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ABSTRACT Accurate modeling is an important aspect for a reliable design, control and optimization of
proton exchange membrane (PEM) fuel cell. The mathematical model of PEM fuel cell involves a set of
non-linear equations and is considered as multi-variate, multi-modal and non-linear optimization problem
having seven unidentified parameters. This paper proposes a new hybrid approach based on weIghted meaN
oF vectOrs and Nelder-Mead (INFONM) method for PEM fuel cell parameter extraction. An optimization
problem is framed and a sumof squared error (SSE) based objective function is formulated between estimated
and experimental voltages. The effectiveness of the developed approach is evaluated on four available
benchmark fuel cell data sheets such as NedStack PS6, BCS 500 W, 250 W and Ballard Mark V fuel
cell stacks. A fair comparison is presented with well-established algorithms as well as existing literature
work to demonstrate the superiority of INFONM. The results reveal that hybrid approach produces better
outcomes in terms of accuracy, reliability and effectiveness as compared to other algorithms. Also, the
good closeness between the estimated and experimental polarization curves proves that hybrid approach
accurately determines unknown parameters. The obtained value of SSE for NedStack PS6, BCS 500 W, 250
W and Ballard Mark V PEM fuel cell stacks are 1.242, 0.0111, 0.317, and 0.619 respectively whereas, the
maximum values of percentage voltage deviations are −1.076%, 0.458%, 1.688%, and 2.69% respectively.
Furthermore, statistical indices such as mean, minimum, standard deviation, and maximum value of SSE for
hybrid approach indicate a least value among all other algorithms which elucidates hybrid approach as more
robust and efficient. Additionally, the convergence curves, box plot study and non-parametric test further
validate the robustness and reliability of INFONM in identifying unknown parameters of PEM fuel cell.
Moreover, a sensitivity analysis considering SOBOL indicators is also presented to provide an illustration
of influence of variation in extracted parameters on PEM fuel cell model.

INDEX TERMS PEM fuel cell, parameter extraction, polarization characteristics, Nelder-Mead, weighted
mean of vector optimization, statistical analysis, sensitivity analysis.
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I. INTRODUCTION
Electrical energy demand is globally increasing with rapid
changes in industrialization, civilization and economy [1].
Fossil fuels are used to fulfill this demand, but their major
disadvantages like global warming, exhaustible nature, CO2
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TABLE 1. Specifications of different PEMFCs under study [16].

TABLE 2. Upper and lower bounds for unknown parameters of
PEMFC [16], [17].

and harmful emissions limit their use [2], [3]. To effectively
meet the growing demand for electrical energy, it is essential
to utilize sustainable and environmentally friendly energy
sources [4], [5]. Currently, renewable energy resources are
increasingly popular and widely adopted for this purpose [2],
[6]. These sources offer significant advantages, including
being environmentally friendly, producing minimal carbon
emissions, and being inexhaustible. Over the past two
decades, fuel cells, a renewable energy technology, have
garnered considerable interest due to their environmentally
friendly operation and high efficiency [7], [8]. Fuel cell
stands out as an efficient and potential technology for
power generation which is being adopted for both small
and large scale applications [9], [10]. Different types of
available fuel cells are phosphoric acid, molten carbonate,
polymer exchange membrane, solid oxide, direct methanol,
alkaline and reversible fuel cells [11], [12]. Proton exchange
membrane fuel cells (PEMFC) have been considered as
the main choice due to their low temperature operation
(30◦ C-100◦ C), robust nature, environment friendliness,
high efficiency (40%-50%), and fast start up [13], [14]. All
these properties of PEMFC make it applicable in various
applications such as transportation, auxiliary power units,
distributed generation, and space applications [1], [15].
Moreover, a PEMFC is recognized for its quick response

and the manufacturers find it an emerging solution for
electrical energy generation. However, a PEMFC is a highly
non-linear system and involves many complex internal
reactions. The operation of a single PEMFC involves many
processes including electric charge transfer, heat transfer,
electro-chemical reactions and mass transfer. Therefore,
simultaneous occurrence of all these processes make PEMFC
model complex and the prediction of characteristics of
PEMFC is challenging [18]. To understand various processes
that are involved in PEMFC performance assessment under
different conditions and to optimize its design, an accurate
mathematical model is required.

The mathematical model of a PEM fuel cell (PEMFC) is
crucial for simulating and predicting its behavior in energy
systems or other operations. This model is valuable for

analyzing the performance of PEM fuel cells under different
operating conditions. It can also optimize PEMFC operation
in various applications, such as integration with renewable
energy sources, energy management, energy storage systems,
and microgrids. Additionally, the model aids in monitoring
performance and ensuring the efficient control and uti-
lization of the PEMFC in any energy system. Therefore,
an accurate model that replicates real-time PEMFC operation
is necessary. To achieve this, unknown parameters must
be accurately identified, as these parameters significantly
influence the behavior of the PEMFC. This behavior
is typically observed through polarization characteristics,
such as I-V and I-P curves. Amphlett [19] proposed a
semi-empirical mathematical model to characterize PEMFC
behavior that contains several equations representing various
physical and chemical processes involved in its operation.
Therefore, it is a great challenge to the researchers worldwide
to develop an accurate model for PEMFC due to its highly
non-linear nature. Nonetheless, the PEMFC mathematical
model is considered as a complex, multi-variate and multi-
modal, which makes it complex and hard to control and
predict its performance at different conditions [18], [20].
Additionally, themodel includes several unknown parameters
that govern the performance of the PEMFC, with each
parameter influencing the others. Even small variations
in these parameters can significantly impact the output
performance. Furthermore, manufacturer data sheets do not
provide information on these specific parameters. Therefore,
to develop an accurate model that enables effective online
control and facilitates performance assessment under varying
conditions such as different loads, temperatures, and gas
flow rates an optimal parameter extraction approach is
essential [9], [21].The behavior of a PEMFC is characterized
by its polarization characteristics, which can be derived
from a PEMFC model using a set of voltage equations.
These voltage equations, which include various unknown
parameters, have a significant impact on the polarization
characteristics. Therefore, to accurately model a PEMFC
and obtain polarization characteristics that closely match
experimental results, a parameter identification approach is
necessary.

