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ABSTRACT This paper introduces a new steel defect detection model CK-NET, which uses YOLOv9c
as the baseline model and adopts YOLOv9’s model architecture for improvement. The proposed model
addresses issues of shallow information loss and insufficient feature extraction and fusion caused by network
deepening. A new feature extraction module is designed to control model parameters and enhance feature
extraction. Minor improvements to Convolutional Block of Attention Module (CBAM) and the introduction
of deformable convolutions in the backbone network further enhance feature extraction. A new feature fusion
module, combined with a self-attention mechanism (SA), elegantly fuses features from different levels to
assist downstream detection tasks. The Programmable Gradient Information (PGI) auxiliary branch is also
improved to better fuse features and guide model learning with gradient information. All improved modules
have been integrated into CK-NET. Experiments on the NEU-DET dataset demonstrate that CK-Net achieves
a 13.2% higher mAP value than YOLOv9c, reaching a 92.1% mAP value while maintaining similar model
parameters, validating the model’s effectiveness.

INDEX TERMS Steel surface defect detection, YOLOv9, feature extraction and fusion.

I. INTRODUCTION
Steel, an alloy primarily composed of iron and carbon, has
played a crucial role in modern civilization’s infrastructure.
Its exceptional strength, durability, and versatility make it a
vital material for applications in construction, transportation,
manufacturing, equipment, and machinery. The reliability of
steel directly impacts the safety and longevity of structures
and products. Surface quality significantly influences steel
properties like fatigue strength, corrosion resistance, and
structural integrity. Defects such as cracks, scratches, pits,
and inclusions can arise during various production stages,
posing risks to steel performance and safety. Therefore, main-
taining high surface quality is essential for economic and
safety reasons in the steel industry. Traditional methods for
detecting surface defects rely on subjective visual inspection,
leading to inconsistent results due to human factors. The task
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involves classifying and locating defects, with machine learn-
ing methods increasingly being utilized for industrial defect
detection. Zeng et al. [1] employed machine learning meth-
ods to categorize surface defects on wafers. The algorithms
used in machine learning extract important edge features,
surface textures, and other image details from the images
collected for processing and generating image recognition
outcomes. Although these techniques can decrease the need
for manual work, they are still heavily reliant on manual
feature extraction, which poses limitations. The rise of deep
learning has resulted in significant progress across various
industries [2], particularly in the field of industrial quality
control. Deep learning, a subset of machine learning, employs
artificial neural networks with multiple layers to analyze
data in a hierarchical manner. In the context of identifying
defects on steel surfaces, deep learning algorithms have the
ability to automatically recognize complex defect patterns
from images, providing a dependable and unbiased detection
method.
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In this study, a novel steel surface defect detection model
named CK-Net is proposed to address existing issues in cur-
rent methods. The baseline model for CK-Net is YOLOv9c
[3], which has been enhanced with Programmable Gradi-
ent Information (PGI) auxiliary branches to reduce forward
information loss. The YOLOv9 series algorithm has shown
superior performance compared to other baseline models.
Due to the complexity of steel data, extracting comprehensive
features is a challenging task for models. To tackle this chal-
lenge, a new feature extraction module called CK-GELAN,
based on YOLOv9’s GELAN architecture, is introduced.
CK-GELAN consists of multiple modules that sequentially
extract features, with the features of each layer being added
in parallel. Additionally, three smaller modules within the
feature extraction module utilize depthwise separable con-
volution to manage model complexity while maintaining
feature extraction capacity. Furthermore, the width of fea-
ture extraction module has been increased. CK-GELAN not
only enhances the depth of the backbone network to extract
more semantic information but also broadens the model’s
width to capture more spatial details. This study incorpo-
rates deformable convolutions [4] andConvolutional Block of
Attention Module (CBAM) [5]in both the backbone network
and PGI auxiliary branches. The spatial attention module
of CBAM is adjusted to improve the feature extraction
capability of the backbone network. Additionally, a feature
fusion module, CK-FFM, is developed to address the issue of
inadequate feature fusion by combining feature maps from
different levels and incorporating a self-attention mechanism
within the skip connections of multi-level feature connec-
tions. This module is also integrated into the PGI auxiliary
branch. The PGI branch structure of YOLOv9 is modified
to include a feature fusion network that performs unidirec-
tional fusion of learned features. Unlike traditional models,
this paper focuses on utilizing a bidirectional feature fusion
architecture to integrate richer semantic and spatial features,
aiming to enhance the accuracy of backward gradient prop-
agation parameters and improve the learning process of the
backbone network.

