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ABSTRACT Ensuring product quality and integrity is paramount in the rapidly evolving landscape of
industrial manufacturing. Although effective to a certain degree, traditional quality control methods often fail
to meet the demands for efficiency, accuracy, and adaptability in today’s fast-paced production environments.
The advent of Deep Learning (DL) and Computer Vision (CV) technologies has opened new vistas
for automated defect detection, promising to revolutionize the way industries approach quality control
and inspection. This systematic review focuses on recent advancements in DL and CV applications for
automated defect detection in manufacturing processes. It provides a comprehensive overview of state-of-
the-art techniques for detecting, classifying, and predicting defects, highlighting the significant strides made
in addressing challenges such as varying lighting conditions, complex defect patterns, and the seamless
integration of these technologies into existing manufacturing workflows. Through a critical analysis of
current methodologies, this study identifies key areas of opportunity, outlines the challenges that persist and
suggests directions for future research. This review synthesizes findings from a broad spectrum of industrial
applications, offering insights into the potential of DL and CV to enhance quality control mechanisms.
By charting the progress and pinpointing the gaps in current practices, this paper aims to serve as a valuable
resource for researchers, practitioners, and policymakers seeking to leverage the benefits of DL and CV for
improved product management and manufacturing excellence.

INDEX TERMS Automated defect detection, industrial automation, manufacturing quality control, deep
learning, computer vision, pattern recognition.

I. INTRODUCTION

Quality control remains a cornerstone in manufacturing,
ensuring that products meet rigorous quality and reliability
standards. Traditional quality control methods rely heavily
on manual inspection and simple automated systems, which
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are time-consuming, prone to human error, and often lack the
precision to detect complex defects [1]. The significance of
quality control cannot be overstated, as it directly impacts
product reliability, customer satisfaction, and the overall
efficiency of manufacturing processes. The advent of Deep
Learning (DL) and Computer Vision (CV) technologies has
marked a paradigm shift in how industries approach defect
detection and quality control [2].
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Quality control in manufacturing encompasses activities
and procedures to ensure that products meet specified
quality criteria and satisfy customer expectations. This is
a critical component of the manufacturing process that
influences product quality and efficiency. Traditional quality
control methods, including human visual inspections and
simple automated systems, have been integral to maintaining
standards. However, these methods often fall short in
today’s complex manufacturing environments, where the
diversity of products and the intricacies of defects require
more sophisticated detection techniques. The limitations of
traditional quality control methods, such as their labor-
intensive nature, subjectivity, and inability to detect subtle
or complex defects, underscore the need for advanced and
reliable solutions.

Deep Learning and Computer Vision represent the fore-
front of technological advancements in industrial applica-
tions, offering unprecedented capabilities in automating and
enhancing quality control processes [3], [4]. DL, a subset
of machine learning, utilizes neural networks with multiple
layers (deep networks) to learn from vast amounts of data,
thereby enabling the automatic detection and classification
of defects with high accuracy [5]. However, Computer
Vision allows machines to interpret and understand visual
information from the world, making it possible to identify,
locate, and classify defects in manufacturing products by
analyzing images and videos [6]. Integrating DL and CV
into industrial applications has led to the development of
sophisticated automated defect detection systems [7]. These
systems can overcome many limitations associated with
traditional quality control methods, offering advantages such
as improved detection accuracy, learning from new data,
and handling of complex defect patterns under varying
conditions.

This systematic review explores the recent advancements
in DL and CV technologies for automated defect detection in
manufacturing processes. Table 1 compares our findings with
those of existing surveys relevant to this field. The objectives
are to:

o Provide a comprehensive overview of DL and CV
techniques applied in defect detection and quality
control, highlighting their strengths and limitations.

o Review state-of-the-art methodologies for detecting,
classifying, and predicting manufacturing defects,
focusing on challenges such as varying lighting
conditions, complex defect patterns, and integration
with existing manufacturing workflows.

o Identify gaps in current research and suggest directions
for future studies to advance the automated defect
detection domain.

Moreover, the scope of this review encompasses a broad
range of DL and CV applications in various manufacturing
sectors, including the automotive, electronics, and aerospace
industries. Section II describes the methodology used in this
systematic review. Section III examines various application
domains of enhanced quality control in the manufacturing
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process. Section IV discusses the preprocessing techniques
and algorithms used in the manufacturing process. Section V
reviews recent advancements highlighted in the state-of-
the-art literature. Section VI discusses the emerging trends
and future directions in the field. Section VII identifies
the ongoing challenges and limitations of the current study.
Finally, Section VIII concludes the paper.

Il. METHODOLOGY

This section outlines the systematic methodology employed
in this review to collate, analyze, and synthesize the literature
on advancements in automated defect detection using Deep
Learning and Computer Vision techniques for quality control
in manufacturing processes.

Methodology
ing.

Applications in Various

Section 2
Section 3

Conclusion

Section 6

Section 4

Section 5

Limitations and Future

FIGURE 1. The structure of the paper.

A. CRITERIA FOR SELECTING LITERATURE

1) DATABASES SEARCHED

A literature search was carried out in several scientific
databases and digital libraries, including IEEE Xplore,
ScienceDirect, SpringerLink, and Google Scholar. These
platforms were chosen for their comprehensive coverage
of peer-reviewed articles, conference proceedings, and
computer science, engineering, and industrial application
journals.

2) KEYWORDS USED

A combination of keywords and phrases was used to ensure
a comprehensive search. These included “‘automated defect
detection,” ‘“‘deep learning in manufacturing,” ‘‘computer
vision quality control,” “DL and CV in industrial applica-
tions,” ‘“‘defect classification using machine learning,” and
“automated inspection systems.” Boolean operators (AND
and, OR) were employed to refine the search results.

3) INCLUSION/EXCLUSION CRITERIA

The survey utilized essential resources obtained in accor-
dance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines [13],
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TABLE 1. Comparative performance and limitations of existing DL and CV based enhanced quality control in manufacturing process survey papers.

Ref Applications  Pre-processing

Techniques

Algorithms

Recent
Works

Challenge Limitation
& Future

Direction

Jha et v X v X
al. [8]

v The study lacks a detailed discussion on spe-
cific pre-processing techniques, and although it
includes result analysis, it does not cover recent
state-of-the-art developments in the field.

Tercan v v v X
et al

[9]

v The study does not provide a broad discussion
on specific application areas within manufactur-
ing, nor does it extensively cover pre-processing
techniques crucial for data preparation. Further-
more, the paper lacks a broad analysis of DL
& ML algorithms and does not include a recent
state-of-the-art work analysis, which is essential
for benchmarking and understanding current ad-
vancements in the field.

et al
[10]

v The study does not detail the pre-processing tech-
niques used to prepare the data for optimal model
performance. Although it provides an analysis of
different models, it lacks a thorough review of
recent state-of-the-art works.

Nasir v X v X
et al

[11]

v The study does not provide detailed information
on the pre-processing techniques used for data
preparation and lacks an in-depth analysis of
recent state-of-the-art advancements.

Wang v X v X
et al
[12]

v The study primarily include the lack of a broad
discussion on the application areas and pre-
processing techniques for deep learning in man-
ufacturing. Furthermore, the study does not
include any analysis of recent state-of-the-art
works, which could have provided insights into
current advancements and benchmarks in the
field.

This v v v v

Study

v -

TABLE 2. Criteria for selecting literature.

Inclusion Criteria

Exclusion Criteria

Papers published in the last five years

Papers not directly related to manufacturing processes

Studies addressing DL and CV in defect detection

Studies focusing on theoretical aspects without practical applications

Articles providing empirical evidence of effectiveness

Articles that were not peer-reviewed

Works available in English

Studies not available in English

Research focusing on a variety of manufacturing sectors

Papers with a narrow focus not applicable to broader manufacturing
contexts

Studies including comparisons with traditional methods

Literature lacking comparative analysis with existing methods

Articles detailing integration strategies for DL and CV technologies
into existing workflows

Papers overlooking the integration challenges of new technologies

Research presenting scalable DL and CV solutions

Studies not addressing scalability and real-world applicability

Articles with a clear methodology and result section

Works with vague methodologies or inconclusive results

as illustrated in figure 2. Specific inclusion and exclusion
criteria governed the selection of the literature to ensure
relevance and quality. The selection criteria are presented in
Table 2 presents.

B. OVERVIEW OF THE SYSTEMATIC REVIEW PROCESS

The systematic review process followed predefined steps
to ensure the comprehensiveness and reproducibility of the
results. Initially, a broad search was conducted using the
defined keywords across the selected databases. The search
results were then screened based on titles and abstracts
to exclude irrelevant papers. The remaining articles were
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subjected to a full-text review to assess suitability based
on the inclusion and exclusion criteria. References of the
selected articles were also scanned to identify additional
relevant studies that might have been missed in the initial
search.

C. DATA EXTRACTION AND ANALYSIS METHODS

1) DATA EXTRACTION

For each selected article, data were extracted on key aspects
such as the authors, year of publication, study objectives,
methodologies employed (specific DL and CV techniques),
findings, and any noted challenges or limitations. This
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information was catalogued in a structured format to facilitate
analysis.

2) ANALYSIS METHODS

The extracted data were analyzed using a qualitative
approach. This study aimed to identify common themes,
patterns, and trends in the selected literature. This included
categorizing studies based on the types of manufacturing
processes examined, specific DL and CV techniques applied,
and outcomes achieved. The analysis also evaluated the
challenges and limitations associated with these technologies
in the context of industrial defect detection.

A critical review was conducted to assess the method-
ological quality of the studies, their applicability to different
manufacturing sectors, and the robustness of the evidence
provided. This comprehensive analysis allowed for the
identification of gaps in the current literature and formulation
of recommendations for future research in the field of
automated defect detection using DL and CV.

Identification of studies via databases

Article collected using
bibliographic databases

(678)
Excluded Article published before 2020
(223)
Article published
between 2020-2024
(455)
Excluded Article excluded after title and
abstract screening (175)
Article published in the
related field (280)
Excluded Articles excluded with reasons:
XA Not in the scope (76)
Duplicate (21)
Thoroughly scanned
article (183)
Excluded Articles excluded for
incomplete information (96)

Selected article for
survey (87)

FIGURE 2. PRISMA flow diagram of paper selection process for the
state-of-the-art works.

Ill. APPLICATIONS AND CASE STUDIES

Integrating Deep Learning and Computer Vision technologies
has significantly enhanced quality control capabilities across
various manufacturing sectors. This section explores their
applications in the automotive, electronics, textiles, and
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agriculture sectors, showcasing the breadth of their impact
and potential for further advancements.

A. AUTOMOTIVE MANUFACTURING

The automotive sector is at the forefront of adopting advanced
technologies to improve quality control and manufacturing
efficiency. Deep Learning and Computer Vision technologies
have become pivotal in transforming traditional inspection
processes, offering unprecedented accuracy and speed in
detecting defects and ensuring the production of high-quality
vehicles. This section discusses the specific applications,
benefits, and advancements of DL and CV in automotive
manufacturing, underlining their critical role in the evolution
of the industry.

1) CASE STUDIES: AUTOMATED VISUAL INSPECTION
SYSTEMS

Automated visual inspection systems powered by DL and
CV, are designed to identify defects that are challenging
for human inspectors to detect because of their small size
or complex nature. These systems are employed at various
stages of the automotive production process, from the
inspection of incoming raw materials to the final assembly
check. For instance, Wang and Gan [14] introduced a novel
2D-3D computer vision approach that leverages transfer
learning for both the 3D reconstruction and visual inspection
of buildings. This methodology demonstrates the versatility
of DL and CV technologies beyond traditional manufacturing
contexts. Specifically, in the automotive production process,
DL algorithms play a crucial role in inspecting metal surfaces
for imperfections, such as scratches or inconsistencies in
paintwork, thereby ensuring that the final products adhere
to the highest quality standards. Extending the application
of these technologies, Yu et al. [15] presented an innovative
corrosion detection system optimized for Micro Aerial
Vehicles (MAVs). This system, named AMCD, underscores
the adaptability of DL-based solutions to various inspection
tasks and environments. From these examples, it is evident
that automated visual inspection systems, powered by DL
and CV, are instrumental in enhancing quality control
measures across different stages of manufacturing, offering
unparalleled precision and efficiency.

2) CASE STUDIES: DEFECT DETECTION IN ENGINE
COMPONENTS

Engine components, which are crucial for the vehi-
cle’s performance and safety, undergo rigorous inspection.
CV technologies facilitate the detection of casting defects,
irregularities in machining, and assembly issues in compo-
nents such as, pistons, cylinders, and crankshafts. To address
the challenges of defect detection, Li et al. [16] intro-
duced an enhanced YOLOVS algorithm, DDSC-YOLOVS5s,
specifically designed for pinpointing defects in aero-engine
blades and vanes. This approach represents a significant
step forward in applying DL for the precise inspection of
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complex engine parts. Building on the integration of DL
in inspection processes, Upadhyay et al. [17] developed an
innovative automated framework for borescope inspections
of aircraft engines. Their method combines deep learning
with traditional computer vision techniques to offer a
more comprehensive and accurate defect detection solution.
Further contributing to the field, Wang et al. [18] proposed
a novel detection framework, DBFF-YOLOv4, which lever-
ages deep learning for radiographic testing of aeroengine
turbine blades. This framework underscores the potential of
DL models in enhancing the reliability of defect detection in
critical engine components. DL models trained on thousands
of images of defective and non-defective components can
accurately identify potential failures, significantly reducing
the risk of engine malfunctions. Building on this progress,
Keshun et al. [19] proposed a novel hybrid model combining a
Quadratic Neural Network (QNN) with a Bidirectional Long
Short-Term Memory (Bi-LSTM) network. This model aims
to improve the efficiency and interpretability of rolling bear-
ing fault diagnosis in rotating machinery, leveraging QNN
for multilayer feature extraction and Bi-LSTM for capturing
the dynamic evolution of signals. The approach enhances
fault diagnosis accuracy and speed while providing better
interpretability through visualization techniques. In another
study, Keshun et al. [20] proposed a deep learning-based
probabilistic prediction model for estimating the remaining
useful life (RUL) of machinery and equipment. The model
aims to address the limitations of traditional RUL prediction
methods by introducing a flexible prior distribution and
a strategy for sequential optimization of hyperparameters.
They used a modified ResNet architecture to improve the
prediction performance, incorporating techniques to handle
uncertainty and variability in real-world data. The model
demonstrated superior prediction accuracy and robustness
compared to traditional methods, specifically validated on the
C-MAPSS dataset for turbofan engines.

