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ABSTRACT In the realms of Internet of Things (IoT), satellite communication, and related scenarios,
automatic modulation recognition is crucial for accurate signal demodulation. In complex communication
environments, accurately identifying diverse modulation types is a challenging task. This paper introduces
an automatic modulation recognition approach leveraging a joint neural network framework. The method
integrates a flow-based collaborative training module for signal enhancement, a deep learning mechanism
for feature extraction, and a two-dimensional sparse weighting mechanism. This method enhances the input
signal through enhancement processing and strengthens attention to different dimensional features via a
weighting mechanism, thereby suppressing irrelevant features with lower weights. The network architecture
is optimized in terms of layer depth and connectivity to enhance modulation identification accuracy and
model stability under non-ideal conditions. Experimental evaluations conducted on the RML2016.10a
dataset across varying SNR demonstrate the method’s robustness in low SNR environments and its effective
recognition performance for high-order modulated signals compared to baseline models.

INDEX TERMS Automatic modulation recognition, joint neural network, signal enhancement module,
weight sparsity, two-dimension sparse weighting mechanism.

I. INTRODUCTION
As we enter the era of the Internet of Things, an increasing
variety of signals have become ubiquitous in our daily lives.
In order to extract and exploit the information carried by
these signals, it is necessary to recognize and demodulate the
signal modulation first. Automatic modulation recognition
(AMR) technology obtains crucial information such as
bandwidth requirements, modulation parameters, and data
transmission rates necessary for demodulation, through the
examination of the modulation method. This technology
provides technical support and assurance for signal reception
and processing. This technology is initially applied in
the military domain, such as radar signal reconnaissance
and signal interception [1], [2]. Currently, it has found
extensive applications in various fields including wireless
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communications, smart homes, intelligent transportation, and
spectrum management [3].

The conventional approaches can be extensively sorted
into 2 primary domains: likelihood-based identification
approaches that rely on maximum likelihood theory [4],
and statistical pattern recognition techniques utilize fea-
ture extraction [5]. However, both methods have inherent
limitations. For instance, likelihood-based methods suf-
fer from relatively high computational complexity, while
feature-based methods heavily depend on the choice of
features, the subjective nature of the task can pose challenges.
The wireless communication landscape is evolving into a
realm of ever-increasing intricacy and diversity, the afore-
mentionedmethods are unable tomeet the demands of current
wireless communication requirements. In 2006, Hinton et al.
played a significant role in advancing deep learning (DL)
[6], a technique applied to tackle various challenges in
wireless communication [7]. It has demonstrated remarkable
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performance in the physical layer [8] and has been applied
in many areas, including signal modulation recognition [9],
channel estimation [10], interference coordination [11], and
more.

These neural networks possess the innate ability to
automatically optimize the extracted features with the aim of
minimizing classification errors. Different AMR applications
have utilized various neural network architectures, including
CNN [12], DNN [13], RNN [14], LSTM [15], and GRU [16].
To enhance the recognition accuracy of AMR, many experts
have conducted research focusing on signal features and
noise elimination. A novel CNN based on spectral analysis is
designed by Zeng et al. for modulation recognition [17]. This
method utilizes the varying frequency characteristics over
time for different modulation types. The results demonstrate
significant performance improvement. However, it should
be noted that this approach requires additional memory
space due to its complexity. The literature proposes to map
the extracted subset of features from modulated signals
onto a graph and recognize the modulation type through a
graph convolutional neural network [18]. Many modulation
recognitionmethods have incorporated attentionmechanisms
to emphasize the salient features of the signal. Lin et al. intro-
duce a time-frequency focus mechanism after the four-layer
CNN to enhance the learning of recognition-relevant features
by incorporating both temporal and frequency contexts
[19]. Zhang W et al. use channel attention mechanism,
spatial attention mechanism, and a four-layer CNN [20].
These studies mostly focus on capturing distinct features
through attentional operations, but lack consideration of the
contribution factors of weights. By utilizing the contribu-
tion factors of weights, it is possible to further suppress
non-significant channels or pixels [21]. Signal distortion
will have a certain impact on AMR results. The neural
network used for AMR lacks the capability to eliminate signal
distortion. The proposed correction module in the reference
demonstrates the ability to effectively mitigate the influence
of arbitrary frequency and phase distortions, even without
pre-existing knowledge of these parameters [22]. Ke and
Vikalo recommend amodulation framework building upon an
LSTMdenoising autoencoder, which simultaneously trains to
restore distorted signals [23]. A signal enhancement module
consisting of 11 dilated CNN layers is proposed to enhance
the signal by multiplying the input spectrogram with the
estimated ratio mask [19].
Despite the advancement of information technology, the