II. RELATED WORK
This section provides a comprehensive review of the
existing literature on deep learning applications in clas-
sifying and detecting steel surface defects and industrial
defects.

He et al. [6] proposed an end-to-end strategy for defect
detection on steel surfaces. They introduced a multilevel
feature fusion network (MFN) to combine different hier-
archical features into a single feature. The authors also
introduced the DF-ResNeSt50 network model [7], which
incorporates the visual attention mechanism inspired by
the bionic algorithm. This model merges the feature pyra-
mid network and split-attention network, optimizing them
through techniques such as data augmentation, multi-scale
feature fusion, and network structure enhancements. These

improvements resulted in enhanced detection performance
and
efficiency.

Zou et al. [8] improved the YOLOv5 network model by
integrating an attention mechanism to identify and extract
more important features, reducing algorithm errors and
enhancing model accuracy. Lin et al. [9] utilized convo-
lutional neural networks for LED chip defect detection.
Chen et al. [10] introduced a lightweight convolutional neural
network model for wafer defect classification, incorporating
multiple 1×1 convolutional kernels to increase channel num-
bers. To reduce parameters, they included a global average
pooling layer and depthwise separable convolution. Lv and
Xu [11] integrated an SE attention mechanism into the
YOLOv5 network for improved target attention and replaced
the original SPPF module with an SPPFCSPC module to
enhance feature processing. This technical advancement sig-
nificantly enhances precise real-time detection in industrial
steel plate production.

Li et al. [12] proposed theMSFE feature extraction module
and the EFF feature fusionmodule, which leverage depthwise
separable convolution and residual structure to extract more
comprehensive features while keeping model parameters in
check. Huang et al. [13] employed theK-means++ algorithm
to re-cluster the steel dataset and generate appropriate bound-
ing boxes. They also integrated a deformable convolutional
module into the backbone network to improve feature extrac-
tion capabilities. Furthermore, the CBAMmodule was added
to dynamically extract regions of interest within the network.
The use of the Focal EIOU loss function during model train-
ing was intended to tackle imbalanced samples, although its
efficacy was somewhat limited.

Song et al. [14] proposed an improved Faster-RCNN
method that incorporates deformation convolution and
ROI alignment to detect surface defects on steel plates.
This approach notably boosts detection performance for
large-scale defects with complex and irregular shapes. Fur-
thermore, a new background suppression technique was
introduced to enhance discrimination between foreground
and background, tackling the challenge of low detection accu-
racy caused by the similarity between defect and normal areas
on steel plate surfaces. However, despite the improved detec-
tion accuracy, the utilization ofmultiple variable convolutions
resulted in a decrease in forward inference speed and an
expansion of network parameters. Imoto et al. [15] introduced
a method based on CNN and transfer learning, utilizing the
inception model for the automatic classification of defects.
The method primarily concentrates on analyzing defects to
ascertain the causes of yield reduction, drawing upon the out-
comes of defect classification. Yeung and Lam [16] proposed
a fusion attention network, in which the attention mechanism
was applied to a single balanced feature map to improve the
accuracy of the detection network and maintain the detection
speed. Kou et al. [17] designed an anchor-free network with
dense convolutional blocks for steel surface defect detection.
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III. PROPOSED METHOD
A. CK-GELAN FEATURE EXTRACTION MODULE
The CK-GELAN feature extraction module is an improved
design based on the architecture of the feature extraction
module in the YOLOv9 network. This article has made a
series of improvements to the structure of internal modules.
As the depth of the feature extraction network increases,
it becomes capable of extracting more semantic information.
However, there is a risk of losing spatial details. To address
this, widening the network alongside deepening it can aid
in capturing detailed texture features and mitigating gradi-
ent vanishing issues to some extent. It is important to note
that overly deep networks can result in a large number of
model parameters. Hence, choosing the right feature extrac-
tion module is essential. This article introduces CK-GELAN,
a novel feature extraction module inspired by the architecture
of YOLOv9’s GELAN module. CK-GELAN strikes a fine
balance between feature extraction capacity, network depth
and width, and model complexity. This enables the model to
extract comprehensive features while keeping the parameter
count in check. Additionally, the internal feature fusion and
stitching within the module help mitigate information loss
during forward propagation. Its main function is to enhance
the model’s ability to extract image features, appearing as
a feature extraction module in every part of the network.
Figure 1 illustrates the feature extraction architecture of
CK-GELAN.