Modern metaheuristic algorithms enabled researchers to
identify the parameters of PEMFCs more accurately and
efficiently [22], [23]. Numerous optimization techniques,
such as lightning search algorithm (LSA) [24], whale
optimization algorithm (WOA) [25], grey wolf Optimisation
(GWO) [26], manta rays foraging optimizer (MRFO) [27],
improved evaporation rate water cycle algorithm (ERWCA)
[28], gravitational search algorithm (GSA) [29], grasshoper
optimizer (GHO) [30], vortex search algorithm [31], genetic
algorithm (GA), salp swarm algorithm (SSA) [32], seeker
optimization algorithm (SOA) [33], pathfinder algorithm
(PFA), sine tree seed algorithm (STSA), tree-seed algorithm
(TSA) [34], artificial hummingbird algorithm (AHA) [35],
transient search optimization (TSO) [36], honey badger
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algorithm (HBA) [37], firefly optimization algorithm (FOA),
imperialist competitive algorithm (ICA) [38], jellyfish search
algorithm (JSA) [39], shark smell optimizer (SSO) [15],
teaching learning based optimizer and differential evolution
(TLBO-DE) [40] etc. have been suggested by researchers
in order to precisely predict the PEMFC unknown param-
eters. These algorithms offer several advantages, such as
effectively handling non-linearities, providing faster and
more accurate parameter estimation, and enabling a feature
selection mechanism for improved performance. Their use
has allowed researchers to obtain PEMFC parameters with
greater accuracy, resulting in more precise predictions and
enhanced performance. Moreover, the No Free Lunch (NFL)
theorem clarifies that no single optimization algorithm can
deliver an equally effective and accurate solution for every
optimization problem [17]. While each of these meta-
heuristic optimization algorithms can be applied to extract
unknown PEMFC parameters, their performance may vary
significantly depending on their designed search strategies.
Moreover, relying solely on metaheuristic algorithms may
not yield satisfactory results for achieving an accurate
model. Therefore, combining a metaheuristic algorithm with
a traditional optimization approach is an effective way to
enhance performance and achieve more accurate and optimal
results.

The above discussion inspires the authors to hybridize
a recently developed metaheuristic optimization technique
called INFO with Nelder Mead simplex method and
formulate an effective INFONM method for identifying
accurate values of PEMFC model unknown parameters.
To the authors’ best of knowledge, this is the first time,
INFONM is employed to obtain the optimal parameters
of PEMFC. The main goal of this paper is to develop a
realistic and accurate model of PEMFC that provides precise
modeling and simulation results in obtaining non-linear
PEMFC I-V characteristics including unknown parameters.
In this context, a hybrid INFONM approach is proposed
for PEMFC parameter extraction to determine the values
of unknown parameters. This approach minimizes the
deviation between experimental and estimated polarization
characteristics, thereby helping to obtain an accurate PEMFC
model by predicting the optimal values of unknown variables.
Moreover, it converges rapidly to a solution and is reliable
and robust in solving parameter extraction problems under
various scenarios. In this work, the parameter extraction
problem is first formulated mathematically as a non-linear
optimization problem, with an SSE based objective function
defined between the experimental and estimated voltages.
A high level of correlation is achieved between the polar-
ization curve obtained through the optimization method and
the experimental data. To demonstrate the superiority of
INFONM, a fair comparison is made between INFONM and
other algorithms such as grey wolf optimization (GWO),
bald eagle search (BES), whale optimization algorithm
(WOA), weighted mean of vectors (INFO) in identifying
parameters. Four commercially available data sheets of

PEMFC stacks are studied, and results based on statistical
analysis, voltage deviation, and non-parametric tests are
evaluated to confirm the effectiveness and reliability of the
developed approach compared to other algorithms. Box plot
and convergence curve analyses are presented to demonstrate
the robustness and convergence speed of INFONM relative to
other algorithms. Additionally, sensitivity analysis based on
the SOBOL indicator is provided to illustrate the influence
of variations in extracted parameters on the PEM fuel cell
model. The main contributions of this paper are as follows:

• Proposing a new hybrid INFONM algorithm based on
global and local search capability of INFO and NM
algorithm.

• Evaluating the effectiveness and reliability of INFONM
in terms of accuracy in identification of polarization
characteristics.

• Implementing proposed approach on four well known
PEMFC stacks and comparing its performance with
other metaheuristic algorithms based on convergence
speed, statistical analysis, and box plot analysis to prove
its superiority.

• Evaluating the performance of INFONM at different
scenarios of temperatures and pressures.

• Performing sensitivity analysis to examine the effect of
variation of extracted parameters on PEMFC model.

The organization of this paper is as follows: Section II
describes the mathematical modeling of PEM fuel cell. Prob-
lem formulation is defined in Section III. Section IV describes
the INFO and Nelder Mead methods as methodology used
in this paper and Section V gives a detailed analysis about
the results obtained in identifying unknown parameters of
different PEMFC stack under consideration. Then, SectionVI
concludes the paper.

II. MATHEMATICAL MODELING OF PEM FUEL CELL
A PEM fuel cell converts the chemical energy of reactants
into electricity. It consists of two electrodes, the anode and the
cathode, which facilitate the supply of reactants and allow the
flow of electrons to the external circuit. A polymer electrolyte
membrane is situated between these electrodes, permitting
the flow of protons while preventing electrons from passing
through it. Since a single fuel cell cannot deliver a high power
output, multiple fuel cells are connected in series to form a
fuel cell stack [44]. The behavior of a fuel cell is described
by its polarization characteristics, which are obtained from
a set of voltage equations. These characteristics include the
current-voltage (I-V) and current-power (I-P) relationships
of the fuel cell. To simulate these characteristics, a PEM
fuel cell is represented by a mathematical model. This model
comprises a set of voltage equations used to determine
the total output voltage. The detailed mathematical model,
incorporating these equations, is described as follows:

The value of the output stack voltage (Vstac) can be
expressed as [45]:

Vstac = Ncell [Ener −Vact −Vohm−Vcon] (1)
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TABLE 3. Results obtained from INFONM and other algorithms for 250 W PEMFC Stack.

TABLE 4. Results obtained from INFONM and other algorithms for ballard mark V PEMFC stack.

TABLE 5. Results obtained from INFONM and other algorithms for BCS 500 W PEMFC stack.

TABLE 6. Results obtained from INFONM and other algorithms for NedStack PS6 PEMFC stack.

where, Ncell represents the number of cells, Ener , Vact ,
Vohm, and Vcon represent reversible voltage, activation voltage
losses, ohmic voltage drop, concentration voltage losses,
respectively in volts. The first term in the right hand side of
Equation (1) represents the nernst voltage that is the potential
of the fuel cell at no load, whereas, the other three terms
represent the activation, ohmic and concentration voltage
drops that reduces the total output voltage with the increase in
fuel cell current. The mathematical calculations for obtaining
Nernst reversible voltage Ener , also called as thermodynamic
open circuit voltage, can be obtained from the basic Nernst
equation which is expressed as follows [46] and [47]:

Ener = 1.229−0.85∗10−03 [
Tfc−298.15

]
+4.3085∗10−05

∗Tfc
[
ln

(
PH2 +

√
PO2

)]
(2)

where, Tfc is operating temperature in K . PH2 and PO2 are
hydrogen and oxygen pressures respectively in bar.