susceptibility to interference from factors like noise remains
a challenge that needs to be addressed. The different
dimensional features of signals also have an impact on the
recognition results to some extent. We introduce an innova-
tive approach in this paper for identifying communication
signal modulation using a joint neural network (JNNet).
This method includes signal enhancement processing and
signal modulation recognition modules. The recognition
model incorporates, at its frontend, a collaborative training
flow-based signal enhancement module, employed for the

reconstruction, denoising, and enhancement of the original
signal. This process effectively emphasizes relevant signals
while mitigating the impact of noise on the recognition
outcomes. The signal modulation recognition module con-
sists of CNN, two-dimension sparse weighting mechanism
(2DSWM), GRU and Dense layer. The introduced 2DSWM
includes Channel-dimension weighting sub-block (CDWSB)
and Spatial-dimension weighting sub-block (SDWSB),
allowing the neural network to focus on the two-dimensions
of signal features, allocating limited information processing
resources to useful information. To consider the suppression
of unimportant features, we introduced a regularization
term in the loss function to achieve weight sparsity and
promote the suppression of irrelevant features. In the basic
framework of the neural network, we used two CNN
layers with different convolution kernel sizes to focus
on feature information of different sizes and improve
network performance. Additionally, considering the temporal
characteristics of the signal and the model’s lightweight
nature, we introduced the GRU to capture time-dependent
features within the data. The outlined aspects are
listed:

(1) To enhance the efficiency of AMR, instead of recon-
structing the undistorted signal for signal modulation
identification, we improve the existing signal to min-
imize the impact of environmental and channel vari-
ables. Through collaborative training, the flow-based
signal enhancement module continuously optimizes
the parameters via forward and backward propagation,
processing the signal to achieve the enhancement of
useful information.

(2) This paper integrates the 2DSWM into the joint
neural network framework. The objective of this
operation aims to emphasize the input characteristics’
significant components. Additionally, we also consider
the suppression of unimportant features, which makes
the weights in the different dimensions sparse and
efficiently utilizes limited resources.

(3) We suggest a joint neural network-based approach for
AMR that is efficient. It employs two layers of CNN
to extract features from input data at various scales.
In addition, we consider the temporal properties of the
signal by incorporating GRU.

(4) Under identical dataset and experimental conditions,
we demonstrate the effectiveness of the signal enhance-
ment module and the proposed method through
ablation and comparative experiments.

The rest of the paper is organized as follows. In Section II,
we discuss the signal model and analyze the AMR’s problem
formulation. Section III presents a comprehensive overview
of the proposed AMR framework, including modules for
signal enhancement and 2DSWM. Experimental simulations
demonstrating the effectiveness of our approach are show-
cased in Section IV. In conclusion, Section V provides a
summary of the discoveries.
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FIGURE 1. The proposed signal modulation recognition model framework.