3) CASE STUDIES: WELDING QUALITY ASSESSMENT

Welding is a fundamental process in automotive manu-
facturing that, requires precision and consistency. DL and
CV systems were used to assess the quality of welding
seams, identifying discontinuities, and predicting potential
weak points in the structure of the vehicle. For instance,
El Hachem et al. [21] introduced an innovative automated
approach tailored for inspecting welding seams in the auto-
motive sector, leveraging deep learning to enhance inspection
accuracy and efficiency. Building on this, Miao et al. [22]
developed a two-stage convolutional neural network (CNN)
based method specifically designed for the online inspection
of narrow overlap weld quality. This method exemplifies
the application of DL in facilitating real-time evaluations
of welding processes. Moreover, Wang et al. [23] proposed
an advanced model based on an enhanced Faster R-CNN,
integrating a Feature Pyramid Network (FPN), variable
convolution, and a background suppression function to
detect weld defects with higher precision. This approach
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underscores the potential of DL and CV in identifying
intricate welding flaws that might compromise structural
safety. Through these technological advancements, DL and
CV systems enable continuous monitoring of the welding
process, allowing for immediate adjustments and signifi-
cantly reducing the likelihood of structural defects. This
real-time feedback loop is instrumental in maintaining the
high quality and safety standards required in automotive
manufacturing.

B. ELECTRONICS MANUFACTURING

The electronics manufacturing industry, characterized by its
intricate components and need for precision, has embraced
Deep Learning and Computer Vision technologies to enhance
quality control and efficiency [24], [25], [26]. This section
outlines the advancements and specific applications of
DL and CV in detecting defects, ensuring reliability, and
maintaining high standards for electronics production.

1) CASE STUDIES: INSPECTION OF PRINTED CIRCUIT
BOARDS (PCBs)

One of the critical applications of DL and CV in electronics
manufacturing is the inspection of printed circuit boards
(PCBs). These technologies enable the detection of many
defects, such as missing components, soldering errors,
and incorrect component placement, with unprecedented
accuracy and speed. For example, Lian et al. [27] developed
an automated visual inspection system specifically for PCBs,
employing an enhanced Mask R-CNN framework designed
for smart city applications. This system demonstrates the
adaptability of DL and CV in addressing complex inspection
tasks in urban infrastructure. Furthermore, Kim et al. [28]
introduced a novel PCB defect detection system that
utilized a skip-connected convolutional autoencoder. This
approach shows the effectiveness of DL in extracting and
learning from intricate patterns in PCB imagery. In addition,
Pham et al. [29] proposed a semi-supervised learning model,
PCB_SS and a fully supervised model, PCB_FS, which
leveraged both labeled and unlabeled images for defect
detection. This method highlights the potential of using
extensive datasets, including unlabeled images, to train DL
algorithms for more precise inspection outcomes. Through
these advancements, DL algorithms have become adept at
identifying even the subtlest deviations from standard PCB
designs. This ensures that every board adheres to stringent
quality standards before assembly, significantly enhancing
the reliability and performance of electronic products.

2) CASE STUDIES: SEMICONDUCTOR WAFER DEFECT
DETECTION

Semiconductor wafers are fundamental to electronic devices,
and defect-free production is crucial. DL and CV tech-
nologies have been instrumental in identifying defects
at the micron level, including scratches, contamination,
and pattern irregularities. Wang et al. [30] introduced the
Knowledge Augmented Broad Learning System (KABLS),
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a novel approach for identifying mixed-type defects in semi-
conductor wafer manufacturing. This system exemplifies
the integration of domain knowledge into DL frameworks
to enhance defect detection capabilities. To address the
challenges specific to semiconductor packaging processes,
Kim et al. [31] developed a framework that employs a
modified Xception deep learning model to scrutinize defects
in the wafer buffer zone. This methodology demonstrates the
adaptability of DL models to various stages of semiconductor
production. To further refine defect detection strategies,
de la Rosa et al. [32] proposed a two-stage approach that
merges CV techniques with a lightweight SqueezeNet CNN.
This combination provides a balance between the detection
accuracy and computational efficiency, which is crucial for
inline inspection systems. Complementing these approaches,
Limam et al. [33] explored the use of various CNN architec-
tures, including VGG, ResNet, and DenseNet, to automate
inline defect detection. By analyzing high-resolution images
of wafers during fabrication, DL. models offer unparalleled
precision in identifying defects, significantly mitigating the
risk of semiconductor failures in the final electronic products,
thereby upholding the integrity of countless devices that rely
on these fundamental components.

3) CASE STUDIES: ENHANCING SURFACE MOUNT
TECHNOLOGY PROCESS

Surface Mount Technology (SMT) processes benefit sig-
nificantly from implementing DL and CV systems. These
technologies automate the inspection of SMT lines, ensuring
the correct component placement, orientation, and solder
paste application. For instance, Zhang et al. [34] introduced
the ResNet-34-ECA model, specifically designed to classify
welding image defects in SMT. By incorporating data
augmentation and the Efficient Channel Attention (ECA)
mechanism, this model achieves enhanced defect detection
accuracy. Building on the theme of optimizing SMT inspec-
tions, Wu et al. [35] developed PCBNet, a tailored lightweight
Convolutional Neural Network that focuses on defect inspec-
tion within SMT processes. Additionally, Dlamini et al. [36]
proposed a novel automatic defect detection system for SMT,
utilizing the MobileNetV2 architecture combined with a
Feature Pyramid Network (FPN). This system is optimized
for real-time identification of mounted devices on Printed
Circuit Boards (PCB), showcasing the adaptability of DL
models to the needs of high-speed production lines. The
ability of DL models to learn from vast amounts of data
and improve over time has reduced the SMT-related defects.
This evolution not only optimizes the assembly process but
also enhances the production yield, underscoring the pivotal
role of DL and CV technologies in advancing manufacturing
efficiencies.

C. TEXTILE MANUFACTURING

The textile manufacturing sector is witnessing a transforma-
tive era by integrating deep learning and computer vision
technologies to elevate fabric quality control and inspection
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processes. This section discusses the application of these
technologies for defect detection in textiles and demonstrates
their potential to revolutionize the industry.

1) CASE STUDIES: AUTOMATED FABRIC INSPECTION
SYSTEMS

Automated fabric inspection systems equipped with DL and
CV technologies have significantly improved the detection
of fabric defects, such as stains, tears, misweaves, and
needle holes. These systems analyze images of fabrics in
real time, identifying nearly invisible defects to the human
eye. For instance, Jing et al. [37] introduced Mobile-Unet,
an efficient convolutional neural network model specifically
tailored for fabric defect detection. This model demonstrates
the adaptability of CNNs to the complex patterns and textures
inherent in fabrics. Further advancing fabric inspection,
Hu et al. [38] presented an unsupervised method using
an enhanced DCGAN. By incorporating an encoder into
the traditional architecture, their approach offers a novel
perspective on detecting fabric defects without needing
labeled data. Additionally, Cheng et al. [39] proposed
SCUNet, a lightweight semantic segmentation network
designed to improve defect detection precision, particularly
for small defects that pose significant challenges in traditional
inspection systems. Convolutional Neural Networks, a cor-
nerstone of DL technologies, have proven highly effective
in recognizing complex fabric patterns and distinguishing
genuine defects from normal variations in texture. This
capability ensures that automated inspection systems can
maintain high fabric quality standards, minimizing defects
and enhancing the overall production yield.

2) CASE STUDIES: PATTERN RECOGNITION AND
CLASSIFICATION

DL models excel in pattern recognition, enabling them to
classify fabric defects based on their characteristics, such
as shape, size, and severity. This classification is crucial
for decision-making processes in textile manufacturing, as it
helps determine whether a piece of fabric can be corrected,
discarded, or used for lower-quality products. Zhao et al. [40]
took this a step further by proposing a VLSTM based
integrated CNN model, specifically designed to enhance
fabric defect classification. This approach illustrates the
potential of combining temporal sequence learning with
convolutional neural networks to improve classification
accuracy. In parallel, Igbal Hussain et al. [41] leveraged
the powerful ResNet-50 architecture to develop a deep
learning model tailored for classifying and recognizing
woven fabrics. Their use of data augmentation and transfer
learning showcases the adaptability of DL models to the
nuanced requirements of fabric pattern analysis. Comple-
menting DL’s capabilities, CV technologies play a crucial
role by capturing high-resolution images of fabrics. These
images serve as the foundational data for DL models,
facilitating the precise identification and classification of
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defects, thereby streamlining the quality assurance process in
textile manufacturing.

3) CASE STUDIES: COLOR CONSISTENCY AND DYEING
QUALITY CONTROL

Ensuring colour consistency and quality in the dyeing process
is another area where DL and CV technologies significantly
impact. These technologies can detect uneven dyeing, colour
bleeding, and other dye-related defects by analysing fabric
images’ colour distribution and saturation. For example,
Zhang et al. [42] introduced a novel approach to this
challenge by proposing an unsupervised learning method
utilizing a U-shaped de-noising convolutional auto-encoder
(UDCAE). This method, specifically designed for yarn-
dyed fabrics, showcases the potential of DL in enhancing
the accuracy of defect detection through advanced image
analysis techniques. Beyond defect detection, advanced
DL algorithms can predict how different fabric types will
respond to dyes. This predictive insight allows for preemptive
adjustments in the dyeing process, aiming to achieve the
desired color quality and consistency across various textiles.
Integrating DL and CV into the dyeing quality control process
not only enhances the detection of color irregularities but also
paves the way for a more informed and adaptable dyeing
methodology. This ensures that each piece of fabric not
only meets the rigorous standards of color quality but also
contributes to the overall aesthetic and durability of the final
product.

D. AGRICULTURE MANUFACTURING

Integrating Deep Learning and Computer Vision tech-
nologies into agricultural manufacturing processes marks
a transformative shift towards precision agriculture and
automated farm management. These advancements offer
promising solutions to the agricultural sector’s most pressing
challenges, including crop monitoring, disease detection, and
yield prediction, enhancing productivity, sustainability, and
resource efficiency.

1) CASE STUDIES: CROP MONITORING AND HEALTH
ASSESSMENT

One of the primary applications of DL and CV in agriculture
manufacturing is crop monitoring and health assessment.
High-resolution images captured by drones or satellites are
processed using convolutional neural networks to monitor
crop health and growth stages and detect signs of stress or
disease. Xiao et al. [43] introduced UAV-Net, a DL-based
spatiotemporal fusion (STF) model that enhances crop
monitoring precision by generating high-resolution images
through the fusion of UAV and satellite data. This model
exemplifies the potential of integrating multiple data sources
for comprehensive crop surveillance. Expanding on the theme
of early detection, Khan et al. [44] developed a robust model
employing a Long Short-Term Memory (LSTM) network.
This model is tailored for the early identification of staple
crops like rice, wheat, and sugarcane in smallholder farms,
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utilizing time-series Sentinel-2 satellite imagery to facilitate
timely agricultural decisions. Moreover, Blekanov et al. [45]
presented an innovative approach for assessing the nitrogen
status of grain crops using UAV multispectral imagery
combined with DL techniques. Their focus on U-Net-based
neural network architectures underscores the adaptability of
DL models to various aspects of crop health monitoring. The
capability of DL and CV systems to provide real-time insights
into crop conditions enables the early detection of potential
issues, allowing for prompt intervention. This proactive
approach significantly reduces the risk of substantial yield
loss, underscoring the critical role of these technologies in
modern agricultural practices.

2) CASE STUDIES: PRECISION ARGICULTURE

Precision agriculture leverages DL and CV to optimize
farming practices based on the analysis of field data. This
approach includes the precise application of water, pesticides,
and fertilizers tailored to the specific needs of individual
plants or field zones. DL algorithms can map field variability
by analyzing CV-equipped sensors and aerial imagery data,
enabling farmers to implement site-specific crop manage-
ment practices. Such precision enhances crop yields and
minimizes environmental impact by reducing the overuse of
agricultural inputs. In this context, Cama-Pinto et al. [46]
developed a DL model tailored to improve the performance
of wireless sensor networks in greenhouses, addressing the
challenge of vegetation interference. This study highlights
the critical role of reliable data acquisition in implementing
precision agriculture practices effectively. Further advanc-
ing precision agriculture, Kumar et al. [47] introduced
a multiparameter optimization system that employs Deep
Convolutional Neural Networks (DCNN) to refine irriga-
tion planning and scheduling. By providing accurate soil
moisture estimations, this system exemplifies the potential
of DL in enhancing resource-use efficiency. Additionally,
Banerjee et al. [48] explored the application of hybrid deep
learning models in classifying banana leaf diseases. Combin-
ing CNN with SVM offers a novel approach to plant health
management, further contributing to the precision agriculture
paradigm. By integrating DL and CV technologies, precision
agriculture is setting new standards in farming practices.
By enabling site-specific crop management based on detailed
field data analysis, these technologies pave the way for
sustainable agricultural development, optimizing input use
and maximizing productivity.