The activation potential drop results from the process of
activation occurring around the cathode and anode of the fuel

cell. This potential drop is given as [48]:

Vact = −
[
ξ1 + ξ2 ∗T + ξ3 ∗Tfc ∗ ln(CO2)+ ξ4 ∗Tfc ∗ ln

(
Ifc

)]
(3)

where, ξ1 (V), ξ2 (V/K), ξ3 (V/K), and ξ4 (V/K) are
semi-empirical coefficients and CO2 represents the concen-
tration of oxygen. The concentration of oxygen can be
calculated from the following equation [48]:

CO2 =
PO2

5.08×106 × exp
(
Tfc
498

) (4)

The ohmic potential drop occurs due to the resistance that
hinders the flow of electrons in fuel cell. This drop results a
linear decrease in fuel cell voltage and is given as [48]:

Vohm = Ifc [Rm+Rc] (5)

where, Rm and Rc represent electronic and ionic resistances,
respectively. The value of electronic resistance can be
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FIGURE 1. PEM fuel cell parameter extraction process using INFONM algorithm.

obtained using following equation [48]:

Rm = ρm

(
l
A

)
(6)

where, ρm represents specific resistivity in �cm, l represents
length of membrane in µm and A represents area in cm2. The
specific resistivity is obtained as [48]:

ρm =

181.6
[
1+0.03

(
Ifc
A

)
+0.062

(
Ifc
A303

)2(
Tfc
A

)2.5]
[
λ−0.634−3

(
Ifc
A

)]
× exp

(
4.18(Tfc−303)

Tfc

) (7)

where, λ represents adjustable parameter and ρm represents
the specific resistivity in �cm.

The concentration potential drop occurs due to mass
transfer of fuel cell reactants. This results in a non-linear
reduction of fuel cell voltage at high current densities. The
concentration voltage drop is obtained using the following
equation [48]

Vcon = −b∗ ln
[
1−

J
Jmax

]
(8)

where, b represents the parametric coefficient (V), J and Jmax
are the actual and maximum current densities, respectively
in A/cm2. From above equations (1)-(11), it is observed that
ξ1,ξ2,ξ3,ξ4,λ,b, and RC are unknown parameters. These
parameters are mentioned in the manufacturer’s data sheet.
Consequently, it is observed that in obtaining an accurate
PEMFC model, these parameters are needed to identify
optimally. Therefore, in this work, a parameter extraction
process based on hybrid INFONM algorithm is proposed
and unidentified parameters are extracted effectively. The
problem formulation and methodology adopted in obtaining
these parameters is discussed in next sections.

III. PROBLEM FORMULATION
The major limitations in developing an accurate PEMFC
model are (i) there is no information of several parameters
that are used in mathematical model on fuel cell data
sheets (ii) any small variation in the values of these
parameters greatly influence the polarization characteristics
and (iii) any inaccurate value of these parameters can
largely deviate the simulated polarization characteristics from
actual one. Therefore, to build an accurate PEMFC model
considering equations (1)-(11), the values of parameters like
ξ1,ξ2,ξ3,ξ4,λ,b, and RC should be accurately estimated.
Also, the parameter extraction process for PEMFC is con-
sidered as a highly non-linear, multivariate and challenging
task. Therefore, to solve this problem, an objective function
is required to minimize the deviations between the estimated
and experimental results. An objective function, formulated
as an SSE between the experimental and estimated voltage
values of the PEMFC model is defined as follows:

Fobj = SSE =

N∑
i=1

(
Vj,exp. −Vj,est.

{
X , Ifc

})2 (9)

where, Fobj represents the objective function. Vj,est. and
Vj,exp. represent estimated and experimental voltage values.
X represents the set of unknown parameters that need to be
identified optimally. A set of inequality constraints for the
given objective function are as follows:

S.t


ξi,LB ≤ ξi ≤ ξi,UB∀i ∈ {1,2,3,4}

λLB ≤ λ ≤ λUB

bLB ≤ b≤ bUB
Rc,LB ≤ Rc ≤ Rc,UB

(10)

To address the PEM fuel cell parameter extraction problem,
a voltage-based objective function is defined in Equation (9).
This objective function represents the sum of squared
errors (SSE) between experimental voltage data points and
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estimated voltage data points. It quantifies the closeness
between the estimated and experimental voltage points
by calculating the squared error between the polarization
characteristics. Experimental voltage data points are those
measured from experiments, while estimated voltage data
points are the results obtained from estimating PEM fuel
cell parameters using an optimization approach. A lower
SSE value indicates a closer match between the experimental
and estimated polarization characteristics, leading to a more
accurate mathematical model. Therefore, the effectiveness of
developing an accurate PEMFC model relies on minimizing
the SSE objective function. In this study, the INFONM
algorithm is proposed as the optimization approach to solve
the PEMFC parameter extraction problem, with SSE as
the objective function. The primary aim is to minimize
SSE to obtain the optimal parameter values, ensuring that
the estimated polarization characteristics closely match the
experimental ones and result in a more accurate model.

IV. METHODOLOGY
In this paper, a hybrid algorithm, based onWeIghtedmeaN oF
VectOrs (INFO) and nelder mead (NM) called as INFONM
is proposed in identifying the unknown parameters. The
types of algorithms that are employed at each step of the
search process are unlimited and any algorithm with a
qualifying feature at that stage can be adopted. Thus, the
characteristics of different algorithms can be combined and
a hybridized algorithm can be formulated to achieve better
results [49]. INFONM consists of two stages for searching,
global search and local search. The main purpose of the
first stage is to explore the search space globally for finding
a solution whereas, the second stage involves an intensive
local search based on solutions obtained in the first stage.
Therefore, this study proposes an INFONM algorithm for the
process of PEMFC parameter extraction based on INFO as a
global exploration algorithm and NM algorithm for intensive
exploitation. The detailed mathematical formulation of these
algorithms are explained as follows:

A. WEIGHTED MEAN OF VECTORS (INFO) ALGORITHM
INFO algorithm uses weighted mean and position of vector
is updated using three operators which are updating rule,
vector combining and local search. In this algorithm,
optimal solution is obtained using these three operations
over successive generations. In this subsection, firstly the
mathematical definition of weighted mean is described which
is average of populations (pi) as weighted by fitness of vector
(wi). The weighted mean is defined as follows [50]:

WM =

∑N
i=1 pi×wi∑N

i=1wi
(11)

where, N represents number of vectors. For better explana-
tion, consider three vectors p1, p2, and p3, WM is given as
follows:

WM =
w1 (p1 −p2)+w2 (p1 −p3)+w3 (p2 −p3)

w1 +w2 +w3
(12)

w1 = cos((f (p1)−f (p2))+π)×exp
(

−

∣∣∣∣ f (p1)− f (p2)
ω

∣∣∣∣)
(13)

w2 = cos((f (p1)−f (p3))+π)×exp
(

−

∣∣∣∣ f (p1)− f (p3)
ω

∣∣∣∣)
(14)

w3 = cos((f (p2)−f (p3))+π)×exp
(

−

∣∣∣∣ f (p2)− f (p3)
ω

∣∣∣∣)
(15)

where, f (p) represent the fitness function of vector p. w
represents the mother wavelet function to obtain effective
oscillation during optimization. Mother wavelet function is
defined as follows:

w= cos(p)× exp
(

−
p2

ω

)
(16)

where,ω represent a constant number and is called as dilation
parameter. The main formulation of algorithm considering
populations as a set of vectors is as follows:
Initialization:

Pgl,j = pgl,1,p
g
l,2, . . . .,p

g
l,D (17)

where, l = 1,2 . . . .,Np
Updating Rule: In this stage MeanRule based on top five

solutions is considered and is evaluated as follows:

MeanRule= r×WM1gl + (1− r)×WM2gl (18)

Algorithm 1 INFO
1: Initialization: Pgl,j = pgl,1,p

g
l,2, . . . .,p

g
l,D.