II. SIGNAL MODEL AND AMR’S PROBLEM
FORMULATION
A. THE SIGNAL MODEL IS DISCUSSED
The communication system under consideration in this paper
consists solely of a transmitter and a receiver. The signal y(t)
received at time t:

y(t) = h(t)ej(2π f0(t)+ϕ0)x(t) + ω(t) (1)

where h(t) describes the pulse effect caused by the prop-
agation of wireless signals through the channel. f0(t) and
ϕ0 respectively denote the deviation in frequency and phase
carried by the signal upon reception. x(t) describes a complex
baseband signal. The noise referred to asω(t) and it exhibits a
Gaussian distributionwith 0mean and variance, and its power
spectral density of N0/2.
In the field of communication systems, it is common to

express signals using I/Q(In-phase/Quadrature) signals for
the purpose of simplifying data processing and modulation
identification as YL×2 with L symbols in a sampled signal

Y =

[
I {y[1]} , . . . , I {y[L]}
Q {y[1]} , . . . ,Q {y[L]}

]T
(2)

This process performs an I/Q mapping decomposition of
the signal. In the practical implementation of DL in AMR, the
input signal typically consists of a real matrix containing I/Q
components for subsequent identification. The entirety of
information within a signal sample is typically encapsulated
within its real and imaginary components. These components
typically follow identical independent distributions, thereby
obviating the necessity for normalization prior to their
utilization as inputs for neural networks.

B. AMR’S PROBLEM STATEMENT
Recognizing modulation involves the challenge of distin-
guishing the modulation scheme used in a received signal
from a set of N potential modulation schemes. First, the
received signal sample matrix YL×2 is mapped to an S-
dimensional tensor e after layer by layer feature extraction
in the joint neural network

YL×2
→ e ∈ YS (3)

Tensor e is the final extracted feature, which is processed
by the Softmax function in the Dense layer. The raw data
output by each node first exponentiated by the Softmax
function, followed by normalization. Specifically, Softmax
output Y j of j ∈ [1, S] th node

Y j =
exp(ej)∑
S exp(eS )

(4)

where ej represent the raw output of the j-th node. That is,
the output of each node falls between 0 and 1, and the sum
of the outputs of all nodes is equal to 1. To determine the
identification result, the model calculates the probabilities for
eachmodulation category. These probabilities are normalized
so that their sum is equal to 1, and the highest probability
corresponds to the identified modulation category. The final
modulation recognition results are closely related to the
features extracted by the neural network. In this paper,
an attention mechanism is added between different layers of
neural networks to help the model better self-adapt to the
important features and information, and improve the model’s
efficiency and capacity to apply learned knowledge in various
scenarios.
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FIGURE 2. The overall architecture of the flow-based signal enhancement module within collaborative training.

III. MODULATION RECOGNITION FRAMEWORK
Our paper presents a novel approach to identifying mod-
ulations, which involves a flow-based signal enhancement
module for collaborative training (Part I) in conjunction with
a modulation recognition module that employs a joint neural
network (Part II). Figure 1 provides an overview of the overall
approach. We present a module designed to enhance signals
in the preprocessing stage, aiming to reduce noise and rectify
phase shifts. Moreover, through collaborative training among
neural networks, the continual guidance of model parameter
updates is pursued to attain optimal outputs. This leads to
improved signal recognition accuracy even in scenarios with
low SNR. We use a joint neural network composed of CNN,
GRU, and Dense layers to achieve modulation recognition of
wireless signals. 2DSWM is incorporated between different
neural network layers to select features, emphasizing useful
features while limiting unimportant ones.

A. FLOW-BASED SIGNAL ENHANCEMENT MODULE FOR
COLLABORATIVE TRAINING
In real-world communication environments, signals are often
accompanied by noise. Moreover, they are susceptible to
interference, leading to the phenomenon of phase offset.
To alleviate the negative effects of these factors on the
AMR results and achieve signal enhancement, we propose
a Flow-based signal enhancement module for collaborative
training. The overall framework is illustrated in the accompa-
nying Figure 2.We employ an invertible neural network based
on normalizing flows to learn the distribution of signals [24],
[25], supplemented by a neural network capable of estimating
phase offset parameters [26]. Throughout the training phase,
we fully utilize the forward and backward propagation
mechanisms of the invertible neural network. By iteratively
adjusting network parameters, the network is enabled to
better fit the input signals. Furthermore, we employ a tightly
integrated collaborative training strategy among modules,
enabling mutual support and joint optimization of network

TABLE 1. The operations of Actnorm and 1 × 1 invertible convolutional
layers.

parameter updates across the various modules. This training
methodology contributes to enhancing the network’s gener-
alization ability, enabling it to achieve better performance
when dealing with new signals. The overall model can be
segmented into three components: DownScale Flow Block
(DFB), Step of Flow Block (SFB), and Phase Correction
Block (PCB). Next, we will provide a detailed explanation
of the functions of each layer.