Figure 1 (a) depicts the architectural design of CK-
GELAN, featuring two primary branches. The left branch
initiates with a 3 × 3 convolution operation (Convolution,
BN, and SiLU) on the input feature map for enhanced feature
extraction, doubling the channel count without downsam-
pling. Subsequently, a 1× 1 convolution reduces the channel
number. Assuming the initial input feature map F has dimen-
sions of H×W×C, post the initial convolution, F transitions
to H×W×2C. Following the 1×1 convolution, F reverts to its
original dimensions of H×W×C, ensuring effective feature
extraction while retaining control over feature map dimen-
sionality for subsequent operations. In the input feature map
F, a 3×3 convolution is initially applied for feature extraction,
altering the dimension to H×W×2C. The feature map then
progresses through a cascadedmodule comprising b1, b2, and
b3. The outcomes of thesemodules aremerged to generate the
final feature map of the right branch. Ultimately, the feature
maps from the last two branches are concatenated in the chan-
nel dimension to yield the output of a CK-GELAN feature
extraction module. The cascading module encompasses three
branches: b1, b2, and b3. Both b1 and b2 branches yield two
outputs each – one for feature addition and the other as input
for the subsequent module. The third branch, b3, generates a
single output. The resultant feature map size of the cascading
module is H×W×C. Upon concatenating the outputs of the
two branches in the channel, the output feature map size
of CK-GELAN expands to H×W×2C. The computation of
CK-GELAN is as follows:

F ′
= Concat(Conv1×1 (Conv3×3 (x)) , x1 + x2 + x3), (1)

x1 = b1(Conv3×3(x)), (2)

x2 = b2(x1), (3)

x3 = b3(x2), (4)

where x represents the input feature map F, and F ′ represents
the output result of CK-GELAN. Conv1×1 denotes a 1 × 1
convolution operation, while Conv3×3 denotes a 3 × 3 con-
volution operation. x1, x2, and x3 represent the output results
of cascade modules b1, b2, and b3, respectively, as shown
in (2), (3), and (4). b1, b2, and b3 represent the processing
of modules b1, b2, and b3, respectively. Concat represents
concatenation in the channel dimension. Convn×n contains
n×n convolution, BN, and SiLU activation functions.
Figures 1 (b), (c), and (d) illustrate schematic diagrams

of modules b1, b2, and b3, respectively. In Figure 1 (b),
F represents the input feature map. The initial convolution
module in the right branch of CK-GELAN adjusts the feature
map size to H×W×2C. Following this, the 1×1 convolution
within module b1 alters the feature map size to H×W×C.
The right branch of b1 features a structure that combines two
3×3 depthwise separable convolutions [18] and one 1×1 con-
volution. Depthwise separable convolution aids in feature
extraction, while the 1 × 1 convolution reduces the number
of channels to achieve a feature map size of H×W×C, which
is advantageous for subsequent addition operations. The use
of 1×1 convolution for channel compression ensures consis-
tency in the feature map size of internal modules, simplifying
subsequent operations. The output of b1 has two branches.
The first part will be temporarily stored for addition to the
outputs of b2 and b3. The other part serves as input for
b2. In Figure 1 (c), the input feature map F undergoes a
3×3 convolution to extract features and increase the number
of channels, resulting in a feature map dimension of H×

W×2C. The subsequent structure follows the b1module, with
the left side utilizing a 1×1 convolution to reduce the number
of channels while preserving the original features. On the
right side, a combination of 3×3 depth separable convolution
and 1 × 1 convolution is used for feature extraction and
channel control. Finally, an addition operation is performed
to generate the output of b2.

The role of b1 and b2 is for conventional feature extraction.
b2 has the same feature extraction structure as b1 after the
convolutional compression channel, and the effect of over-
laying two similar structures to extract features improves the
network. Figure 1 (d) illustrates the structural diagram of b3,
which sets itself apart from b1 and b2 by featuring three
branches to enhance the network structure and improve the
comprehensiveness of the extracted information. The input
feature map F of b3 is derived from the output of b2. F under-
goes feature extraction via a 3 × 3 convolution, followed by
channel control using a 1 × 1 convolution. The remaining
two branches utilize depthwise separable convolution and
1 × 1 convolution for feature extraction. Subsequently, the
extracted features from both branches are concatenated in the
channel dimension and added to the output of the left branch.
The resulting output feature map has dimensions H×W×C.
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Notably, the middle branch employs a 3 × 3 depth separable
convolution, while the right branch employs a 5 × 5 depth
separable convolution to expand the network’s receptive field,
integrate features from various receptive fields, and mitigate
the loss of texture features for smaller targets.