2: Objective function evaluation for each vector f (Pgl,j) and
determine best vector pbs

3: for g= 1 to Maxg do
4: for i= 1 to Np do Randomly select a ̸= b ̸= c ̸= i in

the range [1,Np]
5:

6: Updating rule stage: Determine the vectors z1gl
and z2gi using Equation (32)-(38)

7:

8: Vector Updating stage: Determine the vector ugi
using Equation (39)-(41)

9:

10: Local search stage: Determine the operator
for local search using Equation 42-45 and evaluate
the objective function f (ugi,j)

11: if f (ugi,j) < f (pgi,j) then p
g+1
i,j = ugi,j

12: elsepg+1
i,j = pgi,j

13: end if
14: end for
15: Update the best vector pbs
16: end for
17: return Vector pgbest,j as the final solution
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where,

WM1gl

= δ ×
w1 (pa1 −pa2)+w2 (pa1 −pa3)+w3 (pa2 −pa3)

w1 +w2 +w3 + ε + ε × rand
(19)

where,

w1 = cos((f (pa1)− f (pa2))+π)

× exp
(

−

∣∣∣∣ f (pa1)− f (pa2)
ω

∣∣∣∣) (20)

w2 = cos((f (pa1)− f (pa3))+π)

× exp
(

−

∣∣∣∣ f (pa1)− f (pa3)
ω

∣∣∣∣) (21)

w3 = cos((f (pa2)− f (pa3))+π)

× exp
(

−

∣∣∣∣ f (pa2)− f (pa3)
ω

∣∣∣∣) (22)

ω = max(f (pa1) , f (pa2) , f (pa3)) (23)

WM2gl = δ ×
w1 (pbs−pbt)+w2 (pbs−pws)+w3 (pbt −pws)

w1 +w2 +w3 + ε + ε × rand
(24)

where,

w1 = cos((f (pbs)−f (pbt))+π)× exp
(
−

∣∣∣∣ f (pbs)−f (pbt)
ω

∣∣∣∣)
(25)

w2 = cos((f (pbs)−f (pws))+π)× exp
(
−

∣∣∣∣ f (pbs)−f (pws)
ω

∣∣∣∣)
(26)

w3 = cos((f (pbt)−f (pws))+π)× exp
(
−

∣∣∣∣ f (pbt)−f (pws)
ω

∣∣∣∣)
(27)

ω = f (pws) (28)

where, ϵ represents a constant number with very small value.
pbt , pbs, and pws represent better, best, and worst solutions.
a1 ̸= a2 ̸= a3 ̸= l represent different randomly selected
integers in range [1,Np]. r represent a random number
between 0 and 0.5. rand represents a random value.

δ = 2β × rand−β (29)

β = 2∗ exp
(

−4×
g

Maxg

)
(30)

The global search ability of algorithm is enhanced using a
convergence acceleration (CA) and is added to updating rule.
The mathematical formulation is given as follows:

CA= randn
(pbs−pa1)

f (pbs)− f (pa1 + ϵ)
(31)

where randn represents a normally distributed random value.
Finally new vector is evaluated as follows:

zlg = x lg+σ ×MeanRule+CA (32)

Algorithm 2 Nelder-Mead Simplex Method
1: Formulate a simplex of D+1 vertices.
2: Set parameters α = 1,γ = δ = 0.5,β = 2, Iteratins=

1000.
3: Step:1 Sort in ascending order as f (p1) < f (p2)

< .. . < f (D) < f (D+1).
4: Step:2Evaluate Reflection Point, pr = (1+α)p−αpD+1.
5: if f (p1) ≤ f (pr ) ≤ f (pD) then Replace pD+1 with pr and

Go to Step 6.
6: if f (pr ) ≤ f (p1) thenMove to Step 3.
7: if f (pr ) ≥ f (p1) then Go to Step 4.
8: end if
9: end if
10: end if
11: Step:3 Evaluate Expansion Pont, pe = (1−β) ·p+βpr .
12: if f (pe) ≤ f (pr ) then.
13: Replace pD+1 with pe.
14: else
15: Replace pD+1 with pr and Move to Step 6.
16: end if
17: Step:4
18: if f (pr ) < f (pD+1) then, evaluate outside contraction

point poc using Equation (49).
19: else
20: Evaluate inside contraction point using

Equation (50).
21: end if
22: Step:5 Except pi Shrink all vertices using Equation (51).
23: Step:6 Check end criterion.
24: if Condition is met then Stop the search.
25: else
26: Begin the subsequent iteration using the updated

simplex.
27: end if

if rand ≤ 0.5:

z1lg = plg+σ ×MeanRule+ randn×

(
pbs−pga1

)(
f (pbs)− f

(
pga1

)
+1

)
(33)

z2gl = pbs+σ ×MeanRule+ randn×

(
pga1 −pgb

)(
f
(
pga1

)
− f

(
pga2

)
+1

)
(34)

else

z1gl = pga+σ ×MeanRule+ randn×

(
pga2 −pga3

)(
f
(
pga2

)
− f

(
pga3

)
+1

)
(35)

z2gl = pbt +σ ×MeanRule+ randn×

(
pga1 −pga2

)(
f
(
pga1

)
− f

(
pga2

)
+1

)
(36)

σ = 2α × rand −α (37)
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α = c∗ exp
(

−d×
g

Maxg

)
(38)

Vector Combining Stage: To improve the diversity in
population, calculated vectors in previous stage are combined
as follows:
if rand ≤ 0.5

ugl = z1gl +µ.
∣∣z1gl − z2gl

∣∣ (39)

else

ugl = z2gl +µ.
∣∣z1gl − z2gl

∣∣ (40)

end
else

ugl = pgl (41)

end
where, ugl represents vector found in combining stage andµ =

0.05× randn
Local Search Stage: To avoid being trapped in local

minima an effective local search helps in obtaining the
optimal solution. This can be defined as follows: if rand ≤ 0.5

ugl = pbs+ randn×
(
MeanRule+ rand×

(
pgbs−pga1

))
(42)

else

ugl = prnd + randn

× (MeanRule+ rand× (v1 ×pbs− v2 ×prnd )) (43)

where,

prnd = φ ×pavg+ (1−φ)× (φ ×pbt + (1−φ)×pbs)

pavg =
(pa+pb+p3)

3
(44)

v1 =

{
2× rand if r > 0.5
1 otherwise

v2 =

{
rand if r < 0.5
1 otherwise

(45)

where, r is random number between 0 and 1. The pseudo code
for INFO algorithm is presented as Algorithm 1.

B. NELDER-MEAD SIMPLEX METHOD
Nelder-Mead (NM) is an iterative algorithm that does not
require any gradient information to solve an optimization
problem. To solve any d dimensional optimization problem
NM uses D = 1 starting vertices to form a simplex, and new
vertices replace theworst vertices on each iteration. It consists
of four parameters which are known as expansion factor
β, reflection factor α, shrinkage factor δ, and contraction
factor γ . The pseudo code for NM method is represented in
Algorithm 2. The iteration for NM method can be performed
as follows:
Step 1: Sort every vertex in an ascending order and

renumber them as per their fitness function values.