3) CASE STUDIES: AUTOMATED WEED CONTROL

Weed control is a labor-intensive task that significantly
impacts agricultural productivity and costs. DL and CV
technologies offer a solution through the development of
automated weed detection and removal systems. These
systems utilize image recognition algorithms to distinguish
between crops and weeds, enabling the precise targeting
of weeds with herbicides or mechanical removal meth-
ods. This selective approach reduces herbicide usage and
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preserves the surrounding crop, leading to healthier fields and
reduced costs. For example, Moazzam et al. [49] introduced
an automated two-stage semantic segmentation approach
specifically designed to improve the precision of identifying
tobacco plants and weeds in aerial images. This advancement
demonstrates the potential of DL in enhancing the accuracy
of aerial weed detection. Building on this, Ong et al. [50]
explored the use of Convolutional Neural Network clas-
sifiers in conjunction with UAV imagery to detect weeds
amidst Chinese cabbage crops. Their research highlights
the integration of aerial imaging with DL classifiers to
refine weed detection in specific crop fields. Furthermore,
Tummapudi et al. [S1] proposed a novel system that not only
detects weeds using deep learning-based object detection
algorithms but also incorporates a robotic arm for their
physical removal. This system exemplifies the combination
of DL with robotics to offer a comprehensive solution for
weed management in agriculture. By enabling the precise
targeting of weeds, DL and CV technologies reduce herbicide
usage and preserve crop health, leading to more sustainable
agricultural practices. The development of such automated
systems marks a significant stride towards achieving healthier
fields and reducing operational costs in agriculture.

4) CASE STUDIES: YIELD PREDICTION AND QUALITY
ASSESSMENT

Yield prediction and quality assessment are critical for
efficient agricultural manufacturing. DL models analyze crop
visual data to estimate yield and assess product quality.
This information is invaluable for planning and optimizing
the supply chain, from harvest to market. Moreover, quality
assessment models can classify agricultural products based
on size, colour, and other quality markers, ensuring that
only the highest quality produce reaches the market. Such
technologies improve market competitiveness and reduce
waste by identifying suboptimal products early in the supply
chain. Hyper3DNetReg, introduced by Morales et al. [52],
is a cutting-edge CNN architecture designed specifically for
accurate winter wheat yield predictions, illustrating DL’s
pivotal role in agricultural resource management and strategic
planning. In another study, Tanabe et al. [53] investigated
the utility of CNNs for predicting yields through UAV-based
multispectral imagery, highlighting DL’s transformative
potential in enhancing agricultural practices. Additionally,
Gururaj et al. [54] created a novel grading system for
mangoes that utilizes a synergy of Computer Vision, Deep
Learning, and Image Processing techniques. This system
aims to automate the mango grading process, making it
more efficient and less dependent on manual labor. These
innovations emphasize the significant impact of DL and CV
technologies in refining yield predictions and quality assess-
ments. By facilitating targeted agricultural interventions,
these technologies improve crop yields, superior product
quality, and heightened efficiency in agricultural production
and distribution processes.
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In conclusion, applying DL and CV in agricultural
manufacturing is set to revolutionize the sector by enhancing
productivity, sustainability, and resource efficiency. As these
technologies continue to evolve, their integration into agricul-
tural practices will likely become more widespread, offering
innovative solutions to the challenges of modern agriculture.

E. ADDITIONAL SECTORS

Applying Deep Learning and Computer Vision technolo-
gies transcends traditional manufacturing domains, offering
groundbreaking aerospace, pharmaceuticals, and construc-
tion materials solutions. This diversity not only underscores
the versatility of DL and CV but also highlights their
potential to address quality control challenges across various
industries.

1) CASE STUDIES: AEROSPACE MANUFACTURING

In aerospace manufacturing, the stakes for quality and
precision are exceptionally high, given the critical nature of
components and assemblies. DL and CV technologies are
instrumental in ensuring the integrity of parts ranging from
turbine blades to fuselage panels. For example, CV systems
can detect micro-cracks and corrosion in aircraft components
that are difficult for human inspectors to identify. Similarly,
DL algorithms are used to analyze X-ray and ultrasound
images for internal defects, contributing to the safety
and reliability of aerospace components. In this context,
Dharmadhikari and Basak [55] delved into the efficacy
of two deep neural network (DNN) models specialized in
detecting fatigue damage within aerospace-grade aluminum
alloys, utilizing ultrasonic testing data. Complementing this
approach, Le et al. [56] unveiled a novel nondestructive
ultrasonic testing technique powered by a spiking neural
network (SNN). This method is particularly designed for
pinpointing corrosion in aircraft rivets, showcasing the poten-
tial of advanced neural networks in enhancing aerospace
component inspections. These advancements underscore
the transformative impact of DL and CV in aerospace
manufacturing, where they significantly contribute to the
meticulous inspection processes required to ensure the safety
and reliability of aircraft components.

2) CASE STUDIES: PHARMACEUTICAL INDUSTRY

The pharmaceutical sector benefits immensely from DL
and CV in ensuring the safety and efficacy of medications.
These technologies are applied in inspecting tablets for
correct shape, size, and colour and identifying any physical
imperfections that could indicate processing errors. Delving
into tablet inspection, Quan et al. [57] unveiled an end-
to-end deep learning framework that utilizes ResNet and
DenseNet models for the automated detection of defective
tablets within pharmaceutical production lines. This innova-
tion demonstrates how DL can enhance quality control in
medication manufacturing. Adding to the advancements in
this field, Ficzere et al. [58] introduced a cutting-edge Process
Analytical Technology (PAT) system. This system melds
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machine vision with deep learning to offer real-time analysis,
classifying tablet coating defects and assessing the thickness
of the film coating, thereby ensuring the efficacy and safety of
the medication. Moreover, CV systems ensure the integrity of
packaging, verifying seal tightness, labeling accuracy, and the
presence of safety information. Such meticulous inspection
processes are vital in maintaining the trust and health of
consumers.

3) CASE STUDIES: CONSTRUCTION MATERIALS

In the construction industry, where a wide array of materials
is utilized, Deep Learning and Computer Vision are essential
in ensuring the quality and integrity of concrete, steel,
and wood. For concrete, CV-based systems are deployed
to evaluate the surface texture and structural integrity,
identifying potential issues such as cracks or early signs
of degradation. To address concrete assessments, Lax-
man et al. [59] developed an automated system dedicated to
the detection and depth estimation of cracks in reinforced
concrete structures, leveraging the capabilities of DL for
enhanced precision. Similarly, Tabernik et al. [60] crafted
SegDecNet++, an innovative DL model for concrete crack
detection that uniquely combines pixel-wise segmentation
with image-wise classification for comprehensive analysis.
Turning to steel, DL models are adept at spotting surface
flaws and inconsistencies that might affect the material’s
structural reliability. Li et al. [61] unveiled a DL model
specifically for steel surface defect detection, incorporating
a Multiscale Feature Extraction (MSFE) module that utilizes
various convolutional kernel sizes for superior feature
extraction across different scales. Demir et al. [62] introduced
PAR-CNN, a model that enhances defect detection in steel
production by integrating parallel training of residual blocks
with attention mechanisms for refined classification of
surface imperfections. In wood manufacturing, CV technolo-
gies are employed to examine grain patterns and identify
defects such as knots and splits, critical for ensuring both
the material’s aesthetic appeal and structural soundness.
Lim et al. [63] proposed a compact and efficient CNN
model tailored for near real-time wood defect detection,
designed to operate on embedded processors. Extending
the advancements in wood inspection, Cui et al. [64]
introduced CCG-YOLOvV7, a model that enhances defect
detection on wood floors by integrating novel features such as
Center Efficient Layer Aggregation Networks (C-ELAN) and
Cascade Center of Gravity Batch Norm (CCG-BN), along
with a simplified head module for improved performance.
These examples highlight the significant contributions of DL
and CV in advancing the construction industry’s material
quality assurance, showcasing the technologies’ pivotal roles
in maintaining high standards across various construction
materials.

IV. AUTOMATED DEFECT DETECTION TECHNIQUES
The advent of Deep Learning and Computer Vision technolo-
gies has significantly advanced automated defect detection
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across various manufacturing sectors. These technologies
enhance the accuracy and efficiency of quality control
processes, utilizing sophisticated algorithms to identify
defects that may be invisible to the human eye. This section
is divided into two subsections, detailing the critical stages
in the automated defect detection pipeline: image acquisition
and preprocessing techniques, followed by an in-depth explo-
ration of defect detection methods, including supervised,
unsupervised, and semi-supervised learning approaches.

A. IMAGE ACQUISITION AND PREPROCESSING
TECHNIQUES

The first step in automated defect detection involves cap-
turing high-quality images of the product or material under
inspection. This process utilizes specialized cameras and
sensors, including digital cameras for visible light imaging,
infrared cameras for thermal imaging, and hyperspectral
cameras for capturing images across multiple wavelengths.
The choice of imaging technology depends on the nature
of the defects to be detected and the material properties.
Once images are acquired, they undergo preprocessing to
enhance their quality and facilitate defect detection. Common
preprocessing techniques include:

1) NORMALIZATION

Normalization adjusts the pixel intensity values of an image
to a specific range to ensure consistent input for neural
networks.

Mathematically, if I represents the original image and
I’ represents the normalized image, normalization can be
defined as:

/= I— min({) 0
max(/) — min(/)

In this equation, min(/) and max(/) represent the minimum
and maximum intensity values in the original image, respec-
tively. This transformation scales the intensity values to lie
within a predictable range, which is particularly beneficial for
neural network models. In the context of surface defect detec-
tion in pharmaceutical products, Racki et al. [65] developed
a compact deep learning model leveraging convolutional
neural networks. A notable aspect of their methodology
is incorporating ReLU activation and batch normalization
after each convolutional layer, which relies on normalization
principles to ensure efficient training and enhance model
stability. Similarly, Ouyang et al. [66] proposed a CNN-based
automated fabric defect detection system, distinguished
by a unique activation layer designed for intricate fabric
texture segmentation. Their system applies pre-processing
techniques, including normalization via batch normalization
after convolutional layers, to improve the model’s training
stability and operational efficiency.

These examples underscore normalization’s vital role
in preprocessing images for neural network analysis,
demonstrating its effectiveness in diverse applications like
pharmaceutical inspection and fabric defect detection.
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2) NOISE REDUCTION
Noise reduction aims to smooth out the image to remove
random variations in intensity.

a: GAUSSIAN BLUR

Gaussian Blur is a fundamental image pre-processing
technique that employs a Gaussian kernel to smooth
images, significantly reducing high-frequency noise. This
process is crucial for preparing images for more detailed
analysis by neural networks. The Gaussian function for a
two-dimensional space is given by:

_ ¥2 +y2

e 27 2)

Gx,y) =

2ol
In this equation, o represents the standard deviation of
the Gaussian distribution, which influences the degree of
blurring. A higher o value results in more pronounced
blurring, aiding in the attenuation of noise and minor
details in the image. Abayomi-Alli et al. [67] leveraged this
technique in their modified MobileNetV2 model for cassava
disease recognition. Their innovative approach involved
creating synthetic images from high-quality originals by
applying various quality reduction techniques, including
Gaussian blurring. This method aimed to enhance the
model’s robustness, particularly for identifying diseases in
low-quality images often encountered in real-world scenar-
ios. Similarly, Ashok et al. [68] utilized a Gaussian filter
in their CNN model dedicated to detecting and classifying
tomato leaf diseases. Applying Gaussian Blur to the leaf
images effectively reduced noise and clarified the images,
making disease features more distinguishable for the deep
learning model. This pre-processing step was instrumental in
heightening the model’s disease detection accuracy.

These examples underscore the value of Gaussian Blur
in image pre-processing for neural networks, showcasing its
utility in enhancing data quality and model robustness across
various applications.

b: MEDIAN FILTERING

Median Filtering is a non-linear process used in image
processing to reduce noise. It replaces each pixel’s value
with the median value of the intensities found in its
immediate neighborhood. Due to its nature, Median Filtering
is particularly effective in preserving edges while removing
noise, making it a preferred choice for pre-processing in
various applications. Unlike linear filters, Median Filtering
involves sorting the values in the neighborhood of a pixel
and selecting the median value, which does not lend itself
to a straightforward mathematical representation. However,
its implementation significantly contributes to the clarity and
quality of the processed images. In the context of predictive
maintenance, Asif et al. [69] demonstrated the utility of
Median Filtering in their study. They proposed a model that
synergizes Long Short-Term Memory networks with critical
preprocessing steps to bolster prediction accuracy for the
Remaining Useful Life (RUL) of aircraft turbofan engines.

121458

A pivotal aspect of their methodology was employing corre-
lation analysis to discern relevant sensor data, subsequently
refined using a moving median filter. This preprocessing
step was instrumental in cleansing the data prior to LSTM
network training, culminating in enhanced RUL predictions
with notably reduced error metrics on the C-MAPSS dataset.
Similarly, Alsubai et al. [70] explored the efficacy of Median
Filtering in the domain of agricultural disease classification.
They introduced a Hybrid DL with an Improved Salp Swarm
Optimization-based Multi-class Grape Disease Classification
(HDLISSA-MGDC) model. This model incorporates Median
Filtering for image preprocessing to eliminate noise from
grape leaf images, ensuring the input images are clearer
and more conducive to accurate disease classification. The
framework utilizes a Dilated Residual Network (DRN)
coupled with an Adam optimizer for robust feature extraction,
while a CNN-Gated Recurrent Unit (CNN-GRU) ensemble
is deployed for classifying grape diseases. The model’s
performance is further refined using Improved Salp Swarm
Optimization (ISSA) to fine-tune the hyperparameters of
the CNN-GRU model, achieving superior accuracy and
efficiency in grape disease classification.

These instances highlight the pivotal role of Median
Filtering in preparing data for complex analyses, showcasing
its broad applicability from aerospace engineering to agricul-
ture.