The main purpose of submodule b3 is to avoid insufficient
feature extraction for b1 and b2. At the same time, b3 also
has a 5 × 5 depth separable convolution, which appropriately
enhances the receptive field of themodel and enhances its fea-
ture extraction ability. The combination of three submodules
can effectively extract the features of images, allowing the
network to fully utilize its ability to analyze defect features.
b1, b2 and b3 are computed as:

x1 = Conv1×1
(
x ′

)
+ Conv1×1(DConv3×3(DConv3×3(x ′)),

(5)

x ′
= Conv3×3(x), (6)

x2 = Conv1×1 (Conv3×3 (x1)) + Conv1×1(DConv3×3

(DConv3×3(Conv3×3(x1)))), (7)

x3 = Conv1×1 (Conv3×3 (x2)) + Concat(Conv1×1

(DConv3×3 (DConv3×3 (x2))) ,Conv1×1(DConv5×5

(DConv5×5(x2)))), (8)

where x ′ in (5) is fed into module b1, which is defined by (6).
DConv3×3 refers to a depthwise separable convolution using
a 3×3 kernel size, and a separate instance of DConv5×5 uses
a 5 × 5 kernel size.

The feature extraction module CK-GELAN showcases
robust capabilities by incorporating three cascaded modules.
Its structured approach ensures seamless integration between
levels, minimizing the risk of information loss and lead-
ing to a more stable feature extraction process in the short
term. CK-GELAN excels in both depth and width, offering
multi-scale feature extraction that efficiently merges features
from different receptive fields, making it a superior module
for feature extraction.

B. THE IMPROVED CBAM ATTENTION MODULE IN
BACKBONE NETWORK
The accuracy of defect detection in steel data is hindered
by its low resolution. To address this issue, CBAM [5] was
incorporated into the backbone network for enhanced feature
extraction. Making appropriate adjustments to CBAM and
applying it to the backbone network of CK-NET for feature
extractionwill promote the effectiveness of steel defect detec-
tion. CBAM comprises two main components: the channel
attention module and the spatial attention module. By com-
bining spatial and channel attention mechanisms, CBAM
dynamically extracts features, directing the model’s focus to
regions of interest. This improves the network’s capability
to concentrate on crucial information, ultimately enhancing
network performance. This approach is particularly benefi-
cial for analyzing low-resolution or poor-quality images, such
as steel data, as it significantly boosts feature recognition
and prevents inadequate defect feature extraction resulting

FIGURE 1. (a) The diagram of CK-GELAN. (b) b1 in CK-GELAN. (c) b2 in
CK-GELAN. (d) b3 in CK-GELAN.

from focusing solely on a small subset of defects. Through
the sequential integration of channel and spatial attention,
CBAMhelps networks effectively prioritize essential features
and spatial regions. The channel attention mechanism and
spatial attention mechanism of CBAM are mathematically
represented in (9) and (10).

MC (F) = σ (MLP (AvgPool (F)) +MLP(MaxPool(F))),

(9)

MS
(
F ′

)
= σ (Conv7×7(AvgPool

(
F ′

)
;MaxPool(F ′))),

(10)

where F represents the input feature map, AvgPool and
MaxPool refer to mean pooling and maximum pooling,
respectively. MLP represents a basic neural network, σ

denotes the sigmoid activation function, and MC represents
the output feature map of the channel attention module.
The feature map F ′ is refined through the channel attention
mechanism. Conv7×7 denotes a convolution operation using
a 7×7 kernel, σ refers to the sigmoid activation function, and
MS represents the output of the spatial attention mechanism.

In this paper, the 7× 7 convolution kernel is replaced with
3× 3, 5× 5, and 1× 1 convolution kernels, while enhancing
the spatial attention module of CBAM. This modification
not only improves parameter efficiency and computational
performance but also enhances the model’s expressive power.
The use of smaller convolutional kernels reduces the num-
ber of parameters in each layer, allowing for the creation
of deeper and lighter networks while reducing the risk of
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overfitting. Substituting a 7 × 7 convolution kernel with
smaller ones not only reduces parameter count but also
increases network depth, enhancing its learning capacity.

Using multiple smaller convolution kernels to replace a
larger one, the most obvious feature is the addition of an
activation layer. As the activation layer increases, the model’s
ability to fit nonlinear data improves, and the accuracy of data
learning also improves.

Stacking these smaller convolutional layers enables the
network to learn more complex mappings and improve its
expressive power by applying nonlinear activation functions
after each layer. This method effectively deepens network
complexity without significantly increasing computational
costs. By utilizing smaller convolutional kernels, the net-
work can expand its receptive field while maintaining a
low parameter count, thereby improving computational effi-
ciency. This flexible approach to convolution operations
facilitates the development of network architectures with
higher computational efficiency and adaptability to various
task requirements. The use of smaller convolution kernels,
instead of larger ones, can enhance network performance
and efficiency by increasing nonlinearity, reducing parame-
ters, and improving the network’s learning capabilities. This
strategy has been widely implemented in efficient convolu-
tional network architectures like VGG [19], GoogLeNet [20],
and ResNet [21]. The improved expression for the spatial
attention module is given by (11).