Step2: Evaluate the reflection point pr as per following
equation

pr = (1+α)p−αpD+1 (46)

p =

n∑
i=1

pi/D (47)

if f (p1) ≤ f (pr ) ≤ f (pD) then replace pD+1 with pr and jump
to Step 6; iff (pr ) ≤ f (p1) then go to Step3; if f (pr ) ≥ f (p1),
then jump to Step 4.
Step:3 Calculate the expansion point pe as follows:

pe = (1−β)p+βpr (48)

iff (pe) ≤ f (pr ), then replace pD+1 with pe; else, replace pI
pr. Then, jump to Step 6.
Step 4: calculate the inside contraction point pic and outside

contraction point pocas per following equations:

poc = (1−γ )p+γ pr (49)

pic = (1−γ )p+γ pD+1 (50)

if f (pr ) < f (pD+1), then calculate the outside contraction
point poc else, calculate the inside contraction point; if
f (poc) ≤ f (pr ), then replace pD+1 with poc, and move to
Step 6; else, proceed to Step 5; if f (pic) ≤ f (pD+1), then
replace pD+1 with pic, and move to Step 6 else, proceed to
Step 5.
Step 5: Shrink every vertex except pi.

Vi = δpi+ (1− δ)p1, where i= 2, . . . ,D+1 (51)

Step 6: Stop searching, if end criterion is met. Otherwise
begin the subsequent iteration using the updated simplex.

C. PROPOSED HYBRID INFONM ALGORITHM
This study proposes an algorithm, hybridizing INFO
algorithm and nelder mead (NM) method, called as
INFONM. These algorithms are adopted due to their different
search characteristics to obtain optimal solutions. INFO
algorithm is adopted in various optimization problems due
to its effective global exploration characteristics. However,
in some cases, it traps in local minima due to less exploitation.
Its convergence speed is also affected due to local minima
trap. On the other hand, NM algorithm is powerful in local
exploitation, but it needs initial values of variables to start
the search process. NM algorithm is sensitive to initial values
of the variables because it traps in local minima if initial
points are not appropriate. Therefore, the unique features of
these two algorithms are taken into account and a hybridized
algorithm, known as INFONM algorithm is proposed in
which INFO algorithm is applied at first stage for global
exploration and the values obtained from INFO algorithm are
utilized as initial points to NM method for local exploitation.
The hybrid method is adopted to extract seven unknown
parameters of PEMFC and its pseudo code is mentioned as
Algorithm 3.
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Algorithm 3 Implementation of Proposed Parameter Extrac-
tion Approach
1: Start Procedure:

• Set the parameters of INFO Algorithm, Number
of search agents = 30, Maximum number of
iterations = 1000, Number of runs = 30.

• Set parameters of Nelder-Mead Simplex
algorithm β = 2,α = 1,γ = δ =

0.5, Iterations= 1000.
• Set the lower and upper limits of search ranges

from Table 2
2: Initialization:

• Initialize INFOAlgorithmwith random position
and evaluate objective function Fobj mentioned
in Equation (9)

• Initialize Nelder-Mead simplex around the best
positions

3: while stopping criterion not met do
4: Update positions obtained using INFO algorithm.
5: Evaluate fitness of each position using the objective

function.
6: Update best positions using INFO algorithm.
7: Apply Nelder-Mead Simplex method to update the

simplex around the best position.
8: Calculate fitness of vertices in the simplex method.
9: Update best position.

10: Return Fobj
11: end while
12: End Procedure

V. RESULTS AND DISCUSSIONS
In this study, the INFONM algorithm is proposed to extract
the unknown parameters of PEMFCs. Four different case
studies are considered, using commercially available data
sheets from PEMFC stacks such as NedStack PS6, BCS
500-W, Ballard Mark V, and 250 W stack, to evaluate the
effectiveness of the INFONM algorithm. The specifications
of these PEMFCs are listed in Table 1 and are taken
from [16]. The experimental results for these fuel cells
are presented as polarization curves in the literature. The
necessary experimental data, including voltage and power
at different currents, to plot the polarization characteristics
have been obtained from [16]. This data is used to validate
the results obtained using the proposed INFONM algorithm,
with validation based on minimizing the deviation between
experimental and estimated polarization characteristics. The
lower and upper limits for seven unknown variables are
provided in Table 2 and are taken from [16] and [17].
The process of parameter extraction is presented in Fig. 1

in which firstly the data set of experimental current is used in
the PEM fuel cell presented in Equation (1)-(8). The unknown
parameters are obtained using Algorithm 3 based on objective
function mentioned in Equation (9) subject to constraints
mentioned in Equation (10) and it produces an output as

an estimated voltage corresponding to obtained parameter.
Now the sum of squared error is calculated at this step
between estimated and experimental voltage. The obtained
model is then verified through polarization characteristics
I-V and I-P curves. The main aim is to minimize the SSE
and obtain closeness between the experimental and estimated
polarization characteristics. If this error is not less and model
is not verified this process continues till the stopping criteria
is met which is number of iterations in this study and
parameters are updated at each iteration.

In this study, the results obtained using INFONM for
all PEMFC stacks are compared with four well-established
algorithms, JAYA algorithm, whale optimization algorithm
(WOA), grey wolf optimization (GWO ), bald eagle search
algorithm (BES) and also with the algorithms from literature
to prove the authenticity of INFONM. The key benefits
of this new hybrid approach over other algorithms for the
parameter extraction of PEM fuel cell is enhanced accuracy,
faster convergence and avoids local minima. The enhanced
accuracy for PEMFC parameter extraction can be illustrated
from results tabulated in Table 3, 4, 5, and 6 where, INFONM
achieves the lower SSE value among all other algorithms
in all of the four case studies. Also, Fig. 2 and 3 show the
closeness between the estimated polarization characteristics
using INFONM and experimental polarization characteristics
and clearly demonstrates the accuracy of INFONM in
extracting PEMFC unknown parameters. Moreover, due to
global exploration and local exploitation of INFONM its
fast convergence can be seen from Fig. 4 which shows that
within fewer iteration INFONM algorithm converges and
avoids local minima whereas, other algorithms in comparison
suffer from local minima problem and have relatively slow
convergence than INFONM.