3) ENHANCEMENT

a: HISTOGRAM EQUALIZATION

Histogram Equalization is a fundamental technique in image
processing to improve an image’s contrast by expanding
its intensity distribution. This method is especially valu-
able in preparing images for neural network analysis by
enhancing features that may otherwise be obscured in low-
contrast images. The process is mathematically represented
as follows:

L—1¢ ,
Iy = W;‘,HQ) 3)

In this formula, /., is the equalized image, M and N
denote the image dimensions, v represents the intensity value
of a pixel in the original image, and H(j) is the histogram
count for intensity level j. This transformation ensures a
uniform distribution of pixel intensities, enhancing image
contrast. In the realm of automatic optical inspection systems,
Chen et al. [71] developed a deep learning model that lever-
ages Histogram Equalization, among other preprocessing
techniques, to augment image contrast. This step is crucial for
ensuring that the model is trained on images with enhanced
features, improving defect detection accuracy in varied light-
ing conditions and noise levels. Similarly, Khodier et al. [72]
implemented an automated inspection system for jacquard-
patterned fabrics, employing Contrast-Limited Adaptive
Histogram Equalization (CLAHE) to accentuate the fabric’s
intricate details. This adaptation of Histogram Equalization

VOLUME 12, 2024



M. R. Islam et al.: DL and CV Techniques for Enhanced Quality Control in Manufacturing Processes

IEEE Access

is particularly effective in addressing the challenges posed by
complex fabric patterns, facilitating the CNN model’s ability
to discern defects with high precision.

These examples underscore the importance of Histogram
Equalization in image preprocessing for neural networks,
showecasing its utility in enhancing data quality and model
robustness across diverse applications.

b: CONTRAST STRETCHING

Contrast Stretching is a vital image pre-processing technique
that linearly adjusts the histogram of image pixels, enhancing
the contrast by spreading out the most frequent intensity
values. The process is mathematically represented as:

_ (I - mln(l)) : (Imax - Imin)
- max(/) — min(/)

I/

+1 min (4)

In this equation, I’ denotes the resulting image after contrast
stretching, [ is the original image, and I,;, and I,,,, are
the desired minimum and maximum intensity values in
the stretched image, respectively. This transformation effec-
tively increases the dynamic range of the image’s intensity
levels. In the context of apple leaf disease recognition,
Rehman et al. [73] developed a parallel real-time processing
framework utilizing Mask R-CNN and transfer learning.
A key component of their approach is the implementation of a
hybrid contrast stretching technique to augment image clarity,
a critical factor for precise disease identification. Similarly,
Faria et al. [74] introduced a hybrid deep learning framework
that combines MobileNet V2 with various recurrent neural
network architectures for potato disease classification. They
employed contrast stretching to boost the visual quality
of images, making the distinction between healthy and
diseased tissue more pronounced and thereby facilitating
more accurate disease detection.

These instances illustrate the significance of Contrast
Stretching in image preprocessing for neural networks,
showcasing its utility in enhancing data quality and model
effectiveness across diverse applications.

B. DEFECT DETECTION METHODS

In manufacturing, deep learning and computer vision tech-
niques are crucial for enhancing efficiency and accuracy,
and they are categorized into supervised, unsupervised,
and semi-supervised learning methods. Supervised learning
uses labeled data to train models, employing foundational
techniques such as Convolutional Neural Networks and
specialized versions like ResNet and DenseNet, which
address network depth and complexity challenges. Addi-
tionally, Recurrent Neural Networks (RNNSs), including
Long Short-Term Memory networks, are utilized for their
ability to process sequences, such as temporal data from
assembly lines. On the other hand, techniques such as
Autoencoders and Generative Adversarial Networks (GANSs)
further support feature extraction and image generation
tasks. Semi-supervised learning, which combines labeled
and unlabeled data, utilizes Deep Belief Networks (DBNs),
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Semi-Supervised Generative Adversarial Networks (SGAN),
and Variational Autoencoders (VAEs) to enhance learning
efficiency. These DL and CV methods significantly con-
tribute to optimizing manufacturing processes by improving
the automation and precision of tasks. The DL and CV
algorithms used in manufacturing are briefly categorized in
figure 3.

1) SUPERVISED LEARNING APPROACHES

Supervised learning approaches in the context of automated
defect detection involve training models on labeled datasets
where the input images are tagged with the correct out-
put, such as the presence or absence of defects. These
approaches leverage various algorithms with mathematical
underpinnings to learn from the data and predict outcomes
for new, unseen images. Below, we delve into some prevalent
algorithms and techniques used in supervised learning for
defect detection.

Convolutional Neural Networks: Convolutional Neural
Networks [75] are a class of deep neural networks most
commonly applied to analyzing visual imagery. They have
proven highly effective for image recognition, segmentation,
and classification tasks. Figure 4 shows the architecture of
CNN.

The core operation in a CNN is the convolution operation,
which applies a filter (or kernel) to an input image to produce
a feature map, highlighting specific features in the image.

Convolution Operation:

At the heart of every CNN is the convolution operation,
where a filter, also known as a kernel, is applied to the input
image. Given an input image / and a filter K, the convolution
operation is defined as:

A@.y) = (K *Dx.y) =D > Kmn)- 1 —m,y—n)

&)

Here, A(x, y) is the activation map produced by applying
the filter K over the input image /. The indices m and # iterate
over the kernel, and x and y denote the spatial dimensions of
the image.

Feature Learning:

CNNs learn to detect features by adjusting the weights
of the filters during the training process. This enables the
network to extract meaningful features from the input images,
which are then used for classification or other tasks.

Applications of CNNs:

The versatility of CNNs extends beyond basic image
processing tasks, as demonstrated in various innovative
studies. For instance, Latif et al. [76] explored the appli-
cation of a modified VGG19 architecture for detecting and
classifying rice plant diseases, showcasing the adaptability
of CNNs in agricultural contexts. In the semiconductor
industry, Chien et al. [77] employed CNNs to automate the
identification and categorization of wafer surface defects,
highlighting the precision of CNNs in manufacturing qual-
ity control. Huang et al. [78] utilized a one-dimensional
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FIGURE 3. The taxonomy of the different DL and CV techniques used for the manufacturing process.
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FIGURE 4. Architecture of convolutional neural network.

convolutional neural network (1D-CNN) in conjunction
with hyperspectral imaging (HSI) to classify and recognize
textile fibers, demonstrating the potential of CNNs in
non-destructive testing methods. Focusing on predictive
maintenance, Keshun et al. [79] introduced a 3D Attention-
enhanced Hybrid Neural Network for estimating the Remain-
ing Useful Life (RUL) of turbofan engines, integrating CNNs
to analyze sensor data effectively. In the pharmaceutical
domain, Khaouane et al. [80] applied a CNN-based approach
to predict plasma protein binding (PPB) of drugs, leveraging
CNN s to interpret molecular structures and extract relevant
features for further analysis.

These examples underscore the broad applicability of
CNNs across various fields, from agriculture and manufac-
turing to textile analysis and pharmaceutical research. They
affirm their status as a cornerstone computer vision and deep
learning technology.

Residual Networks:

Residual Networks or ResNets [81], is a type of deep neural
network architecture designed to facilitate the training of
substantially deeper networks than previously used. The key
innovation in ResNets is introducing “‘skip connections’ that
allow gradients to flow through the network more effectively
during training.

Skip Connections:

The fundamental building block of a ResNet is the
residual block, which incorporates skip connections. These
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connections allow the input of the block to be added to its
output, facilitating the learning of an identity function. This
is crucial for deep networks to avoid the degradation problem,
where accuracy saturates or diminishes with depth. Figure 5
demonstrates the ResNet architecture.

Given an input x, a residual block aims to learn the residual
function F(x) concerning the input, rather than a direct
mapping. The output of the residual block is:

y=F(x)+x (©6)

Here, F(x) represents the residual mapping to be learned,
for multiple layers, F' could represent the output of several
convolutional layers, with the skip connection adding x
directly to the output of these layers.

Identity Mapping by Shortcuts:

The identity shortcut connection, which adds the input
x directly to the output of the residual block, requires no
additional parameterization and does not introduce extra
computational complexity. This simplicity is key to the
efficiency and effectiveness of ResNets.

y=Fx, {Wi}) +x N

In this equation, F(x, {W;}) represents the weighted
functions of the layers within the residual block, and x is the
input. The addition operation is element-wise.

Applications of ResNets:

ResNets have found wide-ranging applications, demon-
strating their adaptability and strength in various fields.
In healthcare, Hnoohom et al. [82] refined a ResNet-101
model to boost the precision of blister package identification
for hospital medication dispensing, showcasing ResNets’
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FIGURE 5. The ResNet architecture.

potential in enhancing patient safety through accurate med-
ication management. Tchatchoua et al. [83] applied a 1D
ResNet for fault detection in semiconductor manufacturing,
analyzing sensor data to pinpoint defects, thus ensuring the
quality and reliability of semiconductor products. In agri-
culture, Stephen et al. [84] utilized pre-trained ResNet
models, including enhanced versions with self-attention
mechanisms, for diagnosing rice leaf diseases, demonstrating
ResNets’ contribution to sustainable farming practices.
Zhang et al. [85] introduced a Cost-Sensitive ResNet model
for PCB defect detection, optimizing the network to classify
defects in an imbalanced dataset better, highlighting ResNets’
adaptability to industrial quality control. In textile manu-
facturing, Liu et al. [86] combined Inception and ResNet
architectures for fabric image -classification, leveraging
ResNets’ robust feature extraction capabilities to ensure the
quality of textile products.

These examples underscore the profound impact of
ResNets across diverse sectors, from healthcare and manu-
facturing to agriculture, by enabling the training of networks
that are deeper and more capable than ever before.

Dense Convolutional Networks: Dense Convolutional
Networks, or DenseNets [87], are a class of DNNs with a
unique architecture where each layer receives input from all
preceding layers and passes its feature maps to all subsequent
layers. This connectivity pattern promotes feature reuse,
significantly reduces the number of parameters, and enhances
training efficiency. Figure 6 illustrates the architecture of
DenseNet.

Layer Connectivity:

In a DenseNet architecture, the output of the i layer,
denoted as x;, is derived by aggregating the feature maps of
all preceding layers, is computed as follows:

x; = Hi([xo, x1, ..., x1—1]) (3)

Here, H)(-) represents a composite function of operations
(BN-ReLU-Conv) applied to the concatenated output of all
previous layers [xg, x1, ..., x;—1]. Here, xg is the input to the
first layer.

Feature Concatenation:

The key to DenseNets is the concatenation of feature maps
produced by layers before it, which allows the network to
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propagate features through the network:

- X—1])
= BN — ReLU — Comv(|xg, x1, ..

x; = Hi([xo, x1, . .
Sx-1) )

This equation illustrates the process of concatenating
the outputs of all preceding layers ([xq, X1, ...,x;—1]) and
applying the composite function H; to produce the output of
the current layer x;.

FIGURE 6. The architecture of DenseNet.

Applications of DenseNets:

DenseNets have been successfully applied in various
contexts, showcasing their adaptability and efficacy. In the
pharmaceutical manufacturing domain, Quan et al. [57] lever-
aged DenseNet models in an end-to-end framework designed
for automatically detecting defective tablets, highlighting
DenseNet’s applicability in quality control. Similarly, in the
agricultural domain, Kulkarni et al. [88] employed DenseNet-
264, coupled with the Simple Linear Iterative Clustering
(SLIC) segmentation algorithm, to diagnose Coffee Leaf
Diseases (CLD). This innovative combination highlights
DenseNet’s capability to handle complex image data, pro-
viding precise and reliable disease detection critical for
crop management and protection. Wang et al. [89] intro-
duced an ensemble method that incorporates DenseNet for
machinery fault diagnosis, particularly under class-imbalance
conditions. This approach demonstrates DenseNet’s utility in
industrial maintenance. Furthermore, Zhu et al. [90] proposed
afabric defect detection system that adapts DenseNet for edge
computing, reducing latency in real-time applications. This
adaptation showcases DenseNet’s flexibility in addressing
computational constraints.

DenseNets offer several advantages over traditional con-
volutional networks, including reduced parameter count due
to feature reuse, improved gradient flow throughout the
network, and enhanced feature propagation, making them
highly efficient for various tasks in computer vision and
beyond.

Recurrent Neural Networks: Recurrent Neural Networks
(RNNs) [91] are a class of neural networks designed
for processing sequential data. Unlike feedforward neural
networks, RNNs have the unique feature of maintaining a
hidden state that captures information about the sequence
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processed so far, making them ideal for tasks like language
modeling, time series analysis, and more. The structure of
RNN is illustrated in figure 7.

Basic Structure:

At each time step 7, an RNN takes an input vector x; and
updates its hidden state 4; based on the previous hidden state
h;—1 and the current input. The hidden state serves as the
network’s memory. The RNN then optionally produces an
output y, based on the hidden state. The following equations
can summarize the basic operations of an RNN:

hy = o (Whphi—1 + WX + by) (10)
e = Whyht + by (1 D

where:

o h; is the hidden state at time ¢,

o x; is the input at time 7,

 ; is the output at time ¢,

o Win, Wy, and Wy, are the weight matrices,

e by and by are the bias vectors,

¢ o is the activation function, often a non-linear function

like tanh or ReLLU.

Activation Function:

The choice of activation function o is crucial for con-
trolling the non-linearity in the model. Common choices
include the hyperbolic tangent function (tanh) or the sigmoid
function, defined as:

o(z) = = (Sigmoid) (12)

—Z

0 (2) = tanh(z) = Zi — (Tanh) (13)
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FIGURE 7. The architecture of RNNs.

Applications of RNNs:

The application of RNNs extends across various domains,
demonstrating their versatility. Hu et al. [92] utilized
an RNN model to predict the quality of cotton yarn,
capitalizing on the sequential nature of the yarn produc-
tion process, a domain where RNN’s memory capability
offers a significant advantage over models like Multiple
Linear Regression and Support Vector Regression. Similarly,
Kumari et al. [93] employed RNNs for forecasting banana
prices in Gujarat, India, illustrating RNNs’ efficacy in time
series analysis compared to ARIMA and ANN models. In the
pharmaceutical industry, Ruiz Puentes et al. [94] developed
PharmaNlNet, a deep learning architecture incorporating RNNs
for predicting active molecules, showcasing the ability of
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RNNs to process complex sequential data like SMILES
strings for drug discovery. Wang et al. [95] applied RNNs
for anomaly detection in manufacturing systems’ time series
data, highlighting RNNs’ utility in identifying irregular
patterns.

RNNs are powerful models for handling sequential data
due to their ability to maintain and update a hidden state
across time steps. However, they can suffer from issues like
vanishing and exploding gradients, which have led to the
development of more advanced variants like LSTM (Long
Short-Term Memory) and GRU (Gated Recurrent Unit)
networks.