MS
(
F ′

)
= σ (Conv1×1(Conv5×5(Conv3×3

(
AvgPool

(
F ′

)
;

MaxPool
(
F ′

))
))), (11)

CBAM enhances the model’s representation ability by
improving attention towards important feature channels and
spatial regions, allowing the network to extract richer and
more discriminative features. As a module, CBAM can be
seamlessly integrated into existing convolutional networks,
boosting network performance without a significant increase
in computational costs. Its adaptive adjustment of channel
and spatial weights based on input features gives CBAM
strong generalization ability and applicability. By introducing
a focused attention mechanism in critical areas of the model,
CBAM enables the network to efficiently and accurately
recognize and process important information, leading to a sig-
nificant improvement in model performance. In this article,
CBAM has been repeatedly utilized to incorporate attention
mechanisms and enhance themodel’s feature extraction capa-
bilities. The backbone network of CK-Net is illustrated in
Figure 2.

CK-GELAN4 represents the continuous stacking of four
CK-GELAN feature extraction modules. Three feature maps,
namely C1, C2, and C3, were extracted from the backbone
network of CK-Net for subsequent multi-scale feature map
detection. To enhance the network’s attention and improve
information capture on steel defects, CBAM is added before
the feature extraction module each time a multi-scale feature
map is extracted. Additionally, a deformable convolution

FIGURE 2. CK-Net’s backbone network.

FIGURE 3. The diagram of CK-FFM.

module [4] is included after the first CBAM, enhancing the
standard convolution’s capabilities by incorporating addi-
tional offsets to adapt to geometric changes in the input
feature map. This deformable convolution mechanism allows
for more flexible capture of irregular shapes and objects in
images. In this study, the use of multiple deformable con-
volution modules did not show a significant improvement
in feature extraction but rather increased the model param-
eters. However, when using a single deformable convolution
module, both the feature extraction effectiveness and model
parameter increase were found to be significant [13].

C. THE FEATURE FUSION MODULE OF CK-Net
Adding new feature fusion modules to the network can
enhance the effectiveness of feature detection. The fusion
of multi-layer features can not only preserve the original
features of the image, but also fuse the features extracted
from deep features. A novel feature fusion module has been
introduced to tackle the issue of significant information dis-
crepancy that arises from feature information loss during
extraction from the backbone network and fusion from the
feature fusion network. This module effectively combines
different sequences and improves feature fusion for subse-
quent detection tasks. Figure 3 illustrates the CK-FFM feature
fusion module proposed in this study.

CK-FFM combines feature maps from three dimensions:
the feature map from the previous layer of CK-FFM, the same
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FIGURE 4. CK-Net’s neck network.

level feature map sampled from top to bottom in the feature
fusion network, and the same level feature map in the back-
bone network. The front layer feature map and the top-down
sampled feature map are concatenated in the channel dimen-
sions and then undergo a 3×3 convolution operation to extract
features from the fused feature map. Next, a 1×1 convolution
compresses the channel dimension and fuses it with the back-
bone network feature map processed by a 3× 3 convolution,
enriching the feature map with multi-dimensional features.
Finally, the output features are obtained by reducing the
number of channels through a 1 × 1 convolution.CK-FFM
is computed as:

CK − FFM (F1,F2,F3)

= Conv1×1(Concat (Conv3×3 (F3) ,

Conv1×1 (Conv3×3 (Concat (F1,F2))))), (12)

where F1, F2, and F3 are the feature maps of the previous
layer of CK-FFM, the same level feature maps sampled from
top to bottom in the feature fusion network, and the same level
feature maps in the backbone network, respectively.

In this article, the CK-FFM feature fusion module is
utilized in the bottom-up feature fusion component of the
neck network. Figure 4 depicts a schematic diagram of the
CK-Net’s neck network.

Following the passage through the backbone network, C1,
C2, and C3 are integrated in the neck network to merge
features of different scales before being processed by the con-
ventional YOLO decoupling detection head. The network’s
skip connection structure includes a self-attentionmechanism
(SA) to blend C1, C2, and C3 within the neck network and
enhance the connection between the top-down and bottom-up
sections of the network. This self-attention mechanism aids
in maintaining information integrity and partially addresses
the issue of gradient vanishing. In the up-sampling phase
of the neck network, all components, except for the feature
extraction module, follow a structure similar to the YOLOv9
network. However, CK-Net introduces a novel feature extrac-
tion module CK-FFM and an attention mechanism (SA).
During the downstream feature fusion process, the combined
feature maps processed by CK-FFM and SA contain rich
network information, effectively extracting detailed features
of steel defects, which is advantageous for subsequent classi-
fication and localization tasks.