The developed PEMFC parameter extraction algorithm
based on INFONM, along with other optimization algo-
rithms, is implemented for 30 individual runs. The least value
of the objective function among these 30 runs is considered,
with each algorithm set to a maximum of 1000 iterations for
a fair comparison. Convergence curves and box plot analysis
are conducted to demonstrate the speed and robustness of the
algorithms. Statistical indices such as the mean, minimum,
standard deviation, and maximum value of the objective
function are used to assess the robustness and efficiency
of the optimization approaches. In this work, SSE is used
as the objective function, and INFONM is proposed as a
robust approach and compared with other algorithms based
on 30 independent runs. The statistical indices are calculated
for these 30 runs. The lowest value among the 30 runs is
considered as the minimum (best) value, while the highest
value is considered as the maximum (worst) value. The
minimum SSE value represents the best-case performance,
whereas, the maximum SSE value indicates the worst-case
performance for the given scenarios. In the proposed work,
the INFONM algorithm achieves the lowest SSE values
for both best and worst case performances compared to
the other algorithms. Additionally, the mean and standard
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FIGURE 2. Experimental and estimated I-V curves using INFONM for (a) 250 W PEMFC stack, (b) Ballard mark V PEMFC stack, (c) BCS 500 W
PEMFC stack, and (d) NedStack PS6 PEMFC stack.

deviation of SSE values over the 30 runs are calculated.
The mean SSE provides a measure of central tendency and
overall accuracy. Comparing the central points of SSE values
across algorithms, a lower central point indicates a more
superior algorithm. INFONM shows the lowest central point
among the algorithms tested, making it a suitable choice
for estimating unknown parameters. The standard deviation
reflects the spread of SSE values around the mean and
indicates variability. A lower standard deviation signifies
greater efficiency. INFONM demonstrates the least standard
deviation of SSE values among the algorithms, indicating its
robustness. Therefore, the statistical analysis in this paper
effectively demonstrates the robustness and efficiency of
the INFONM method. Additionally statistical analysis is
presented as box plot in Fig. 5 and variation of statistical
indices for different algorithim is presented in Fig. 6 as a radar
chart. Moreover,Wilcoxn and Friedman’s tests are performed
to test the reliability of the algorithm. Additionally, to provide
a significant basis for reliability of INFONM, a percentage
of voltage deviation, (V%v.d ) is calculated as the percentage
of ratio of difference between experimental and estimated
voltages to estimated voltage. This analysis is presented in
Fig. 7. The performance of INFONM algorithm in extracting

TABLE 7. Statistical analysis, Friedman’s rank and wilcoxon test
for 250 W PEMFC stack.

the unknown parameters for different case studies is given in
the next subsections.

A. CASE STUDY I: 250 W PEMFC STACK
In this subsection, a commercially available 250 W PEMFC
stack is considered to evaluate the performance of the
INFONM algorithm in determining the unknown parameters
of the fuel cell. The technical parameters of the 250 W
PEMFC stack are provided in Table 1.The obtained values of
parameters and statistical analysis using different algorithms
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TABLE 8. Statistical analysis, Friedman’s rank and wilcoxon test for
Ballard Mark V PEMFC stack.

TABLE 9. Statistical analysis, Friedman’s rank and wilcoxon test for
BCS 500 W PEMFC stack.

TABLE 10. Statistical analysis, Friedman’s rank and wilcoxon test for
Nedstack PS6 PEMFC stack.

are listed in Table 3 and Table 7. The results obtained
using INFONM are compared with BES, GWO, WOA,
JAYA, INFO and algorithms from literature like HBA, JSA,
IAEO, AHA, IAHA, GHO. From Table 3, it is clearly
observed that the developed parameter extraction algorithm,
INFONM, yields theminimumSSE value of 0.316798 among
other algorithms. Statistical analysis performed over 30 runs
demonstrates the robustness of the algorithm. From Table 7,
it is clearly observed that the developed parameter extrac-
tion algorithm, INFONM achieves the lowest values for
maximum, minimum, average, and standard deviation of
SSE compared to other algorithms. Additionally, INFONM
ranks first using Friedman’s Rank test and outperforms
all other algorithms in every case using the Wilcoxon
test, which confirms its reliability in solving the PEMFC
parameter extraction problem. A variation of statistical
indices for different algorithms is shown in Fig. Fig. 6a
which shows that INFONM is a reliable algorithm. The
accuracy of the INFONM algorithm is further validated

using polarization characteristics, specifically the I-V and
I-P curves, as shown in Fig. 2a and Fig. 3a, respectively.
The best SSE values obtained among 30 runs is used to
plot the polarization curves. The close match between the
experimental and estimated polarization curves indicates
that INFONM accurately extracted the unknown parameters.
Additionally, convergence curve analysis is performed to
assess convergence speed, as shown in Fig. 4a. It is
observed from Fig. 4a that INFONM converges rapidly as
compared to other algorithms. Additionally, the robustness
of the INFONM is validated using box-plot analysis as
shown in Fig. 5a. It is found that with least value of
median and smallest interquartile range INFONM outper-
form among other algorithms. Further, the voltage deviation
percentage is evaluated to check the reliability and it is
observed that maximum value of V%v.d is 1.688% as shown
in Fig. 7a.

B. CASE STUDY II: BALLARD MARK V PEMFC STACK
This case study evaluates the performance of INFONM on
a commercially available Ballard Mark V fuel cell stack.
The technical specifications of Ballard Mark V are listed in
Table 1. The results obtained using INFONM are compared
with GWO, BES, JAYA, WOA, and INFO. Moreover,
comparison with algorithms from literature like, GOA, PFA,
NNO, AHA, and GHO are considered.The objective func-
tion values along with obtained parameters using different
algorithms are given in Table 4 where as, statistical analysis
based on objective function values is presented in Table 8.
From Table 4, it can be observed that INFONM produced a
minimum value of SSE of 0.619895 over other algorithms.
The statistical analysis over 30 runs, tabulated in Table 8
shows a least value of maximum, minimum, average and
standard deviation of SSE and obtained first rank in solving
PEMFC parameter extraction problem. The variations of
statistical indices shown in Fig. 6b indicate that INFONM is
a robust algorithm. Moreover, the accuracy of the proposed
algorithm can be observed by a good closeness between the
experimental and estimated I-V and I-P characteristics as
mentioned in Fig. 2b and Fig. 3b, respectively. Furthermore,
from Fig. 5b convergence curves for different algorithm is
shown for this case study and it is observed that INFONM
effectively converges faster than other algorithm. Box plot
analysis is shown in Fig. 4b which further validates the
robustness of the algorithm by showing least median and
smaller interquartile range among other algorithms. The
maximum value of V%v.d is obtained as 2.69% for this
case study and is presented as shown in Fig. 7b. Thus,
the reliability of INFONM in extracting unknown PEMFC
parameters for this case study is concluded from the above
discussions.

C. CASE STUDY III: BCS 500 W
In this subsection, INFONM algorithm along with JAYA,
GWO, BES, WOA and INFO algorithms have been imple-
mented for BCS 500W. The results have also been compared
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FIGURE 3. Experimental and estimated I-P curves using INFONM for (a) 250 W PEMFC stack, (b) Ballard mark V PEMFC stack, (c) BCS 500 W
PEMFC stack, and (d) NedStack PS6 PEMFC stack.

with algorithms implemented in literature like SSO, HBA,
FOA, ICA, JSA, and AHA to illustrate the authenticity of
developed algorithm. The technical specifications used for
this study are tabulated in Table 1. Results using different
algorithms and the values of obtained parameters are men-
tioned in 5 which elucidates that INFONM shows a minimum
SSE of 0.01110012 over all other algorithms. 2c and 3c
presents the polarization characteristics of BCS 500 W and
it is observed that there is a close approximation of experi-
mental and estimated I-V and I-P characteristics, respectively
which further demonstrates the accuracy of INFONM in
identifying optimal values of unknown parameters. The
statistical analysis is also tabulated in Table 9, and it reveals
that INFONMwith least value of average, standard deviation,
minimum and maximum for SSE outperformed over all other
algorithms. Further, it is observed from Fig. 6c that INFONM
performed better in terms of variations of statistical indices
over different algorithms. Fig. 4c shows the convergence
characteristics using different algorithm for BCS 500 W and
it is concluded that INFONMdelivers faster convergence over
other algorithms. The robustness of INFONM for BCS 500W
fuel cell stack is validated using box plot as shown in Fig. 5c.
It is observed that INFONM with least median and small

interquartile range outperformed among other algorithms.
Furthermore, a highest V%v.d of 0.458%, as shown in Fig. 7c,
illustrates the reliability of INFONM to solve the PEMFC
parameter extraction problem effectively.