Long Short-Term Memory (LSTM):

Long Short-Term Memory [96] networks are a special
subset of RNN, capable of learning long-term dependencies.
LSTMs were introduced to overcome the limitations of
traditional RNNs, primarily the vanishing and exploding
gradient problems, by incorporating a memory cell and three
distinct gates: input, output, and forget gates. Figure 8 shows
the architecture of LSTM.

Gate Mechanisms:

An LSTM unit updates its cell state and hidden state
through a series of gates, each with a specific function:

« Forget Gate (f;): Decides what information to discard

from the cell state.

« Input Gate (i;): Decides which values to update.

o Output Gate (0,;): Determines the output based on the

cell state and the input.

h;
1
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FIGURE 8. The architecture of LSTM.

Applications of LSTMs:

The adaptability of Long Short-Term Memory networks
to various domains has been demonstrated through their
application to problems requiring an understanding of long-
term dependencies. Kumar and Bai [97] utilized LSTMs to
address the challenges in textile manufacturing, specifically
for fabric texture classification and defect detection. Their
work highlights the LSTM’s ability to navigate the com-
plexities of sequential patterns in fabric textures, offering a
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significant improvement in accuracy and efficiency compared
to traditional manual inspections. In the field of energy sys-
tems, the model introduced by Chung et al. [98], known as the
Parallel CNN-LSTM Residual Blocks Attention (PCLRA)
model, focuses on anomaly detection within Combined Heat
and Power (CHP) engines. This model exemplifies the
synergy between CNNs and LSTMs, augmented by residual
blocks and attention mechanisms to enhance spatiotemporal
feature extraction. This approach underlines the LSTM’s
effectiveness in isolating and emphasizing critical temporal
features from sensor data, vital for maintaining operational
reliability in energy systems. The agricultural sector has also
benefited from LSTM applications, as seen in the innovative
ARIMA-LSTM hybrid model proposed by Ray et al. [99]
for forecasting agricultural price series. By integrating
ARIMA’s and Random Forest’s methodologies for input lag
selection, this model capitalizes on LSTM’s capability to
unravel complex temporal dependencies, thereby offering a
nuanced approach to predicting price fluctuations in volatile
agricultural markets. In healthcare, the attentive LSTM-based
framework developed by Qian et al. [100] for predict-
ing Adverse Drug Reactions (ADRs) showcases LSTM’s
flexibility in sequence-to-sequence modeling. Employing
an encoder-decoder structure with attention mechanisms,
the model adeptly zeroes in on pertinent input sequence
segments, enhancing ADR predictions’ precision. This appli-
cation demonstrates LSTM’s potential in healthcare analytics
and emphasizes its role in improving patient safety and drug
efficacy.

These works illustrate the broad utility of LSTMs across
different sectors, from enhancing manufacturing processes
and energy system reliability to advancing agricultural
forecasting and healthcare analytics. The diverse applications
underscore the LSTM’s inherent strength in processing
and interpreting sequential data, making it a cornerstone
technique for tackling complex problems involving temporal
dependencies.

Transfer Learning With Pre-Trained Models:

Transfer learning [101] is a machine learning strategy
where a model originally created for one task is repurposed as
the foundation for a model on a different task. This method is
particularly prevalent in deep learning, leveraging pre-trained
models to attain cutting-edge performance in scenarios where
the dataset is insufficient to train an entirely new model from
scratch.

Transfer learning typically involves two main phases:

1) Pre-training: A model is trained on a base dataset and
task, where it learns general features potentially useful
for a range of functions.

2) Fine-tuning: The pre-trained model is then adapted to
a target dataset and task. This often involves modifying
the final layers of the model to suit the target task better
and then continuing training on the target dataset.

Mathematical Formulation:

Given a source task Tg with dataset Dg and a target task
Tr with dataset D7, transfer learning aims to improve the
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learning of the target predictive function fr(-) using the
knowledge from Dg and Ts. The process can be represented
as:

fr = fine-tune(fs, D7) (14)

Here, fs represents the model trained on the source
dataset Dg.

Benefits of Transfer Learning:

Transfer learning offers several benefits, including:

o Improved performance: Pre-trained models can

significantly boost the target task’s accuracy.

« Faster convergence: Since the model is already trained
on a related task, converging on the target task requires
less time.

« Reduced data requirement: Transfer learning can be
particularly beneficial when the target dataset is small.

Applications of Transfer Learning:

The utility of transfer learning, especially when com-
bined with pre-trained deep learning models, spans various
domains, offering innovative solutions to longstanding prob-
lems. Hellapandi et al. [102] explored the potential of
transfer learning for the early detection of plant diseases
through image classification of diseased plant leaves. Their
research involved a comparative analysis of eight pre-
trained models, including VGG16, VGG19, ResNet50,
InceptionV3, InceptionResnetV2, MobileNet, MobileNetV2,
and DenseNet, against a custom-built convolutional neural
network. This study underscores the efficacy of leveraging
existing deep learning architectures through transfer learning
in identifying plant diseases, thereby contributing to early
diagnosis and mitigation of crop losses. In the textile sector,
Zhu et al. [103] utilized transfer learning with an enhanced
ShuffleNetV2 model, CWCNet, to classify cashmere and
wool fibers precisely. By incorporating depthwise separable
dilated convolution and a novel activation function, EMish’s
approach significantly improved the accuracy of fiber clas-
sification, demonstrating the advantages of transfer learning
in refining model performance for specific industry appli-
cations. Katsigiannis et al. [104] applied transfer learning
to pre-trained deep convolutional neural networks for crack
detection on masonry facades. This method, optimized for
identifying structural cracks, validates the effectiveness of
transfer learning in building inspection tasks, particularly
when annotated data is scarce, offering a reliable solution
for maintenance and safety assessments. Furthermore, In the
pharmaceutical domain, Iwata et al. [105] proposed a
classification method for Scanning Electron Microscope
(SEM) images of excipients using transfer learning applied
to CNNs, such as VGG16 and ResNet50. Their approach
achieved high accuracy in discerning excipient types based on
SEM images, showcasing the capability of transfer learning
to enhance the automatic detection of particle characteristics,
which is crucial for the quality evaluation of pharmaceutical
raw materials.

These highlight the transformative impact of transfer
learning across different fields, from enhancing agricultural
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disease detection and textile fiber classification to improving
structural integrity assessments and pharmaceutical quality
control. Researchers and practitioners can improve accuracy
and efficiency by adopting pre-trained models and fine-
tuning them for specific tasks, even with limited domain-
specific data.

Unsupervised Learning Approaches Unsupervised learn-
ing does not require labeled data. Instead, it identifies patterns
and anomalies in the data based on the assumption that
defects are rare and differ significantly from the norm.
Autoencoders, for example, are used to learn a compressed
representation of normal images. During inference, images
with defects will have higher reconstruction errors, indicating
the presence of anomalies. This approach is beneficial when
collecting labeled data is impractical or when the types of
defects are unknown or varied.

Generative Adversarial Networks Generative Adversarial
Networks (GANs) [106] represent a category of Al algo-
rithms utilized in unsupervised machine learning, where two
neural networks engage in a zero-sum game framework.
Ian Goodfellow and colleagues introduced this technique in
2014.

Framework:

GANs comprise of two key components: a generative
model, denoted as G, which learns to emulate the data
distribution, and a discriminative model, denoted as D,
which assesses the likelihood that a sample originated from
the training data as opposed to being generated by G.
The generator (G) creates fresh data instances, while the
discriminator (D) evaluates their authenticity.

Objective Function:

The objective of a GAN can be framed as a minimax
game between the generator G and the discriminator D. The
discriminator attempts to maximize its ability to correctly
classify real and fake samples, whereas the generator tries to
minimize this ability. The value function V(G, D) is defined
as:

Min max s [10g D] + Ezp o llog(1 = DGE))]
(1)

Here, x represents a real data instance drawn from the true
data distribution pgaa(x), z denotes a noise sample from the
noise distribution p,(z), G(z) is the output of the generator
given the noise z, and D(x) is the discriminator’s estimated
probability that x is a real data instance.

Training:

Training a GAN involves optimizing D to maximize
V(D, G) for fixed G, and optimizing G to minimize V(D, G)
for fixed D. This is done through backpropagation and
gradient descent/ascent steps.

Applications of GANs:

Generative Adversarial Networks have found innovative
applications across various domains, showcasing their ver-
satility and efficacy. For instance, Li et al. [107] proposed
a novel approach for PCB defect detection by generating
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weak feature defect images using a Generative Adversarial
Network (GAN) and improving the Faster R-CNN-based
defect detection network. Lamba et al. [108] proposed
an optimized classification model for plant diseases using
Generative Adversarial Networks. This model employs
optimized CNN to classify various plant leaf diseases,
with the dataset enhanced through GAN augmentation.
In the field of infrastructure maintenance, Xu and Liu [109]
utilized GANs to expand training datasets for pavement
crack detection, demonstrating GANSs’ capacity to generate
realistic supplementary data that improves the effectiveness
of convolutional neural networks.

These applications highlight GANs’ transformative poten-
tial in generating synthetic data and enriching existing
datasets, leading to advancements in automated defect detec-
tion, disease classification, and maintenance monitoring.

Conditional GANs (cGANs):

Conditional GANs (cGANSs) [110] extend the standard
GAN framework by conditioning the generation process on
additional information, such as class labels or data attributes.
This conditioning allows cGANs to generate data that is not
only realistic but also relevant to the specified condition.
In the context of quality control in manufacturing, cGANs
can be used to generate defect-free samples conditioned on
specific attributes or to simulate various defect scenarios for
training purposes.

Key Components of cGANs:

o Generator (G): The generator takes a random noise
vector z and a conditional vector y (which represents the
additional information) and generates a sample G(z|y).

o Discriminator (D): The discriminator evaluates both
real samples x and generated samples G(z|y), along with
the conditional vector y, and outputs the probability that
the sample is real.

Generator Objective:

The objective of the generator is to increase the likelihood

that the discriminator perceives the generated samples as real.
This can be formulated as:

minimize maxli)mize E i piaa(x) [lo g D(x| y)]

+ Ezp. o) [log (1 — D(G(zly)Iy))] (16)

In this formulation, x represents a real data instance drawn
from the true data distribution pgaa(x), z denotes a noise
sample from the noise distribution p,(z), G(z) is the output of
the generator given the noise z, and D(x) is the discriminator’s
estimated probability that x is a real data instance.

Discriminator Objective:

The discriminator’s goal is to accurately classify real
and generated samples. The objective function for the
discriminator can be expressed as:

maximize Epq, ) [log DCx1y)]
+ Ezp.o) [log (1 — D(GGEI)IY))] (17)

Here, x denotes a real data instance sampled from the true
data distribution pgaa(x), Z represents a noise sample drawn
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from the distribution p.(z), G(2) is the output generated by
the generator from the noise z, and D(x) is the probability
estimated by the discriminator that x is a real instance.

Applications of cGANs:

c¢GANSs have been effectively applied for quality control in
manufacturing processes, particularly in the context of selec-
tive laser melting additive manufacturing. In this domain,
obtaining diverse data to evaluate internal microstructures
is challenging due to the high-speed laser passes over
micrometer-scale powder grains. The study by Ramlatchan
and Li [111] demonstrated that cGANs could synthesize new,
high-quality images that closely match experimental data by
learning the underlying features of images corresponding
to different laser process parameters. This approach allows
for the creation of new data for various parameter combi-
nations, supplementing experimental data and enhancing the
evaluation of ideal laser conditions, ultimately supporting
more comprehensive quality control and building process
monitoring.

2) CONTRASTIVE LEARNING
Contrastive Learning [112] is a powerful unsupervised
learning technique where the goal is to learn representations
by contrasting similar (positive) and dissimilar (negative)
pairs of data points. In unsupervised learning, these pairs are
typically created using data augmentation techniques without
relying on any labeled data. This approach is particularly
useful in domains like quality control in manufacturing,
where labeled data may be scarce or expensive to obtain.
Key Concepts in Unsupervised Contrastive Learning
« Anchor: A reference data point.
« Positive Sample: An augmented version of the anchor
or a similar data point.
« Negative Sample: A data point that is different from the
anchor.
Steps in Unsupervised Contrastive Learning

1) Data Augmentation: Generate different views (aug-
mentations) of the same data point to create positive
pairs.

2) Similarity Learning: Train a model to bring represen-
tations of positive pairs closer and push representations
of negative pairs apart.

Contrastive Learning Objective

The objective is to learn a representation space where
similar data points are close together and dissimilar data
points are far apart. This is achieved using a contrastive
loss function, such as the InfoNCE (Noise-Contrastive
Estimation) loss.

InfoNCE Loss Function

The InfoNCE loss function is defined as follows:

exp(sim(h(x;), h(x;")/7)
>N exp(sim(h(xi), h(x)/7)

(18)

Econtrastive =-1

where:
e sim(a, b) is the similarity function (e.g., cosine
similarity) between representations a and b.
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o h(x) is the representation of x learned by the model.

e T is a temperature parameter.

e N is the number of samples in the batch.

Application in Quality Control:

In quality control for manufacturing processes, contrastive
learning can be applied to learn features that distinguish
between defect-free and defective products. By training on
augmented data without labels, the model can learn robust
features that capture the essential characteristics of the
products, improving defect detection and classification.

Autoencoders:

Autoencoders [113] are a type of artificial neural network
employed for unsupervised learning of effective codings.
Their purpose is to acquire a representation (encoding) for a
dataset, often utilized for tasks like dimensionality reduction
or feature learning. The architecture of autoencoders is
illustrated in figure 9.

Architecture:

An autoencoder comprises two primary components:
the encoder and the decoder. The encoder condenses the
input into a latent-space representation, while the decoder
reconstructs the input from this latent space. Formally, if we
consider an input vector x € R”", the encoder and decoder
functions can be represented as:

h=f(x)=0o(Wx+D) 19)
Y=gy =o' Wh+1) (20)

where  is the encoded representation (hidden layer), X is the
reconstructed input, o and o’ are activation functions, and
W, W', b, b are the parameters of the encoder and decoder,
respectively.