DownScale Flow Block: To achieve better training effi-
cacy, we incorporate two DFBs connected hierarchically
within the signal enhancement module. Among these, the
Squeeze layer selects elements from the latent variables
within the original input data and combines the selected
elements to form a new latent representation with fourfold
channels. Following the Squeeze layer, the feature map
undergoes scale reduction while an increase in the number of
channels, thereby extracting richer and more abstract feature
representations. After the Squeeze layer, we cascade four
SFBs to increase the model’s depth and intricacy, enhancing
the richness of feature representation, and improving infor-
mation propagation and feedback.

Step of Flow Block: The Actnorm layer performs nor-
malization to ensure that the input data conforms to N (0, 1)
Gaussian distribution. 1 × 1 Invertible Convolutional layer,
unlike traditional convolutional layers, possesses reversibil-
ity. The operations of these two layers can be represented as
follows, as shown in Table 1. Yi and Yi+1 represent latent
representations. s and b denote scale and offset parameters,
utilized for scaling and offsetting the normalized values. W
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FIGURE 3. 2DSWM: Two-dimension sparse weighting mechanism.

TABLE 2. The operations of affine coupling layer (forward and backward).

represents a randomly initialized invertible matrix, which is
continuously updated through backpropagation.

The remaining portion is designated as the affine cou-
pling layer, where forward and backward propagations are
sequentially depicted according to the model’s cascade order,
as illustrated in the following Table 2. Where, Split(·) and
Contact(·) are performed along the channel dimension. g(·)
represents a neural network composed of Dense Blocks.

Phase Correction Block: As a result of multiple factors
within the wireless channel, the phase difference between
the I and Q signals is not ideally 90◦. This deviation in
phase may potentially impact the final recognition outcome.
Flatten layer and Dense layer are employed to transform the
matrix of I/Q signal samples from multi-dimensional to one-
dimensional vectors. Linear activation functions are utilized
to generate an approximate phase parameter denoted as ϕ̂. Let
the coordinates of the original signal in the complex plane
be denoted as M (p, q), and the signal after phase offset be
represented as N (p′, q′). The phase offset encompasses both
phase rotation and translation, as depicted by the following
equation.{

p = Z cosα

q = Z sinα{
p′

= Z cos(α + σ ) + e
q′

= Z sin(α + σ ) + f

→

{
p′

= p cos σ − q sin σ + e
q′

= q cos σ + p sin σ + f

→

[
p′

q′

]
=

[
cos σ − sin σ

sin σ cos σ

] [
p
q

]
+

[
e
f

]
(5)

Without loss of generality, the estimated phase parameter

ϕ̂ includes both phase rotation-related parameters
[
ã b̃
c̃ d̃

]
and phase shift-related parameters

[
ẽ
f̃

]
. The phase parameter

transformer performs a parameter inverse transformation
on the input signal according to phase shift parameter ϕ̂.
We obtain the corrected output signal ŷ(t) as follows.

ŷ(t) = y′(t)e−jϕ̂

=

{
I
{
y′(t)

}
cos ϕ̂ + Q

{
y′(t)

}
sin ϕ̂

I
{
y′(t)

}
cos ϕ̂ − Q

{
y′(t)

}
sin ϕ̂

}
(6)

B. SE-JNNet: A JOINT NEURAL NETWORK FOR AMR
We introduce a AMR module that leverages a collaborative
neural network architecture, in this section. This module is
composed of tow CNN layers, followed by two GRU layers,
and finally one Dense layer. 2DSWM is inserted after each
CNN layer.