D. CASE STUDY IV: NEDSTACK PS6 PEMFC STACK
In this case study, the NedStack PS6 fuel cell is considered,
and the performance of the INFONM algorithm is examined
in comparison with GWO, BES, JAYA, WOA, and INFO
algorithms. The results are also compared with algorithms
from the literature, such as GSA,VSA,GA, SSA, andMRFO.
The technical specifications of NedStack PS6 fuel cell are
listed in Table 1. The value of unknown parameters along
with objective function evaluations for different algorithm is
tabulated in in Table 6. From this table it can be observed
that INFONM identifies the unknown parameters effectively
with least SSE value of 1.2424162. Fig. 2d and Fig. 3d
demonstrate a close match between the experimental and
estimated I-V and I-P characteristics, respectively, further
illustrating the accuracy of INFONM in extracting unknown
parameters. The superiority of INFONM is further confirmed
by statistical analysis, as presented in Table 10. This table
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FIGURE 4. Convergence curves for (a) 250 W PEMFC stack, (b) Ballard mark V PEMFC stack, (c) BCS 500 W PEMFC stack, and (d) NedStack
PS6 PEMFC stack.

shows that INFONM achieves the lowest average, standard
deviation, maximum, and minimum values of SSE over
30 runs. Additionally, INFONM ranks first using Friedman’s
rank test and outperforms all other algorithms in solving the
parameter extraction problem. The variations of statistical
indices for all algorithms is as shown in Fig. 6d and reveal
the effectiveness of INFONMover other algorithms. Box plot
analysis is further presented as shown in Fig. 5d which shows
a small interquartile range and least value of median over all
other algorithms. The reliability of INFONM is also observed
from Fig. 7d, with a highest V%v.d of 1.242%. Furthermore,
from convergence curve, as shown in Fig. 4d, it can be
observed that the developed algorithm demonstrates faster
convergence speed compared to other algorithms, effectively
solving parameter extraction problems.

VI. SENSITIVITY ANALYSIS
A Global Sensitivity Study (GSS) is conducted to analyze
how variations in the extracted parameters of a PEM fuel
cell impact the sum of squared error calculations. This
method is useful for understanding the relationship between
the extracted parameters and the performance of the model.
Sensitivity analysis using Sobol indicators provides insights

into the first-order effects Si and overall effects So of unknown
parameters on a fuel cell model output. The first-order
effect Si reflects the influence of individual parameters on
the model’s output, indicating that a higher Si value means
a greater impact of that parameter on the output when
considered alone. In contrast, the overall effect So captures
the total impact of each parameter, including both its direct
effect and interactions with other parameters. A higher So
value suggests that the parameter, along with its interactions,
has a more significant influence on the model output.
This sensitivity analysis, based on Si and So indicators,
helps identify crucial parameters whose small variations
can significantly affect the fuel cell model’s performance.
It also aids in uncertainty analysis by determining which
parameters are highly sensitive to small changes. Sobol
sensitivity indicators, such as Si for first-order effects and
So for overall effects, are determined through extensive
Monte Carlo simulations. Si shows the individual effect
of parameter variations on the model output, while So
provides a comprehensive view by accounting for parameter
interactions. The discrepancies between Si and So reveal
the extent of parameter interactions. When interactions are
absent, Si and So are equal and if Si is of higher values,

121358 VOLUME 12, 2024



R. Khajuria et al.: Optimal Parameter Extraction of PEM Fuel Cell

FIGURE 5. Box plot for (a) 250 W PEMFC stack, (b) Ballard mark V PEMFC stack, (c) BCS 500 W PEMFC stack, and (d) NedStack PS6 PEMFC
stack.

it shows a greater parameter importance. In this study,
the range of parameter variations is set at ±10% of the
optimized values for different PEMFC stacks and the number
of samples are set at 20,000. The resulting values of the
Sobol sensitivity indicators for each optimized parameter for
all of the four case studies are summarized in Table 11.
The analysis highlights that PEMFC fuel cell model is
substantially dependent on two key parameters, ξ2 and b,
which is evidenced by their notably high Si and So values.
Parameters, ξ1,ξ3,ξ4 exhibit moderate sensitivity, while λ

and RC show minimal sensitivity. These findings reveal the
highly nonlinear nature of the mathematical model of PEM
fuel cell and highlights that even a small variation in the
optimized parameters can significantly impact the output
performance, particularly concerning ξ2 and b.

VII. ROBUSTNESS OF INFONM FOR DIFFERENT PEMFC
STACK UNDER DIFFERENT SCENARIOS
A. 250 W PEMFC STACK
In this subsection, firstly INFONM is applied to map
the experimental polarization characteristics at different
operating temperatures and pressures. The 250 W PEMFC

stack is considered at different operating conditions. The
technical specifications are tabulated in Table 1 where as,
temperature, inlet hydrogen pressure and outlet oxygen
pressure are set at different values for four different scenarios.
These scenarios are set at four different reactants pressure
(H2/O2) of 3/5, 1.5/1.5, 1/1 and 2.5/3 bar respectively where
as, for first scenario temperature is set at 353.15 K and
for other three scenarios temperature is set at 343.15. From
Fig. 8, it is observed that the estimated I-V characteristics
using INFONM accurately map with experimental I-V
characteristics which further demonstrates the effectiveness
of INFONM to perform better even at different operating
conditions.

B. PERFORMANCE OF 250 W AND BCS 500 W AT
DIFFERENT TEMPERATURES AND PRESSURES
To analyze the effect of temperature and pressure variations
on the polarization characteristics and verify the model’s
authenticity, two PEMFC stacks, namely BCS 500 W
and 250 W, are considered. The technical specifications of
these stacks remain the same as those listed in Table 1,
except for changes in temperature and reactant pressures
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FIGURE 6. Variation of statistical indices for (a) 250 W PEMFC stack, (b) Ballard Mark V PEMFC stack, (c) BCS 500 W PEMFC stack, and (d) NedStack
PS6 PEMFC stack.

TABLE 11. Sobol sensitivity indicators for extracted PEMFC parameters.

under different scenarios. Initially, an analysis is conducted
at different temperatures, where the reactant pressures are
set as specified in Table 1 for both stacks. The temperature

is varied from 303 K to 353 K for the 250 W PEMFC
stack and from 303 K to 333 K for the BCS 500 W
PEMFC stack. From Fig.9, it is observed that with increase
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FIGURE 7. Percentage voltage deviation for different PEMFC stacks (a) 250 W PEMFC stack, (b) Ballard mark V PEMFC stack, (c) BCS 500 W
PEMFC stack, and (d) NedStack PS6 PEMFC stack.

