used as a prompt for SAM became
higher. More specifically, in unbalanced sets, such as the
case of the cross-dataset validation in MC → RSUA, the
improvement in the Dice score was 7.51%.

Fig. 7 illustrates some segmentation results according to
the parameters defined after the ablation study, including
good and poor cases in each of the datasets and the esti-
mated Dice score. The integration of YOLO and SAM,
and the use of two bounding boxes as prompts to SAM,
can produce excellent segmentation results. In some cases,
the segmentation deteriorates due to unavoidable prediction
errors. Some of the factors causing this deterioration include a
vague shape of the lung region due to consolidation, changes
in lung texture caused by the disease, and scattered white
pixels [49].

TABLE 7. Performance of the method based on SAM with prompts from
YOLO semiautomatic segmentation and cross-datasets.

As illustrated in Fig. 7, in some cases, the chosen
prompt led to segmentation failures, which suggests that a
semi-automatic strategy involving an expert collaboration
may be an excellent complement to the automatic mode in
particularly challenging cases (e.g., case CXR_Image_150
shown in Fig.7).

V. DISCUSSION
A. COMPARISON WITH EXISTING METHODS
In this study, a fully automatic framework for lung segmen-
tation in CXR images was evaluated.

Table 8 summarizes the methods and results of some recent
works on lung segmentation, sorted by work and year of
publication, highlighting the datasets used, the validation
strategies, algorithms, and performance metrics. The lack of
standardization in validation strategies and evaluation met-
rics complicates performance comparison among different
methods.

For approaches using the same dataset for training and val-
idation, our model outperformed others on the JRST dataset
with a 97.2% Dice score, compared to a DBN-CPL Hybrid
(96.7% Dice score) [33] and a SegNet model (95.7% Dice
score) [40].

Although the performance of the proposed approach was
slightly lower than the InvertedNet CNN (97.6% Dice Score
and 95.5% IoU) [39], it was still competitive.

On the MC dataset, the proposed model exceeded the
performance of the AlexNet+ResNet-based CNNs presented
in [38] by more than 3.5% in Dice and 6.4% in IoU metrics.

Some studies were built on a dataset augmented by inte-
grating several individual datasets. The JRST+SZ datasets
were used in [31] and [34] to build a UNet and a DCI-
UNet model, respectively. Dice and IoU metrics were 95.3%,
92.3%, and 95.4%, 92.2% respectively.

The YOLO+SAM approach outperformed these results
using the JRST+SZ+MC datasets and reaching a 96.7%
Dice score estimated using 5-fold cross-validation. In addi-
tion, the presented approach competed well with the TranMt
model, which was evaluated in [32] using hold-out validation

VOLUME 12, 2024 122815



E. Khalili et al.: Automatic Lung Segmentation in Chest X-Ray Images Using SAM

FIGURE 7. Instances of good (left) and poor segmentation (right) in the evaluated datasets: JSRT dataset; MC,
Montgomery dataset; SZ, Shenzhen dataset; RSUA dataset. In each case, two images are shown: on the left side,
the original image including the output of the YOLO model with the bounding boxes of the identified lung
regions; on the right, the segmentation result and its Dice metric, with the ground truth delineated in green.

TABLE 8. Summary of the performance of lung segmentation models in chest X-rays achieved in recent studies.

(78-22%) in the same augmented dataset and reached a 96.8%
Dice score.

In cross-dataset validation, the YOLO+SAM model out-
performed the TAE-Seg [35] and MS-AdaNet [37] models,
achieving a 96.2% Dice score compared to 92.5% and

95.8%, respectively, when training on the SZ dataset and
validating on the MC dataset. Similarly, when trained on the
MC dataset and validated on the SZ dataset, the proposed
approach achieved a 95.6% Dice score, outperforming the
other models.
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Finally, the HybridGNet 2 architecture [36], assessed using
the JRST dataset for training and the MC dataset for valida-
tion achieved a 95.5% Dice score. The YOLO-SAM model
performance was close, with a 95.2% Dice score in the same
setting.

B. GENERALIZATION, ROBUSTNESS, AND
COMPUTATIONAL PERFORMANCE
The comparative analysis reveals that our model delivered
competitive efficiency results and exhibited a significant level
of generalization ability.

The framework integrated SAM and YOLO to leverage
their respective strengths. YOLO first detected and pro-
posed ROIs in the CXR images. These ROIs were then
passed to SAM, which performed detailed segmentation
focusing on specific areas, enhancing precision and reduc-
ing background noise. This collaborative approach ensured
that the segmentation process was both accurate and effi-
cient, utilizing YOLO’s fast detection capabilities and SAM’s
detailed segmentation abilities. By combining these mod-
els, the framework achieved a high level of accuracy and
generalization in lung segmentation across different datasets,
enhancing its potential for clinical application.