First, the modulated signals that have undergone signal
enhancement processing are sequentially input into CNN
layers with 64 and 32 channels, using convolutional kernels
of size 6 × 2 and 3 × 1. These convolutional layers extract
feature information of different sizes. The global contextual
information is captured by the larger kernels, whereas the
smaller kernels capture regional particulars. The utilization
of ReLU activation functions in these two CNN layers aims
to tackle the issue of gradient disappearance. The 2DSWM is
inserted after each CNN layer focuses on the required feature
information for this experiment, suppressing non-important
features. This reduces redundancy and noise, simultaneously
enhancing the model’s emphasis on critical attributes, leading
to an enhancement in the model’s capability to represent
features.

The fusion of inter-channel interaction information and
spatial information in the convolution operation enables effi-
cient extraction of features from the input data. To maximize
the selection of key features that are crucial for recognition,
this paper introduces the 2DSWM into the modulation
recognition model, as indicated in Figure 3. The 2DSWM
comprises two components primarily: CDWSB and CDWSB.
In order to enhance the focus on meaningful features,
we compute attention weights along the main degrees of the

121716 VOLUME 12, 2024



X. Wang et al.: Modulation Recognition Method for Wireless Signals Based on Joint Neural Networks

channel and the spatial axis respectively, which can focus
more on the regions of interest while reducing parameters
number and computational complexity. To suppress features
that are not significant for recognition, we have introduced
loss functions with ℓ1 regularization terms in the weight
calculation for both attention sub-modules. By increasing
the sparsity of the weights, the model is able to efficiently
compute while maintaining performance.

The output feature F ∈ RV×H×C of the previous
convolutional layer is passed to the attention mechanism as
input. Here, V and H express the vertical and horizontal
dimensions correspondingly, and C represents the quantity
of channels. First, CDWSB obtains the attention weight Mc
on the channel dimension according to the input feature F.
By calculating the product of Mc(F) and F, we obtain the
refined feature Fc after the CDWSB. Next, Fc undergoes
SDWSB in order to acquire knowledge of Ms(Fc). We obtain
the refined feature Fs after the SDWSB module. The
procedure is depicted as follows

Fc = Mc(F) ⊗ F (7)

Fs = Ms(Fc) ⊗ Fc (8)

In the CDWSB, the input F is passed through parallel Max
Pooling (MP) and Global Average Pooling (GAP) layers to
generate two different feature maps. These two feature maps
are then used as inputs and transmitted through a shared
network. The network that is shared includes a multi-layer
perceptron with two layers with high connectivity and one
hidden layer. The initial layer is comprised of C/r neurons,
with r representing the decay factor, and it employs the
ReLU activation function. Following this, the subsequent
layer consists of C neurons. After passing through the shared
network, the two feature maps are added together. The
sum obtained is subsequently fed into a sigmoid activation
function in order to produce the CDWSB weights Mc. After
acquiring the CDWSB weights, the initial feature map is
subjected to multiplication with the feature map in order to
function as input for the SDWSB module. In the SDWSB
module, two feature maps are obtained by applying MP
and GAP layers to the input. The two feature maps are
combined by joining them together in the channel dimension.
The concatenated result is further passed through a 7 ×

7 convolutional layer to generate a two-dimensional SDWSB
map. This map undergoes a sigmoid activation function,
resulting in the production of SDWSBweights denoted as Fs.

Mc(F) = Sigmoid(MLP(AvgPool(F)+MaxPool(F))) (9)

Ms(Fc) = Sigmoid{f 7×7([AvgPool(Fc);MaxPool(Fc)])}

(10)

We incorporate a loss function with ℓ1 regularization terms
in both the CDWSB and SDWSB to preserve weights that
contribute significantly to the model’s recognition perfor-
mance while filtering out others. This further enhances the
focus on important weights, resulting in a final weight vector
with sparsity. By reducing the number of parameters while

FIGURE 4. ℓ1 regularization with two weights.

maintaining good performance. The following equations
describe these loss functions.