FIGURE 8. Estimated and experimental I-V curves at different temperatures and pressures for 250 W PEMFC stack.

in temperature, the voltage and power output of 250 W
PEMFC stack increase. This relationship can be verified
from Equation (2), (3), (4) and (7). From Equation (2)
it is observed that there is a linear relationship between
temperature and the nernst voltage and, therefore, there is

increase in total voltage but at the same time, it is observed
that the total voltage decreases due to rise in potential drops
due to increase in temperature as per Equation (3), (4) and (7).
However, the rise in potential drops are less significant than
that of in the nernst voltage. Therefore, the total voltage
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FIGURE 9. Polarization characteristics of 250 W PEMFC stack at different temperatures.

FIGURE 10. Polarization characteristics of BCS 500 W PEMFC stack at different temperatures.

FIGURE 11. Polarization characteristics of 250 W stack at different pressures.

increases with rise in temperature and the same results are
obtained for power with temperature rise of PEMFC as
power is the product of voltage and current. The same can

be observed from Fig. 10 for BCS 500 W PEMFC stack
that with rise in temperature, the total output voltage of
BCS 500 W PEMFC stack increases and thus, validates
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FIGURE 12. Polarization characteristics of BCS 500 W PEMFC stack at different pressures.

TABLE 12. Estimated and experimental voltages at different pressures and temperature for 250 W PEMFC stack.

the accuracy of PEMFC model. For analysis of variation of
reactant pressures, the temperature for both PEMFC stacks is
considered as mentioned in Table 1. The reactants’ pressures
for 250 W PEMFC stack are set at 6/3.5, 5/3, 4/2, and 3/2 bar
and for BCS 500 W they are set at 1/0.2075, 1.5/1, 2/1.25,
and 2.5/1.5 bar. From Fig. 11 and Fig. 12, it is observed
that, with rise in the inlet pressure of reactants, both output
voltage and power improve. This relationship can be verified
through Equation (2), which indicates that the Nernst voltage
is logarithmically proportional to the reactants’ pressure.
As a result, an increase in reactant pressure leads to a
rise in Nernst voltage. However, due to the logarithmic
nature of the relationship, this increase is relatively small.
Consequently, the slight increase in Nernst voltage results
in a modest rise in the total output voltage of the PEMFC

stack. This observation directly correlates the performance of
the 250W and BCS 500W stacks with the proposed accurate
PEMFC model using the INFONM algorithm, verifying that
INFONM is a robust algorithm for accurately extracting
unknown parameters. From the discussions in case studies
I-V, it is concluded that the INFONM algorithm effectively
estimates the values of the unknown PEMFC parameters.
Among other algorithms, INFONM stands out in terms of
accuracy, convergence speed, and reliability. Additionally,
INFONM is capable of estimating unknown parameters
under dynamic conditions, including varying temperatures
and pressures. It accurately determines the polarization
characteristics and aligns them with experimental results
under these conditions, demonstrating its reliability. The
robustness of the INFONM algorithm across different
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TABLE 13. Estimated and experimental voltages for NeDStack PS6, BCS500 W, 250 W and ballarad mark V PEMFC stack.

scenarios further illustrates that accurate polarization charac-
teristics at various temperatures and pressures can be obtained
using the extracted parameters, matching closely with the
outcomes of the PEMFC mathematical model. Moreover,
INFONM is easy to implement. While the Nelder-Mead
algorithm requires several parameters, there is no need
for tuning them, as standard values produce satisfactory
results, as shown in this study. Therefore, a straightfor-
ward approach has been applied to solve the nonlinear,
multivariate, and complex optimization problem of PEMFC
parameter extraction. INFONM is thus highly recommended
for PEMFC model parameter extraction. However, it is
important to note that the above discussions are limited
to the application of INFONM to the PEMFC parameter
extraction problem. Additionally, according to the no free

lunch theorem, there is no single algorithm that performs
well on every problem. For this reason, INFONM and five
other algorithms were also tested in this study. The results
showed that INFONM outperformed the others, proving its
competitiveness in solving this problem. It should be further
considered that these algorithms were tested only for PEMFC
parameter extraction, they should also be evaluated on
other complex optimization tasks to investigate their broader
competitiveness.

VIII. CONCLUSION
A new efficient and robust hybrid INFONM technique
is proposed to extract the optimal parameters of PEMFC
model. Four different PEMFC stacks viz NedStack PS6,
BCS 500W, Ballard Mark V and 250W Stack are considered
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to evaluate the effectiveness of hybrid approach in extracting
the unknown parameters of the mentioned fuel cell stacks
and obtaining the accurate polarization characteristics that
matches with the experimental polarization characteristics.
This approach is helpful in obtaining accurate mathematical
model and can be helpful in the optimized operation of
PEMFC in various applications such as fuel cell integration
with renewable energy sources, energy management, energy
storage systems, microgrids etc. Also, this model helps
in monitoring the performance and ensuring the efficient
control and use of the PEMFC. Seven unknown parameters
(ξ1,ξ2,ξ3,ξ4,λ,b, and RC ) have been evaluated optimally
using INFONM based on sum of squared error as the objec-
tive function. The closeness between the experimental and
estimated polarization characteristics, I-V and I-P curves val-
idated the accuracy of the proposed approach. It is found that
INFONMaccurately determines the values of seven unknown
parameters and is a good identifier that closely matches with
the experimental polarization characteristics. Moreover, a fair
comparison between the results obtained using INFONM
algorithm and recent optimization approaches as well as
algorithms from the literature is performed to confirm
its superiority. The Friedman and Wilcoxon test assessed
the statistical validity and demonstrated that the INFONM
outperformed among other algorithms and obtained the
first rank in all case studies. Moreover, convergence curves
and box plot analysis demonstrate that INFONM converges
rapidly and proves its robustness with least median and
small interquartile range in box plot. The sensitivity analysis
considering SOBOL indicators demonstrates that any small
variation in extracted parameter can greatly influence the
PEMFC model. Therefore, the INFONM algorithm is proven
to be an effective and robust approach in identifying PEMFC
model unknown parameters. It should be further considered
that INFONM algorithm is tested only for PEMFC parameter
extraction, it should also be evaluated on other complex
optimization tasks to investigate their broader competitive-
ness. Further, the future studies will involve the performance
analysis and comparison of INFONM with other standard
algorithms such as phasor particle swarm optimization etc.
Moreover, the future work in this research will be related to
integrating the derived accurate PEMFC model into energy
systems and investigate its performance under real scenarios.

APPENDICES
The authors have provided themeasured value of volatges and
currents at different temperatures and pressure for the 250 W
PEMFC STACK in Table 12 for more clarification and
validation of the results. Also, the measured value of volatges
and currents for NedStack PS6, BCS 500 W, 250 W and
Ballard Mark V have been presented in Table 13.
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