D. THE IMPROVED PGI AUXILIARY BRANCH
As the depth of the backbone network increases, there is a
risk of losing original information as network features evolve.
This can result in a significant deviation in loss during reverse
gradient updates, impacting network learning effectiveness.
To address this issue, YOLOv9 introduced Programmable
Gradient Information (PGI) [3]. PGI involves extracting shal-
low features from feature maps to provide accurate gradient
information for network learning, preventing bias and miti-
gating shallow feature loss. By integrating multi-scale feature
maps C1, C2, C3 with shallow features from the PGI branch,
a feature fusion network combines relevant features for detec-
tion tasks. Failure to fuse features from different scales may
lead to misclassification of large objects as background, high-
lighting the importance of incorporating multi-level features.
However, increasing the number of fused features may hin-
der the efficiency of multi-layer feature merging in the PGI
network.

The PGI auxiliary branch can help the model focus on
the region that is most likely to contain the target by
predicting candidate regions, thereby reducing unnecessary
calculations. This approach can to some extent reduce the
computational complexity of the detection model and accel-
erate the inference process. It can locate and identify target
objects more accurately through additional predictive infor-
mation. In PGI, candidate regions are first generated through
the backbone detection network. These candidate regions are
usually areas with potential targets in the image, rather than
covering the entire image.

The PGI auxiliary branch receives feature maps from the
backbone detector as input. These feature maps typically con-
tain semantic and positional information about each region in
the image. The task of PGI auxiliary branches is to further
evaluate and screen these candidate regions. It may apply
some Region Proposal Network (RPN) or similar methods
to generate confidence scores or bounding box predictions
for candidate regions. The confidence score or bounding box
prediction generated by PGI assisted branches can help the
main detector filter out areas that are unlikely to contain real
targets, thus focusing on the areas that are most likely to
contain real targets.

This filtering can reduce the number of regions for subse-
quent processing and improve the efficiency and accuracy of
the subsequent object detection module. The PGI auxiliary
branch not only accelerates the inference speed of the model
but also helps to improve the accuracy of detection by intro-
ducing additional candidate region generation and screening
mechanisms.

This article proposes enhancements to the PGI module to
improve feature fusion, as illustrated in Figure 5.

CBAM and deformable convolution are integrated into
the shallow feature extraction module of PGI to improve
feature extraction, similar to CK-Net’s backbone network.
The output from shallow feature extraction is combined with
three multi-scale features from the SA backbone network,
with the attention mechanism aiming to prevent gradient
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FIGURE 5. Improved PGI auxiliary branch.

disappearance. Following YOLOv9’s PGI approach, the
fused features undergo further extraction and fusion with
semantically strong feature maps C2 and C3. A feature fusion
module called CK-FFM is added after the original PGI mod-
ule to enhance feature fusion within the branch, inspired
by CK-Net’s neck network. The CK-FFM module adjusts
channel numbers on a mixed feature map using a 1 × 1 con-
volution, improving the mixed features of PGI. Finally, the
YOLO decoupling detection head is utilized for detecting the
mixed features, providing gradient information, and aiding
in network learning. The key enhancement in the improved
PGI is the expansion of the feature fusion component from
one branch to two branches. It is worth noting that single
branch feature fusion networks have limited fusion capabil-
ities, while dual branch feature fusion can comprehensively
merge mixed features, which is crucial for subsequent detec-
tion tasks [22].

IV. EXPERIMENTAL DATASET
The study utilizes the NEU-DET [6] dataset for detecting
defects on steel surfaces, which includes six categories: craz-
ing, inclusion, patches, pitted_surface, rolled-in_scale, and
scratches. Each category contains 300 images, making a total
of 1800 images. The dataset was divided into three subsets -
training set, validation set, and test set - in an 8:1:1 ratio.
Figure 6 displays the defect data for the six types in the
NEU-DET dataset.