Lossc = L(θc) + λ
∑n

i=1
|wci| (11)

Losss = L(θs) + λ
∑n

i=1
|wsi| (12)

where Lossc and Losss represent the loss functions added to
the both sub-modules, respectively. L(θc) and L(θs) represent
the original loss functions without regularization terms. θc
and θs represent the parameters of the model, including
weights and biases. λ is a hyperparameter that governs the
intensity of regularization.

∑n
i=1 |wi| is the regularization

term, calculated as the total of the absolute magnitudes of all
elements in the weight vector w.

Figure 4 shows a schematic diagram of ℓ1 regularization
when considering two weights w1 and w2. The rectangular
lines represent the range of values for the two weights in
ℓ1 regularization. The colored circles represent the contour
lines of the original loss function being optimized. When
we add a regularization term to the original loss function,
it is equivalent to impose a constraint on the original loss
function. Subject to this constraint, we can find the lowest
value of the original loss function. From another perspective,
satisfying the regularization condition is actually finding
the intersection point between the rectangular and circular
regions, that is, simultaneously satisfying the constraints
on the weights and minimizing the loss function. For
ℓ1 regularization, the constraint region is a square, so the
probability of the intersection point being a vertex of the
circular region is high. Therefore, there is a high probability
that one of the weights w1 or w2 will be zero, leading to
sparsity in the solution obtained with ℓ1 regularization.
The ℓ1 regularization term is implemented to enhance the

sparsity of attention weights, focusing the model’s attention
on useful features for the task, and reducing redundancy. This
helps improve the feature representation and discriminative
power of the model, further enhancing its performance and
generalization ability.

Next are two GRU layers. The introduction of GRU helps
to capture time-related features more effectively and speeds
up the model’s training process. Compared to RNN and
LSTM, GRU introduces update gates and reset gates, which
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FIGURE 5. Comparison of the spectrograms of the original and denoised BPSK signals at SNR values of 0dB, −10dB, and −20dB.

TABLE 3. Signal modulation recognition module architecture information.

better control the flow of information and handle long-
term dependencies, addressing the issues of vanishing and
exploding gradients in long sequential data. Moreover, GRU
has a simpler structure, fewer parameters, and is easier to
train. The first GRU layer’s output is also in sequence form.
This enables subsequent layers to further analyze the output
from the initial GRU layer and extract latent features from the
input sequence. To generate the final classification results,
we use a Dense layer as the concluding component within
our model architecture. The output of this particular layer
undergoes a softmax activation function, which transforms
it into probabilities for each individual class. Based on
this probability distribution, we can predict the category to
which a sample belongs. The cross-entropy loss function
plays a crucial role in directing the modifications of model
parameters throughout the training process. Accuracy is
also used as an evaluation metric to assess the model’s
classification performance. For the choice of optimizer,
we utilized the Adam optimizer, a widely adopted adaptive
learning rate optimization algorithm known for efficiently
updating model parameters and accelerating convergence
during training. This adaptability proves especially beneficial

TABLE 4. RML2016.10a dataset information.

in handling complex tasks like AMR, ensuring robust and sta-
ble performance across diverse modulation types and dataset
distributions. While considering alternative optimizers such
as SGDm and RMSProp, our experimental evaluations
consistently demonstrated Adam’s superior suitability for
our specific tasks and dataset characteristics. The relevant
parameters for Part II are shown in Table 3.