Traditionally, published studies have used only one or two
validation strategies, making it difficult to fairly compare
results generated from different techniques. This study facil-
itates this task in future experiments.

This study has faced factors that likely contribute to differ-
ences in segmentation performance. The variability in lung
pathologies across datasets may cause the model to perform
well on healthy lungs but struggle with diseased lungs. Class
imbalance can skew the model’s learning, leading to biased
predictions. Integrating datasets from different sources can
introduce heterogeneity in terms of image quality, resolu-
tion, and acquisition protocols. This heterogeneity can affect
the model’s ability to generalize across different types of
data. Differences in the distribution of images from different
datasets (e.g., variations in patient demographics, equipment
used, and imaging settings) can lead to domain shifts, where
the model performs well on one dataset but poorly on another.
The amount of training data available for each validation
strategy can impact performance. More data generally leads
to better generalization.

It must be noted that the global model’s effectiveness heav-
ily depends on the accuracy of the bounding boxes generated
by YOLO. Inaccurate lung region detection by YOLO can
degrade performance. All these factors have been addressed
by extending the validation to a heterogeneity of datasets and
validation strategies. The results demonstrate the robustness
and generalization of the lung segmentation task, given the
variability in sensors, populations, disease manifestations,
device processing, and imaging conditions. The results are
promising and contribute to the research of segmentation
models for clinical routine.

Additionally, the combination of YOLO and SAM can
provide a more computationally efficient solution compared

to encoder-decoder models. By using YOLO’s efficient
detection followed by SAM’s focused segmentation, highly
competitive results were obtained with less computational
burden. YOLO processes images faster than many other
object detection models due to its single-stage detection
architecture. When using YOLO to narrow down the areas
to segment, the SAM model can focus on a smaller region,
reducing the overall computational load compared to seg-
menting the entire image. This efficiency is particularly
beneficial in clinical settings where quick turnaround times
are essential, such as in emergency departments or routine
radiographic screenings.

C. BIAS
Differences in patient populations, imaging techniques, and
pathologies across datasets can introduce biases that affect
performance. Publicly available datasets used in this study
include imageswith a high degree of heterogeneity in terms of
patient country of origin, hospital center, acquisition devices,
and pathologies.

Bias in CXRs can originate from various factors. Firstly,
the diversity in anatomical structures can result in variations
in the location of points of interest. Secondly, pathologies can
lead to alterations in the texture of the lungs, which may,
in turn, create variations in the contrast observed in X-ray
images.

Additionally, human experts consider the entire target
region and opt for a smooth transition during the segmen-
tation process, while machine learning methods examine
individual pixels and their interconnections to determine the
most suitable match for the target area. This distinction leads
to variations in decisions at the image edges.

Fig. 2b illustrates how the RSUA dataset has significant
variation in lung sizes, potentially leading to model bias,
which can be relevant for cross-dataset validation. As appre-
ciated in Fig. 7, the proposed combination of YOLO and
SAM has the potential to identify and locate the volumes
and shapes of common anatomical structures in the different
datasets, and consequently, address bias.

D. LIMITATIONS
Despite the excellent performance achieved by the frame-
work in all tested settings, the study has some limitations.
The primary limitation is that the radiographic images used
are posteroanterior (PA) and anteroposterior (AP) views
of CXRs; the side view is not included. Additionally, the
described method only performs segmentation. Diagnosis
and disease staging of respiratory pathologies will be the
focus of our next study.

VI. CONCLUSION
This work introduced a fully automated deep-learning frame-
work to increase the accuracy of lung segmentation in CXRs.
The framework is based on the development of an automated
model capable of training on small datasets whilemaintaining
applicability to larger and more diverse datasets.

VOLUME 12, 2024 122817



E. Khalili et al.: Automatic Lung Segmentation in Chest X-Ray Images Using SAM

By using a foundational model (SAM) for automatic lung
segmentation in CXRs and utilizing fully automated prompts
from aYOLOmodel, the lung segmentation goals were effec-
tively addressed. This approach emphasizes the importance
of focusing on the lung region to achieve generalization
capabilities and suggests potential applications across various
domains and modalities.

The framework’s performance and robustness were rig-
orously evaluated using a range of datasets and validation
methods, establishing a valuable benchmark for fair com-
parative analysis in future research. The results underscore
the potential of novel approaches for lung segmentation,
which provide robust and reliable methods with clinical
applicability.

Future research will extend this segmentation task to a
comprehensive, automated diagnostic pipeline, incorporating
additional stages for detecting and quantifying abnormal-
ities and tracking the progression of specific respiratory
pathologies.
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