Objective Function:

Training an autoencoder aims to minimize the difference
between the input x and its reconstruction x. This is often
measured using a loss function such as the mean squared error
(MSE):

n
L(x, &) = |lx — 211> = D (x — &) @1)
i=1

Learning Process:

The parameters of the autoencoder (W, W', b, b') are
learned by using an optimization algorithm (e.g., stochastic
gradient descent) to minimize the loss function. This process
entails calculating the gradient of the loss function with
respect to the parameters and adjusting the parameters in a
manner that diminishes the loss.

Applications of Autoencoders:

Autoencoders have been adeptly applied across various
sectors, showcasing their utility in unsupervised learning
tasks. For instance, Chow et al. [114] utilized convolutional
autoencoders for anomaly detection in concrete structures,
a critical aspect of infrastructure monitoring, by training
the model to identify deviations from the norm, indicating
defects. In the marine industry, Qu et al. [115] combined
Echo State Networks with Deep Autoencoders to enhance
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FIGURE 9. The architecture of autoencoders.

predictive maintenance of marine diesel engines by detecting
anomalies in sensor data sequences. Furthermore, in the
agricultural domain, Y1lmaz et al. [116] integrated Stacked
AutoEncoders with CNNs for assessing lemon quality,
demonstrating autoencoders’ effectiveness in preprocessing
and feature extraction for classification tasks.

These diverse applications underscore autoencoders’
versatility in extracting meaningful representations from
complex datasets, facilitating anomaly detection, predictive
maintenance, and quality assessment across different fields.

3) SEMI-SUPERVISED LEARNING APPROACHES
Semi-supervised learning represents a hybrid machine learn-
ing approach that is partially supervised and partially
unsupervised. It combines a small amount of labeled data
with many unlabeled data to train models. This approach is
beneficial when acquiring labelled data, which is expensive
or time-consuming. Semi-supervised learning algorithms,
such as self-training and co-training, leverage the labeled
data to learn initial models and then iteratively refine these
models by incorporating unlabeled data. This method can
improve the model’s generalizability and ability to detect
novel defects. Figure 10 illustrates the workflow diagram of
semi-supervised learning.

Integrating DL and CV in automated defect detection
represents a significant leap forward in manufacturing quality
control. By employing a combination of image acquisition
and preprocessing techniques alongside sophisticated defect
detection methods spanning supervised, unsupervised, and
semi-supervised learning approaches, manufacturers can
achieve higher accuracy, efficiency, and reliability in identi-
fying and addressing defects across various sectors. As these
technologies evolve, their application scope will expand,
further revolutionizing industrial product management and
quality assurance practices.

C. ANALYSIS OF DEFECT DETECTION METHODS

In this subsection, we present a detailed overview of various
defect detection methods used in manufacturing processes,
categorized into supervised learning, unsupervised learning,
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FIGURE 10. Semi-supervised learning workflow.

and semi-supervised learning. Each method is evaluated
based on its advantages, disadvantages, and specific appli-
cation domains to provide a comprehensive understanding of
their suitability for quality control in industrial settings.

Table 3 provides a comprehensive overview of vari-
ous defect detection methods categorized into supervised,
unsupervised, and semi-supervised learning algorithms.
It highlights the specific algorithms within each category,
such as CNNs, ResNet, DenseNet, RNNs, and LSTMs for
supervised learning; GANs, cGANSs, Contrastive Learning,
and Autoencoders for unsupervised learning; and DBNs,
SGANs, and VAEs for semi-supervised learning. Each
algorithm’s advantages, such as high accuracy, effective
representation learning, and dimensionality reduction, are
balanced against their disadvantages, including the need for
large amounts of labeled data, computational intensity, and
training complexity. The table also outlines specific appli-
cation domains, emphasizing their use in tasks like defect
detection, synthetic data generation, anomaly detection, and
predictive maintenance. This structured information helps
in selecting the appropriate method for enhancing quality
control in manufacturing processes by considering their
strengths, limitations, and suitable applications.

V. RECENT SOTA WORKS

A. AUTOMOTIVE MANUFACTURING

In the automotive manufacturing sector, adopting deep
learning and computer vision is revolutionizing quality
assurance processes, establishing unprecedented standards
for accuracy and efficiency. This section discusses the
significant impact of these cutting-edge technologies on
producing automotive parts and vehicles. These technologies
are pivotal in driving industry advancements by enhancing
product quality and ensuring the consistency of manufactur-
ing operations. Table 4 illustrates some of the latest deep
learning developments and computer vision in automotive
manufacturing.

B. ELECTRONICS MANUFACTURING

In the electronics manufacturing industry, deploying deep
learning and computer vision is reshaping quality assurance
practices, setting unprecedented standards for accuracy and
productivity. This section examines the profound effects of
these advanced technologies on the fabrication of electronics,
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TABLE 3. Summary of algorithms in deep learning and computer vision for quality control.

Algorithm Type Algorithm Name Advantages Disadvantages Specific Application Domain
CNN High accuracy in image recog- | Requires large amounts of la- | Defect detection, image clas-
nition, spatial invariance beled data, computationally | sification
Supervised Learning intensive
ResNet Solves vanishing gradient | More complex and computa- | Detailed inspection tasks, im-
problem, deeper networks | tionally expensive age recognition
possible
DenseNet Alleviates vanishing gradient, | High memory consumption Quality control, complex de-

improves feature propagation

fect detection

RNN Good for sequential data, cap-
tures temporal dependencies

Difficulty in training long se-
quences due to vanishing gra-

Sequence prediction, time-
series analysis

dients
LSTM Addresses vanishing gradient | Computationally intensive, | Predictive maintenance, de-
in RNNs, effective for long- | longer training times fect prediction
term dependencies
GANs Generates high-quality | Training instability, mode col- | Defect simulation, synthetic
Unsupervised Learning fr};rllrtllllstglc data, unsupervised | lapse data generation
cGANs Controlled data generation | Complex training process, re- | Customized defect generation,

with conditional inputs

quires careful design specific quality control tasks

Contrastive Learning

Effective representation learn-

Requires large batch sizes, | Anomaly detection, feature

bilistic approach

ing without labels complex training extraction
Autoencoders Dimensionality reduction, | Risk of overfitting, may lose | Anomaly detection, feature
noise reduction important information compression
DBNs Combines supervised and un- | Difficult to train, computa- | Feature learning, hybrid qual-
Semi-supervised Learning supervised learning, good fea- | tionally expensive ity control methods
ture extraction
SGAN Leverages limited labeled data | Complex training, mode col- | Semi-supervised defect detec-
with GANs lapse tion, limited data scenarios
VAEs Generates diverse data, proba- | Blurry outputs, complex train- | Defect simulation, probabilis-

ing tic quality control

including the assembly of components and entire devices.
These tools play a crucial role in elevating product quality
and solidifying the robustness of production lines. Table 5
highlights some key recent developments in deep learning and
computer vision in electronics manufacturing.

C. TEXTILE MANUFACTURING

In textile manufacturing, integrating deep learning and
computer vision technologies is transforming quality control
operations, establishing new benchmarks for accuracy and
efficiency. This section explores the significant impact of
these innovations on the production of textile machinery
and equipment and the processing of fabrics and garments.
It highlights how these technologies improve product quality
and ensure the dependability of manufacturing workflows.
Table 6 summarizes recent advancements in deep learn-
ing and computer vision within the textile manufacturing
sector.

D. AGRICULTURE MANUFACTURING

In the realm of agricultural manufacturing, the applica-
tion of deep learning and computer vision techniques
is revolutionizing quality control processes, setting new
standards for precision and efficiency. This section delves
into the transformative impact of these technologies on the
manufacturing of agricultural machinery, equipment, and the
processing of agricultural produce, highlighting their role
in enhancing product quality and ensuring the reliability
of the manufacturing processes. Table 7 summarizes recent
contributions to DL and CV in agricultural manufacturing.
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E. OTHERS SECTORS

DL and CV are also driving innovations in a range of
industrial sectors beyond agriculture, significantly elevating
quality control measures. In aerospace manufacturing, these
technologies are instrumental in the meticulous assembly
of aircraft components, ensuring unparalleled precision
and safety standards. The pharmaceutical industry benefits
similarly, with DL and CV facilitating the rigorous inspection
of drug manufacturing processes to guarantee product purity
and compliance with health regulations. Additionally, in the
construction materials sector, these advanced techniques are
applied to monitor the quality of materials such as cement
and steel, enhancing structural integrity and reliability. Each
of these sectors showcases the versatile and transformative
potential of DL and CV in modern manufacturing environ-
ments. Table 8 summarizes some of the recent contributions
of DL and CV in these additional sectors.

VI. EMERGING TRENDS AND FUTURE DIRECTIONS

The landscape of industrial product management, particularly
in the realms of quality control and defect detection, is under-
going a transformative shift driven by rapid technological
advancements and the integration of artificial intelligence.
This section explores the future directions and emerging
trends set to redefine these processes’ efficacy and efficiency.

A. ADVANCES IN SENSOR TECHNOLOGY AND IMAGING
TECHNIQUES

The future of automated defect detection in manufacturing
hinges significantly on advancements in sensor technology
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TABLE 4. Recent advancements in deep learning and computer vision for automotive manufacturing.

Ref Dataset Pre-processing Tech-  Model Result Limitation
niques
Wang et al.  Custom Data Augmentation ResNet-50 + Accuracy: 94.4% The accuracy of defect identification heavily
[14] Dataset Transfer depends on the performance of the trained
Learning deep learning model, specifically the revamped
ResNet-50. If the model is not well-trained or
lacks generalizability, it might not effectively
identify or classify various types of defects, par-
ticularly in diverse environments.
Yuetal [15] Custom Labeling, AMCD based on  mAP: 84.96% The model may be limited by MAVs’ on-board
Dataset Resizing YOLOV3-tiny computational capabilities, which could restrict
its deployment in scenarios requiring intensive
computational power.
Upadhyay er  Custom Resizing, Denoising, Customized Accuracy: The model is dependent on synthetic data, which
al. [17] Dataset Labeling, Data Aug-  U-Net + GANs binary cross-entropy  might not adequately represent real-world vari-
mentation loss: 99.5% ability, potentially reducing its effectiveness in
focal loss: 99.5% practical applications.
Dice Coefficient:
Jaccard loss: 88.92%
Tversky loss: 94.4%
Wang et al.  Custom Cropping, DBFF-YOLOv4 mAP: 99.58%, The proposed model might face a potential de-
[18] Dataset Data Augmentation Recall: 91.87% crease in performance when detecting very small
defects or in different imaging conditions not
represented in the training set.
Zubayer et  Custom Normalization, YOLOVS mAP: 99.5% The model’s training was limited to a relatively
al. [117] Dataset Resizing, small dataset derived from 151 original images,
RGB Conversion, which might not provide sufficient variability
Data Augmentation to fully assess the model’s generalizability and
effectiveness across more diverse real-world con-
ditions.
Ma et al.  Custom Semantic Prior Min-  SPDP-Net ABSDD: While the model performs strongly in detecting
[118] Dataset ing (SPM), Defect En- Precision: 95.9%, tiny and weak defects on aero-engine blades, this
(ABSDD), hancement Perception KSDD2: effectiveness may be constrained when applied
KSDD2, (DEP) AP: 94.1%, to environments or defect types that were not
DAGM DAGM: adequately represented during training.

Accuracy: 100%

and imaging techniques. These technologies are pivotal
in capturing minute details and nuances of a product,
critical for accurate defect detection and quality control.
The evolution in this area enhances image resolution and
expands the data types that can be analyzed, encompassing a
broad spectrum of electromagnetic wavelengths and imaging
modalities. Here are some key developments and their
implications:

« High-Resolution Imaging: Modern sensors are achiev-
ing higher resolutions, allowing for the detection of
subtler defects that were previously indiscernible. This
enhancement, in detail, facilitates more accurate defect
classification and localization, enabling manufacturers
to maintain higher quality standards.

o Multispectral and Hyperspectral Imaging: These imag-
ing techniques capture data across multiple electromag-
netic spectrum bands, providing a more comprehensive
analysis of materials than visible light imaging alone.
They are instrumental in identifying material inconsis-
tencies and anomalies not visible to the naked eye, such
as in the food, pharmaceutical, and agricultural sectors.

¢ 3D Imaging and Laser Scanning: Three-dimensional
imaging technologies offer detailed surface and vol-
umetric information about products, including laser
scanning and structured light. This capability is crucial
for detecting defects that involve shape or volume
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deviations, such as warping or internal voids, which are
challenging to identify with traditional 2D imaging.
Thermal Imaging: Thermal cameras detect heat signa-
tures and object variations, indicating electrical faults,
mechanical wear, or other issues that may not be
visible in the light spectrum. This technology is
invaluable for predictive maintenance and ensuring
the safety and reliability of electronic and mechanical
components.

High-Speed Imaging: Advances in sensor and process-
ing speeds allow for high-speed imaging, enabling the
inspection of products on fast-moving production lines
without compromising image quality. This capability
is essential for maintaining throughput in high-volume
manufacturing environments while meeting quality
standards.

Embedded Vision Systems: Integrating compact, robust
vision systems directly into manufacturing equipment
and robots. This allows for real-time, on-the-fly
inspections and adjustments, further automating the
manufacturing process and reducing the latency between
defect detection and correction.

Machine Vision with Artificial Intelligence: Combining
advanced imaging technologies with Al and deep
learning enables the development of systems that can
learn from data to improve defect detection over time.
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TABLE 5. Recent advancements in deep learning and computer vision for electronics manufacturing.