IV. EXPERIMENTAL AND ANALYTICAL DISCUSSION
A. RELATED EXPERIMENTAL CONDITIONS SETTINGS
The dataset used in this paper is the open dataset
RML2016.10a [27]. Table 4 presents pertinent details regard-
ing the dataset. This particular dataset is generated by GNU
Radio and exhibits good performance characteristics. The
dataset, which contains 220,000 randomly partitioned mod-
ulated signals, is distributed with a ratio of 6:2:2 = training:
validation: test. The categorical classification employs the
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FIGURE 6. Comparison of recognition accuracy between JNNet and
SE-JNNet.

cross-entropy loss function to minimize the disparity between
predicted probabilities for class membership and actual class
labels. Equation (13), where M represents the number of
classes, M = 11 in this paper. Yic indicates a match between
the true class of sample i and c by assigning a value of 1,
and otherwise, it remains at zero. Pic signifies the forecasted
likelihood of observation sample i being associated with
class c.

L =
1
N

∑
i
Li = −

1
N

∑
i

∑M

c=1
Yic log(Pic) (13)

The Adam optimizer, in addition, is employed to expedite
the model’s convergence. To mitigate overfitting in the neural
network, if there is no reduction in validation loss for 5 con-
secutive epochs, the learning rate is halved.Moreover, if there
is no decrease in validation loss after 50 epochs, the training
process is halted. The experiments are carried out utilizing
the NVIDIA GeForce RTX 3080 platform, employing Keras
with Tensorflow as the underlying framework.

B. SIGNAL ENHANCEMENT MODULE ABLATION
EXPERIMENT
A spectrogram is a visual representation that combines both
the temporal and spectral aspects of a signal, depicting
the intensity of the signal using varying colors. As shown
in Figure 5, we take the BPSK signals as examples to
visualize the effect of the signal enhancement module. On the
horizontal axis, time is depicted, while frequency is repre-
sented on the vertical axis. The color intensity signifies the
normalized signal amplitude at each position within the time-
frequency domain. The legend located at the right side of the
spectrogram displays the normalized amplitude values of the
signal, where darker shades represent comparatively elevated
amplitudes in terms of time-frequency positioning. (a), (b),
and (c) depict the time-frequency diagrams of the BPSK
signal at 0dB-10dB, −20dB, respectively. (d), (e), and (f)
depict the processed signals after the signal enhancement
module. In the above three figures, noise typically appears

FIGURE 7. Assessment of modulation recognition precision across six
different models.

as a diffused distribution on the spectrogram, which severely
affects the clarity and distinguishability of the useful signal.
In contrast, the useful signal tends to concentrate within a
specific range of time and frequency on the spectrogram.
After the denoising process, the signal contour becomes
clearer, and the strength of the useful signal is enhanced.
Most of the diffused noise intensity has been reduced or
even eliminated. The aforementioned statement exemplifies
the remarkable efficacy of the proposed signal enhancement
module in mitigating noise and enhancing signal quality,
thereby augmenting the discernibility and effectiveness of the
signal.

The ablation experiments are proposed to assess the impact
of the suggested signal enhancement module on modulation
recognition outcomes, aiming to ascertain its efficacy. Two
experiments are conducted: one with only the AMR module
(JNNet), and another with the signal enhancement module
added to the AMR module (SE-JNNet). The effectiveness of
the signal enhancement module is discussed by observing the
recognition accuracy on the dataset.

According to the comparison of recognition accuracy
shown in Figure 6, it is clear that the model’s ability to
identify signals has been improved across a wide range of
−20dB to 18dB upon integration of the signal enhancement
module. The recognition accuracy has been improved by
0.44% to 3.95%. Clearly, the proposed model demonstrates
improve robustness to noise, enabling better performance
in various noisy environments for the recognition task.
Therefore, the inclusion of the signal enhancement module
has distinct advantages in enhancing the model’s robustness
and performance.

C. EXPERIMENTAL SIMULATION AND COMPARISON
1) BASELINE MODEL
The SE-JNNet model’s performance is compared to the
GRU2 [14], CLDNN [28], PET-CGDNN [26], CNN [29], and
TFA-SCNN [30] approaches.
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TABLE 5. Comparison of six models on the RML2016.10a dataset.