Data augmentation [23] is utilized to improve the model’s
ability to learn challenging target regions. The distribution
of samples per class post data augmentation is illustrated in
Figure 7. Targeted data augmentation on challenging samples
can effectively mitigate training challenges arising from the
varying degrees of difficulty in learning samples.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EVALUATION CRITERIA
This study assesses the model performance using metrics
such as Parameters (Params), Precision (P), Recall (R), and
mAP. Parameters indicate the number of model parameters,
with a higher count leading to slower inference speed, while
fewer parameters result in faster inference speed, making the
model more lightweight. Precision reflects the accuracy of
the model’s defect classification, while Recall measures the

model’s ability to comprehensively detect defects, reducing
the chances of missed detections. The mAP value serves as
a crucial indicator for evaluating object detection model per-
formance. It represents themean average precision, balancing
Precision and Recall for each category detected by the model.
A higher mAP value indicates superior model performance.
The formulas for Precision, Recall, and mAP are as follows:

Precision =
TP

TP+ FP
, (13)

Recall =
TP

TP+ FN
, (14)

APi =

∫ 1

0
P(R)d(R), (15)

mAP =
1
N

∑N

i=1
APi. (16)

In academic research, TP stands for True Positive, where
the predicted value is 1 and the actual value is 1, indicating
a correct prediction. FP stands for False Positive, where the
predicted value is 1 but the actual value is 0, indicating an
error in prediction. FN stands for False Negative, where the
predicted value is 0 but the actual value is 1, also indicat-
ing an error in prediction. The paper calculates the Average
Precision (AP) as a comprehensive indicator of Precision
and Recall for each category, and then computes the mean
Average Precision (mAP) as the arithmetic mean of AP. The
article mentions that there are a total of six categories (N=6)
being considered.

B. COMPARATIVE EXPERIMENT
Utilizing Faster-RCNN [24], YOLOv8s [25], YOLOv9c, and
YOLOv9e [3] as comparative experimental models along-
side the CK-Net model, this study conducted comparative
experiments on the NEU-DET dataset for 300 epochs with
an input size of 640 × 640 for each image. The performance
comparison of the different models is presented in Table 1.

The comparison of various object detection models high-
lights that the Faster-RCNN with ResNet50 backbone has
the highest number of parameters, while YOLOv8s has the
fewest. YOLOv9c exhibits the lowest precision, whereas
YOLOv9e demonstrates the lowest recall. In contrast, the
CK-Net model in this study showcases superior precision and
recall. YOLOv8s surpasses Faster-RCNN by 1.6 percentage
points in mAP, despite having significantly fewer parame-
ters. YOLOv9c, with more than double the parameters of
YOLOv8s, achieves a 2.4 percentage points higher mAP. The
model parameter count of YOLOv9e is much higher than
that of YOLOv9c. Although the mAP value of the former is
slightly higher than that of the latter, the magnitude of the
change is not significant, and the recall rate of YOLOv9c is
6.3% higher than that of YOLOv9e.The findings suggest that
as models become more complex, the improvement in mAP
becomes limited, indicating a plateau in the model’s learning
capacity for steel defect data. The paper also delves into
discussions on data augmentation and structural enhance-
ments that have further boosted themodel’s learning capacity.
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FIGURE 6. Six defects of NEU-DET dataset: (a) crazing, (b) inclusion,
(c) patches, (d) pitted_surface, (e) rolled-in_scale, (f) scratches.

TABLE 1. Performance comparison of different models.

FIGURE 7. Number of samples for each category after data augmentation.

Notably, the CK-Net model achieved an impressive mAP of
92.1% on the NEU-DET dataset in this study.

Figure 8 illustrates the precision-recall curve throughout
the CK-Net training process, highlighting the variations in
precision and recall for each category over time, along with a
comparison of training outcomes across different categories.

FIGURE 8. P-R curve of CK-Net.

The model’s performance is evaluated based on a combi-
nation of precision and recall, with higher values indicating
better performance. After data augmentation on challenging
samples like crazing and pitted surfaces, CK-Net demon-
strated strong performance in both categories, achieving
AP values exceeding 90%. Among the six data categories,
the model performed least effectively in the rolled-in_scale
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TABLE 2. Results of ablation experiment.

FIGURE 9. Examples of detection for six defect categories: (a) crazing,
(b) inclusion, (c) patches, (d) pitted_surface, (e) rolled-in_scale, (f) scratches.

category, with an AP value of 87.1%. The model excelled
in the crazing category, achieving an AP value of 97.7%.
It is worth noting that only the inclusion and rolled-in scale
categories had AP values slightly below 90%, while the other
categories showed very high values. Overall, the model’s
training results were highly favorable.

C. ABLATION EXPERIMENT
A series of ablation experiments were carried out on the
baseline model YOLOv9c in this study to showcase the effi-
cacy of the model enhancements. The primary comparative
metrics assessed included the model parameters count and
mAP. The findings of the ablation experiment are detailed in
Table 2.