Ref Dataset Pre-processing Tech-  Model Result Limitation
niques
Pham et al. Custom Resizing, PCB_SS & Accuracy: The PCB_SS model necessitates region-of-
[29] Dataset Data Augmentation PCB_FS PCB_SS: 92.27% interest (ROI) images from an AFVI system to
PCB_FS: 89.67, identify defect candidates, limiting its direct ap-
Recall: plicability to entire PCBs or assembled PCBs
PCB_SS: 94% without additional preprocessing to acquire suit-
PCB_FS: 90% able patch images.
Wang et al. MixedWM38  Standardization KABLS Accuracy: 99.3% The effectiveness of the selective sampling mech-
[30] anism provided by BSSM may be confused by
overlapped defects in mixed-type patterns con-
taining three or four single-type defects, such as
the difficulty in distinguishing between a donut
defect and a center defect in some patterns.
de la Rosa et Custom Resizing, Lightweight Accuracy: 99.4%, The study addressed the data imbalance chal-
al. [32] Dataset Cropping, SqueezeNet CNN  Fl-score: 99.4% lenge by applying data augmentation, however,
Data Augmentation there remains a potential limitation in the rep-
resentation and variability of these synthetic im-
ages, which might not fully capture the complex-
ity and diversity of real-world defects in semicon-
ductor manufacturing processes.
Zhang et al.  Custom Cropping, ResNet-34-ECA Accuracy: 98.2% The proposed model is not tested on datasets
[34] Dataset Data Augmentation, from other domains. Further exploration needed
Standardization and with optimizers and loss functions. Relies on
Normalization datasets provided by Liuzhou United Automotive
Electronics, which may limit generalizability.
Dlamini et  Custom Histogram Equaliza-  MobileNetV2 Precision: 97.92%,  The study’s sample collection was limited to a
al. [36] Dataset tion, with FPN Recall: 96.25%, local company, resulting in poor control over data
Bilateral Filtering, F1-score: 97.08% collection and a dataset that may not encompass
Data Augmentation, the full diversity of SMT defects.
Labeling
Kaya, Custom Phase Retrieval Pro- CNN Accuracy: 99% The proposed study might be sensitive to noise
Gulhan Dataset cess, and imaging conditions, potential for overfitting
Ustabas Binarization in the CNN model, and the challenge of general-

[119]

izing the model to PCBs with different designs or
defect types not included in the training dataset.

These systems can adapt to new defect types and
variations without explicit programming, enhancing
their versatility and effectiveness.

These advancements in sensor technology and imaging
techniques are not just elevating the standards of quality
control but are also making the inspection processes more
adaptable, efficient, and cost-effective. As these technologies
continue to evolve and converge with other digital innova-
tions, they will play a pivotal role in shaping the future of
manufacturing, ensuring that it is more resilient, sustainable,
and aligned with the demands of modern markets.

B. THE ROLE OF BIG DATA AND ANALYTICS IN DEFECT
DETECTION

In the era of Industry 4.0, integrating Big Data and analytics
into defect detection processes represents a significant
leap toward predictive maintenance and real-time quality
control. When effectively harnessed, the vast volumes of
data generated by manufacturing operations offer a goldmine
of insights for improving product quality and operational
efficiency.

« Enhanced Predictive Capabilities: Big Data analytics
enables the aggregation and analysis of diverse data
sources, including historical quality control records,
machine performance data, and real-time production
metrics. By applying advanced analytics and machine
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learning algorithms to this data, manufacturers can
identify patterns and correlations that were previously
undetectable. This predictive insight allows for antic-
ipating potential defects before they occur, shifting
the focus from reactive to preventive quality control
measures.

o Real-time Monitoring and Response: The real-time
production data analysis through Big Data technologies
facilitates immediate feedback loops. Sensors and IoT
devices continuously monitor the manufacturing pro-
cess, detecting anomalies and deviations from the norm.
By integrating this data with deep learning and computer
vision systems, manufacturers can instantly identify
and rectify defects, minimizing waste and reducing
downtime.

o Customization and Adaptation: Big Data analytics
also supports customizing defect detection systems to
specific manufacturing environments and product types.
Machine learning models can be trained on vast datasets
torecognize complex defect patterns unique to particular
materials, components, or manufacturing techniques.
This level of customization enhances the accuracy and
relevance of defect detection efforts.

o Quality Improvement Through Data Integration: Inte-
grating data across the manufacturing ecosystem offers
a holistic view of the quality control process. Analytics
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TABLE 6. Recent advancements in deep learning and computer vision for textile manufacturing.

Ref Dataset Pre-processing Tech-  Model Result Limitation
niques
Jing et al.  Yarn-dyed Data Augmentation, Mobile-Unet I0U: Class imbalance challenge due to the rarity
[37] Fabric Labeling Yarn-dyed: 92% of fabric defects compared to normal samples,
Images & Fabric Images: 70%  which complicates the training of deep learning
Fabric Recall: models.
Images Yarn-dyed: 92%
Fabric Images: 80%
Cheng et al.  AITEX Image Cropping, SCUNet Accuracy: 98.01%,  The study acknowledges limitations such as the
[39] Data Enhancements, Recall: 96.81%, use of grayscale images only and the requirement
Data Augmentation Specificity: 98.07% for fabrics to be flat, which may restrict the appli-
cation to a variety of color textiles and irregular
planes. Their method predicts more backgrounds
as defects when segmenting the edges of defects.
Zhang et al.  FDI-1000, Resizing, SSA-ULNet Accuracy: The study outlined the requirement for signif-
[120] DHU- Transformation FDI-1000: 87.62% icant computational resources due to the deep
Semil000 DHU-Semi1000: structure of the model. Additionally, the model
&  Aliyun- 86.57% may face challenges in situations where there are
Semil0500 Aliyun-Semil0500: not enough labeled samples for effective training,
62.82 % which is a common issue in supervised and semi-
supervised deep learning approaches.
Alruwais et  Fabric defect — Contrast Limited HMFODL-FDD Accuracy: 95.47%, A notable limitation of the proposed study is the
al. [121] database Adaptive Histogram Sensitivity: 92.97%,  relatively small size of the dataset, which may
Equalization Specificity: 96.48% compromise the model’s ability to accurately
(CLAHE) recognize and categorize defects in fabric types
or variations not included in the initial training
dataset.
Revathy, G  HKBU CLAHE Improved Mask  Accuracy: 97.8%,  Although the model shows high accuracy with
and database RCNN Precision: 94.37% the HKBU dataset, which includes specific types
Kalaivani, R of patterned fabrics, it might not perform as
[122] effectively on fabrics with different patterns or

more complex textures that were not included in
the training dataset.

can uncover insights from the production line and supply
chain operations, customer feedback, and post-market
performance. This comprehensive approach enables
manufacturers to identify the root causes of defects more
effectively and implement systemic improvements.

o Operational Efficiency and Cost Reduction: Manufac-
turers can achieve significant operational efficiencies by
leveraging Big Data and analytics for defect detection.
Predictive maintenance reduces manual inspections and
repair downtime, while real-time monitoring helps
maintain optimal production conditions, minimizing
waste. Additionally, the insights gained from data ana-
Iytics can inform strategic decisions regarding process
improvements, resource allocation, and investment in
technology upgrades.

In conclusion, the role of Big Data and analytics
in defect detection is transformative, offering enhanced
capabilities for identifying and preventing defects and
opportunities for operational optimization. As these tech-
nologies evolve, their integration into manufacturing
processes will become increasingly sophisticated, driv-
ing further product quality and manufacturing efficiency
improvements.

C. THE POTENTIAL OF REINFORCEMENT LEARNING

Reinforcement Learning (RL) presents a promising avenue
for revolutionizing industrial product management by
enabling autonomous decision-making in dynamic environ-
ments. Unlike supervised and unsupervised learning, which
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rely on labelled datasets or predefined objectives, RL acquires
decision-making skills through interacting with the envi-
ronment and receiving feedback in the form of rewards or
penalties.

« Adaptive Decision-Making: RL algorithms can adap-
tively learn optimal decision policies by continually
interacting with the manufacturing environment. This
adaptability is crucial when manufacturing conditions
constantly change, allowing RL agents to adjust
their real-time strategies to maximize efficiency and
productivity.

o Autonomous Optimization: RL techniques can opti-
mize various aspects of industrial processes, such
as resource allocation, scheduling, and equipment
maintenance. RL agents can learn to optimize pro-
duction parameters and minimize defects by explor-
ing different actions and evaluating their long-term
consequences.

« Complex Control Systems: RL enables the development
of sophisticated control systems to handle complex man-
ufacturing processes. RL agents can learn to precisely
control robotic arms, automated inspection systems, and
other machinery, leading to improved product quality
and throughput.

« Adaptive Fault Detection: RL algorithms can enhance
fault detection systems by continuously learning from
operational data and adapting to changes in the
production environment. RL agents possess the capa-
bility to identify abnormalities and deviations from
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TABLE 7. Recent advances in deep learning and computer vision for agricultural manufacturing.

Ref Dataset Pre-processing Tech-  Model Result Limitation
niques
Mallick eral.  Custom Resizing, MobileNetV2 Accuracy: The model’s generalization was limited due to
[123] Dataset Data Augmentation with Transfer  93.65%, training on a small dataset, expanded through
Lerning Precision: 92.6%,  augmentation, necessitating more real-world im-
Recall: 94.4% ages for robustness.
Yang et al. Plant Village  Resizing, Multi-Path Accuracy: 99.5%  Limited generalizability due to focus on one
[124] Patch Embedding Context Feature dataset. Further testing on diverse datasets is
Aggregation needed for robustness and suitability confirma-
Network tion in various agricultural contexts.
Dash et al.  Plant Village  Cropping, DenseNet201 +  Accuracy: 94.6%  The evaluation of the proposed model was lim-
[125] Data Augmentation SVM ited to only four maize leaf disease classes. Fur-
ther testing across additional classes is required
for comprehensive validation.
Roy et al.  Plant Village  Annotation, PCA DeepNet Accuracy: Limited to tomato leaf diseases, further reduction
[126] Data Augmentation 99.6%, in CNN layers suggested for efficiency.
Precision:
98.55%,
Recll: 98.49%
Zhang et al.  Custom Image Enhancements,  AlexNet Sorting The study identifies issues related to the time
[127] Dataset Transformation, Accuracy: 89% and efficiency of the sorting process, highlighting
Data Augmentation these as key areas for future enhancements.
Padmapriya Custom Filtering, Multi-Stacking Accuracy: Limited epoch count for proposed model and
etal. [128] Dataset Data Augmentation Ensemble Model 98.96%, potential result fluctuations due to diverse soil
Precision: samples and hyperparameter configurations.
96.14%,
Recall: 99.65%
Li et al  Plant Village Resizing, MDCDenseNet Accuracy: Extended model training duration due to a high
[129] &  Custom  Data Augmentation 98.84% parameter count, with plans for future optimiza-
Dataset tion efforts.

normal operations, facilitating preemptive maintenance
and reducing downtime.

« Exploration of Novel Solutions: RL encourages explo-
ration and experimentation, allowing industrial systems
to discover novel solutions and optimize processes
beyond human intuition. By iteratively improving
decision-making through trial and error, RL agents can
uncover efficient strategies that may not be apparent
through traditional methods.

« Integration with Digital Twins: RL techniques can be
integrated with digital twins, virtual replicas of phys-
ical manufacturing systems, to simulate and optimize
production processes before implementation in the real
world. This integration enables safer experimentation
and facilitates rapidly deploying optimized control
policies.

In conclusion, the potential of Reinforcement Learning
in industrial product management is vast and multifaceted.
By enabling adaptive decision-making, autonomous opti-
mization, and the exploration of novel solutions, RL promises
to revolutionize the efficiency, quality, and resilience of
industrial processes in the era of Industry 4.0. As research
in RL continues to advance, its application in industrial
settings is expected to become increasingly prevalent, driving
innovation and transforming manufacturing paradigms.

D. INTEGRATION OF DL AND CV TECHNOLOGIES WITH
OTHER INDUSTRY 4.0 COMPONENTS

The Industry 4.0 paradigm, characterized by integrating
digital technologies into manufacturing processes, pro-
foundly synergizes with Deep Learning and Computer
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Vision technologies. This integration heralds a new era of
intelligent manufacturing, enhancing efficiency, productivity,
and adaptability. Below are some detailed insights into how
DL and CV technologies are merging with other Industry
4.0 components:

o Internet of Things (IoT): DL and CV technolo-
gies seamlessly integrate with IoT devices to create
intelligent sensor networks throughout manufacturing
facilities. These IoT devices capture real-time data,
such as temperature, pressure, and vibration, pro-
viding valuable inputs to DL and CV models for
predictive maintenance, quality control, and process
optimization.

« Robotics and Automation: DL-powered robotic systems
with CV capabilities are revolutionizing industrial
automation. These robots can handle complex tasks
such as object recognition, grasping, and manipulation
with unparalleled accuracy and efficiency. Further-
more, collaborative robots, or cobots, are emerging as
critical players in human-robot collaboration scenar-
ios, enhancing flexibility and safety in manufacturing
environments.

« Digital Twins: DL and CV technologies are pivotal in
developing and deploying digital twins—virtual replicas
of physical assets, systems, and processes. By contin-
uously monitoring and analyzing data from physical
assets, digital twins enable predictive maintenance,
performance optimization, and scenario simulation.
DL algorithms process vast amounts of data from
sensors and cameras to represent real-world phenomena
accurately.
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TABLE 8. Recent advancements in deep learning and computer vision for other sectors.

Ref Dataset Pre-processing Tech-  Model Result Limitation
niques
Leetal [56]  Custom Short-Time  Fourier ~ Spiking Neural — Accuracy: 95.4% The challenge of detecting corrosion using SNN
Dataset Transform (STFT) Network (SNN) due to the potential deformation of the water
membrane during scans, which can introduce
noise and affect the model’s accuracy.
Laxman et  Public Cropping binary-class Accuracy: The models were trained to detect and predict
al. [59] Dataset by CNN Public Dataset:  crack depths only under monotonic loading con-
[130] & 99.9% ditions. They were also limited by the number of
Custom Custom Dataset:  images and controlled lighting conditions used in
Dataset 93.7% the dataset.
Tabernik er  Public Data Augmentation SegDecNet++ Dice score: 81%, The proposed model faces difficulty in accurately
al. [60] Dataset by ToU: 71% segmenting thin cracks and cracks on dark as-
[131] phalt with soft characteristics. This limitation
suggests that the model may struggle with certain
crack types or surface conditions.

Lietal [61] NEU-DET Resizing YOLOVSs mAP: 73.08% The method might face challenges in generaliza-
tion across different types of steel surfaces or
under varying operational conditions not repre-
sented in the NEU-DET dataset.

Lim et al.  Public Resizing, YOLOv4-Tiny mAP: 94.53% The aggressively pruned model might face lim-

[63] Dataset by Data Augmentation itations in detecting more subtle wood defects

[132] due to the reduced complexity and potentially
less ability to generalize across different wood
types or less controlled environments. There’s a
trade-off between model size and depth of feature
learning that could affect performance in practi-
cal applications outside the controlled conditions
of the dataset.

Cui et al Custom Rescaling, CCG-YOLOvV7 mAP: 94.8%, The model’s effectiveness under variable indus-

[64] Dataset Data Augmentation Precision: 92.7% trial conditions, such as different lighting intensi-
ties, diverse wood patterns, and complex defect
types, may require further validation to ensure
robustness and generalizability across different
production settings.

Wang et al.  Custom Normalization, ODCA-YOLO mAP: 78.5% The model’s performance in practical industrial

[133] Dataset Data Augmentation applications might be limited by its computa-
tional demand and the quality of input images,
which must be high-resolution and well-prepped
for accurate defect detection.

Keshun et al. Custom Denoising, Semantic mAP: The DL model can extract coordinate informa-

[134] Dataset: Image Enhancement Segmentation Dataset I: 0.893, tion of concentrate zoning but cannot accurately

Dataset 1 & using HALCON Dataset II: 0.905 predict concentrate grade and recovery rate due
Dataset II to the lack of obtained zoning image features.

« Augmented Reality (AR) and Virtual Reality (VR): DL
and CV technologies are enhancing AR and VR applica-
tions in manufacturing, enabling immersive experiences
for training, maintenance, and product visualization.
AR overlays real-time information onto the physical
environment, providing operators contextual insights
and guidance. VR simulations allow for realistic
training scenarios and virtual prototyping, reducing
time-to-market and improving product design.

o Cloud Computing and Edge Computing: DL and CV
algorithms are deployed in cloud-based and edge
computing environments. Cloud computing offers vast
computational resources to train complex DL models
and perform large-scale data analytics. On the other
hand, edge computing brings processing closer to the
data source, enabling real-time decision-making and
reducing latency in critical applications like autonomous
vehicles and remote monitoring systems.

o Blockchain Technology: Blockchain technology is
increasingly being explored to enhance data security,
traceability, and transparency in manufacturing supply
chains. DL and CV techniques can be leveraged to
analyze blockchain data for anomaly detection, fraud
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prevention, and quality assurance across the entire
product lifecycle.

Integrating DL and CV technologies with other Industry
4.0 components drives a paradigm shift in industrial product
management, paving the way for smarter, more agile,
and interconnected manufacturing ecosystems. As these
technologies continue to mature and evolve, their col-
lective impact on efficiency, quality, and innovation in
manufacturing will become even more pronounced.

VII. CURRENT LIMITATIONS AND FUTURE WORKS

While integrating Deep Learning and Computer Vision
technologies into industrial product management holds
immense promise, several challenges and limitations must be
addressed to realize their full potential. This section delves
into the complexities and barriers hindering these advanced
technologies’ seamless adoption and implementation in
industrial settings.

A. LIMITATIONS OF CURRENT RESEARCH

Table 9 presents a comprehensive overview of the limi-
tations encountered in current research on Deep Learning
and Computer Vision technologies in industrial product
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TABLE 9. Limitations of current research and potential solutions.

Types of Limitations of Current
Research

Explanation of Limitation

Potential Solutions

Data Quality and Quantity

Limited availability of high-quality labelled datasets
hamper the training of robust DL and CV models.

Collecting more labelled data through
crowdsourcing, active learning, or data
augmentation techniques.

Model Interpretability

Lack of interpretability in DL models impede un-
derstanding of decision-making processes, hindering
trust and acceptance.

Developing explainable Al techniques such
as model visualization, feature importance
analysis, and attention mechanisms.

Robustness to Environmental Vari-
ability

DL and CV models may struggle to generalize to new
environments due to variations in lighting, occlusions,
and structural complexities.

Enhancing model robustness through do-
main adaptation, transfer learning, and ro-
bust optimization techniques.

Computational Resources

Training and deploying DL models require signifi-
cant computational resources, posing challenges for
resource-constrained environments.

Optimizing model architectures, implement-
ing efficient algorithms, and leveraging
cloud or distributed computing resources.

Overfitting and Generalization

DL models are susceptible to overfitting, resulting in
poor performance when applied to unseen data due to
their inability to generalize effectively.

Regularization techniques include dropout,
L1/L2 regularization, early stopping, and
cross-validation for hyperparameter tuning.

Labelling Bias and Imbalance

Biases and imbalances in labeled datasets can skew
model predictions and compromise performance.

Employing bias correction methods, data
balancing techniques, and incorporating
fairness-aware learning approaches.

Ethical and Privacy Concerns

DL and CV technologies raise ethical concerns about
privacy, bias, and discrimination, necessitating care-
ful consideration and mitigation strategies.

Implementing privacy-preserving
techniques, ensuring transparency and
accountability in model development,
and adhering to ethical guidelines and
regulations.

Transferability of Models

DL models trained on one domain may not transfer
well to other domains, limiting their applicability in
diverse industrial settings.

Exploring domain adaptation methods,
multi-task learning approaches, and model
distillation techniques to improve transfer
learning capabilities.

Model Degradation over Time

DL models may degrade in performance over time as
data distributions shift or the model becomes outdated
relative to evolving industrial processes.

Implementing continuous learning strate-
gies, model retraining on updated data, and
monitoring model drift to detect perfor-
mance degradation.

Scalability and Efficiency

Scaling DL and CV solutions to handle large volumes
of data in real-time can be challenging, especially
in industrial settings with stringent latency require-

Utilizing parallel processing, model pruning,
and hardware acceleration techniques to im-
prove scalability and efficiency.

ments.

management, along with potential solutions to address
these challenges. Each limitation, such as data quality and
quantity, model interpretability, and computational resource
constraints, is elucidated, detailing its specific challenges.
Subsequently, corresponding potential solutions are proposed
to mitigate these limitations, ranging from data augmentation
techniques and model regularization to privacy-preserving
methods and continuous learning strategies. The table offers
valuable insights into the complexities of implementing DL
and CV technologies in industrial settings by systematically
delineating the challenges and potential remedies. It provides
actionable approaches to overcome these barriers.

B. BARRIERS TO ADOPTION AND IMPLEMENTATION IN
THE INDUSTRIAL CONTEXT

Table 10 provides an overview of the barriers hindering
the adoption and implementation of Deep Learning and
Computer Vision technologies in industrial contexts and
potential solutions to overcome these hurdles. Each barrier,
such as cost of implementation, lack of expertise, and
regulatory compliance, is thoroughly explained, highlighting
its specific challenges. Potential solutions are provided,
offering actionable approaches to address these barriers
effectively. By systematically delineating the challenges and
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potential remedies, the table offers valuable insights into the
complexities of integrating DL and CV technologies into
industrial settings. It provides practical strategies to facilitate
their adoption and implementation.

C. FUTURE WORKS

Addressing the above mentioned challenges requires targeted
research and development efforts. The following are potential
future research directions to overcome the current limitations:

1) ADVANCED ILLUMINATION TECHNIQUES

Research into adaptive illumination techniques and robust
pre-processing methods can help mitigate the impact of
varying lighting conditions. Techniques such as photometric
stereo and HDR imaging can be explored to enhance defect
detection under different lighting scenarios. Developing
models that can adapt to changing lighting conditions in
real-time can also improve detection accuracy.

2) GENERALIZATION ACROSS DEFECT TYPES

Developing more robust models that can generalize across
a broader range of defect types is essential. This can be
achieved through the use of advanced architectures like
transformers and the incorporation of domain adaptation
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TABLE 10. Barriers to adoption and implementation in the industrial context and potential solutions.

Types of Barriers to Adoption
and Implementation in the Indus-
trial Context

Explanation of Barrier

Potential Solutions

Cost of Implementation

High upfront costs associated with infrastructure,
software development, and training can deter organi-
zations from adopting DL and CV technologies.

Exploring open-source solutions, cloud-
based services, and cost-sharing models to
reduce initial investment.

Lack of Expertise

Shortage of skilled professionals with expertise in
computer vision, machine learning, and domain-
specific knowledge impedes successful implementa-
tion.

Investing in employee training programs,
partnering with educational institutions, and
leveraging external expertise through con-
sulting services.

Regulatory Compliance

Meeting regulatory requirements and ensuring com-
pliance with industry standards adds complexity and
time to the adoption process.

Collaborating with regulatory bodies, imple-
menting robust compliance frameworks, and
leveraging industry best practices to stream-
line regulatory compliance.

Legacy Systems Integration

Integrating DL and CV technologies with legacy sys-
tems poses compatibility and interoperability chal-
lenges.

Adopting modular architecture designs, uti-
lizing middleware solutions, and implement-
ing standardized communication protocols
for seamless integration.

Risk Aversion and Inertia

Resistance to change and risk aversion within orga-
nizations may inhibit experimentation and innovation
with new technologies.

Fostering a culture of innovation, incentiviz-
ing risk-taking behavior, and demonstrating
the tangible benefits of DL and CV imple-
mentations through pilot projects.

Data Security Concerns

Concerns about data security and confidentiality may
hinder the adoption of DL and CV solutions, particu-
larly in sensitive industrial environments.

Implementing robust data encryption, access
control mechanisms, and compliance with
industry-specific security standards to miti-
gate data security risks.

The complexity of Deployment

Complexity involved in deploying and maintaining
DL and CV systems, including software updates and
troubleshooting, can be daunting for organizations.

Automating deployment processes, adopting
DevOps practices, and utilizing container-
ization technologies for easier management
and scalability.

Cultural Shifts

Cultural barriers, and organizational inertia may im-
pede the cultural shift required to embrace digital
transformation and innovation.

Facilitating open communication, promoting
cross-functional collaboration, and fostering
leadership buy-in to drive cultural change
and adopt new technologies.

Vendor Lock-In

Dependency on specific vendors or proprietary tech-
nologies may limit flexibility and choice in adopting
DL and CV solutions.

Embracing open standards, investing in in-
teroperable solutions, and negotiating flexi-
ble vendor contracts to mitigate vendor lock-
in risks.

Return on Investment Uncertainty

Uncertainty about the return on investment and long-
term benefits of DL and CV implementations may
discourage investment and commitment from stake-
holders.

Conducting thorough cost-benefit analyses,
defining clear performance metrics, and
demonstrating tangible ROI through pilot
projects and success stories to build stake-
holder confidence and commitment.

techniques to improve model robustness. Techniques such
as transfer learning and multi-task learning can also be
employed to enhance the generalization capabilities of DL
models.

3) INTEGRATION FRAMEWORKS

Creating standardized frameworks and APIs for the seamless
integration of DL and CV technologies with existing
manufacturing systems is crucial. Collaborative efforts
between academia and industry can lead to the development
of interoperable solutions that can be easily adopted by
manufacturers. These frameworks should support modular
integration, allowing for incremental adoption and scaling of
DL and CV technologies.

4) SYNTHETIC DATA GENERATION

Leveraging synthetic data generation techniques can help
address the issue of data scarcity. Techniques such as
generative adversarial networks and simulation environments
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can be used to create large, annotated datasets for training
DL models. Synthetic data can be designed to represent a
wide range of defect types and conditions, providing valuable
training data that may be difficult to obtain from real-world
sources.

5) EFFICIENT MODEL ARCHITECTURES

Research into more efficient model architectures that require
less computational power can make DL and CV technologies
more accessible to SMEs. Techniques like model pruning,
quantization, and the development of lightweight architec-
tures can be explored to reduce the computational burden.
Efficient models can also facilitate real-time processing and
deployment on edge devices.

6) EDGE COMPUTING SOLUTIONS

Implementing edge computing solutions can help achieve
real-time processing capabilities by performing inference at
the edge of the network, closer to the data source. This
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approach can reduce latency and improve the responsiveness
of defect detection systems. Edge computing can also
enhance data privacy and security by minimizing the need to
transmit sensitive data to central servers.

By addressing these challenges through focused research
and development efforts, the integration of DL and CV tech-
nologies in manufacturing quality control can be significantly
enhanced, leading to more efficient, accurate, and adaptable
quality control processes.

VIil. CONCLUSION

This systematic review has comprehensively explored the
significant advancements and persistent challenges associ-
ated with applying deep learning (DL) and computer vision
(CV) techniques in industrial quality control, particularly for
automated defect detection. While these technologies offer
unparalleled potential in enhancing manufacturing processes,
several challenges remain that hinder their widespread
adoption and full integration. Key difficulties include the
need for large, diverse datasets to train robust models, the
complexity of deploying models in real-time production
environments, and the variability in defect patterns that can
lead to inconsistencies in detection accuracy. Additionally,
issues such as the interpretability of DL models, the
computational costs associated with real-time processing, and
the need for seamless integration with existing manufacturing
systems present significant hurdles.

Future research should prioritize the development of
more generalized models capable of adapting to different
manufacturing contexts with minimal retraining, the creation
of more interpretable DL architectures, and the exploration
of hybrid approaches that combine DL with traditional
image processing techniques. Moreover, interdisciplinary
collaboration between researchers, industry practitioners, and
policymakers will be critical in addressing these challenges,
ensuring that DL and CV technologies can be effectively
and efficiently integrated into industrial workflows. By over-
coming these barriers, the potential for DL and CV to
revolutionize quality control and manufacturing processes
can be fully realized, driving improvements in efficiency,
product quality, and overall industry competitiveness.
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