The reason why YOLOv9c was chosen as the baseline
model instead of YOLOv9e in this article is that although
YOLOv9e has higher model precision than YOLOv9c, its
mAP value is only 0.1% higher than YOLOv9c in the perfor-
mance of the steel defect detection dataset in this paper. At the
same time, the parameter count of YOLOv9e is much higher
than that of YOLOv9c. This article adheres to the concept of

appropriately improving the detection accuracy of the model
while minimizing the number of control model parameters,
and therefore chooses YOLOv9c as the baseline model for
this article.

Utilizing CK-GELAN as a feature extraction module
alongside YOLOv9c results in a reduction of 3.2M parame-
ters. This study integrates a significant number of depthwise
separable convolutions within CK-GELAN to replace tra-
ditional convolution operations, effectively reducing the
model’s parameter count. Moreover, there was a 1.2%
increase in mAP value, demonstrating the effectiveness of
the CK-GELAN module in feature extraction. The incorpo-
ration of an enhanced CBAM structure into the backbone
feature extraction network led to a 1.1% mAP value increase
without a substantial increase in parameters. The variable
convolution module improved the mAP value by 1.7 while
only adding 0.6M parameters, enhancing the model’s feature
extraction capabilities. The feature fusion module CK-FFM,
which includes a self-attention mechanism (SA), increased
the model parameters by 0.5M but also improved the mAP
value by 0.4%. By enhancing the PGI auxiliary branch of
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YOLOv9 and integrating superior feature extraction modules
and feature fusion networks, transitioning from unidirec-
tional to bidirectional fusion resulted in a 0.7M parameter
increase and a 0.5% mAP value improvement. Targeted data
enhancement to address the imbalance in learning difficulty
among samples significantly improved training effectiveness,
leading to an 8.3% increase in mAP value. Appropriate data
augmentation [23] methods can indeed improve the training
effectiveness of the model during training.

A series of ablation experiments have demonstrated the
effectiveness of the enhanced YOLOv9 model, CK-Net,
in detecting low-quality data such as steel. By integrating
multiple modules for feature extraction and processing, the
improved model shows superior training performance when
compared to the baseline model YOLOv9c. This highlights
the significant value of the enhanced model in the field of
industrial defect detection.

D. STEEL DATASET DETECTION RESULTS
The deep learning environment used in this article is Python
3.8, Pytorch 1.8.2+cu111, NVIDIA RTX 3070 with 8G gpu,
and Intel Core i9-9900K CPU. After completing the training
phase, testing was conducted on the test set. The test set
contains 180 images. The pre-processing of the test image
takes 0.2 milliseconds, model inference takes 27.9 millisec-
onds, and NMS takes 0.9 milliseconds on the test image with
dimension (1, 3, 640, 640).

Partial detection results are shown in Figure 9. Among
them, (a) shows the detection results for the ‘‘crazing’’ cat-
egory, (b) for the ‘‘inclusion’’ category, (c) for the ‘‘patches’’
category, (d) for the ‘‘pitted_surface’’ category, (e) for
the ‘‘rolled-in_scale’’ category, and (f) for the ‘‘scratches’’
category. As shown in the figure, various types of steel
defects have been accurately identified and classified, and
the detection effect is excellent. The detection precision of
the CK-NET model in this paper on the test dataset is 99%,
which fully proves the effectiveness of CK-NET in the task
of detecting surface defects on steel.

VI. CONCLUSION
This paper presents the design of a steel surface defect
detection network, CK-Net, based on the YOLOv9 model
architecture. The development includes a feature extrac-
tion module, CK-GELAN, that integrates multiple modules.
Additionally, an efficient feature fusion module, CK-FFM,
is introduced along with a self-attention mechanism (SA) to
enhance the fusion of network features of different scales,
ensuring spatial and semantic information richness. Minor
enhancements were made to the CBAM, which combined
with deformable convolution in the feature extraction net-
work to improve the model’s ability to learn regions of
interest and enhance feature extraction capabilities. The pro-
grammable gradient information branch (PGI) of YOLOv9
was also improved by replacing the original unidirectional
fusion branch with a bidirectional fusion branch. This further
strengthens the multi-level feature fusion capability, allowing

backpropagation gradient information to guide the back-
bone network in learning features effectively, thus avoiding
forward information loss due to network deepening and
ultimately improving network learning performance. Experi-
mental results show that the CK-Net model achieved an mAP
value of 92.1% on the steel surface defect detection dataset
NEU-DET, making significant contributions to the field of
industrial defect detection.
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