FIGURE 8. Confusion matrix of the six models at their highest accuracy: (a) GRU2 (SNR = 12dB, Highest accuracy = 87.09%);
(b) CLDNN2 (SNR = 10dB, Highest accuracy = 85.50%); (c) PET-CGDNN (SNR = 18dB, Highest accuracy = 90.13%); (d) CNN (SNR =

10dB, Highest accuracy = 84.40%); (e) TFA-SCNN (SNR = 18dB, Highest accuracy = 90.36%); (f) SE-JNNet (SNR = 12dB, Highest
accuracy = 91.83%).

The identical experimental platform and dataset are used
to conduct experiments on these five models, as well as the
SE-JNNet model. The experimental results are analyzed from
two aspects, overall recognition accuracy and recognition
accuracy of 11 modulation signals on the model. Specifically,
analyze the model complexity and recognition accuracy.

2) MODEL COMPARISON ANALYSIS
To visually analyze the disparity in recognition accuracy
between the SE-JNNet model and the baseline model across
various SNR levels. The contrast of recognition accuracy
curves for the six models in the range of −20dB to 18dB is
illustrated in Figure 7. As the SNR increases, the accuracy
of all six modulation types gradually improves. After the
SNR exceeds 4dB, the accuracy tends to stabilize. In the
range of −20dB to −14dB. There is not much difference
in accuracy between the SE-JNNet model and the other
baseline models. Nonetheless, in cases where the SNR
exceeds −14dB. The proposed model surpasses the other
models, exhibiting an accuracy enhancement ranging from
0.15% to 7.45%. The SE-JNNet model exhibits significantly

better recognition performance compared to the othermodels,
particularly when the SNR exceeds −4dB. Table 5 shows the
level of accuracy in recognizing the six models at various
SNR levels. SNR values include−20dB,−10dB, 0dB, 10dB,
and 18dB. The table also includes the highest recognition
accuracy achieved by each model. This method achieves the
highest recognition accuracy without any prior knowledge or
human involvement. It has an improvement of 4.74%, 6.33%,
1.70%, 7.43% and 1.47% compared to GRU2, CLDNN2,
PET-CGDNN, CNN, and TFA-SCNN, respectively.

Figure 8 displays the confusion matrices for the 11 mod-
ulation types obtained by the six models when achieving
their highest recognition accuracy. The confusion matrix
uses rows to represent the true type labels and columns
to represent the estimated type labels. The matrix contains
values representing the precision of AMR, with the diagonal
elements indicating the accuracy of each specific modulation
type. Analysis shows that the proposed model exhibits
the highest discriminability for complex modulation signals
like 16QAM and 64QAM, which have a tendency to be
confusion.
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FIGURE 9. The performance of the SE-JNNet model in recognizing
11 modulation formats.

TABLE 6. Comparing the computational complexity of the six methods.

Apart from the models’ accuracy on the dataset, this
research also compared the complexities of the six mod-
els. Table 6 showcases the total parameters and training
time per epoch for the six models with the batch size
of 1000.

The capability of the proposed model with regard to total
parameters and training time per epoch may not be optimal.
This is because, when introducing attention mechanisms,
it is common to incorporate additional parameters to
learn weight allocation for channels and spatial locations.
As a result, the training time increases. Yet, these extra
computational expenses are necessary to attain improved
recognition accuracy. The proposed model demonstrates
good performance in recognition accuracy. This compensates
for the additional computational costs by improving the
recognition performance.

3) PERFORMANCE OF THE SE-JNNet MODEL
Figure 9 displays the accuracy curves of the 11 modulation
types considered in the proposed model, over the [−20dB,
18dB] SNR ratio range. The analysis reveals that the
recognition accuracy for all 11 modulation types improves
with increasing SNR and stabilizes after a certain threshold,
with minimal fluctuations. The recognition accuracy for most
modulation types approaches 100%. However, 16QAM and
64QAM, which use a set of symbols to represent multiple
bits, have lower tolerance to noise during transmission,

resulting in increased confusion between these two signals.
The proposed model achieves recognition accuracies of
over 90% for 16QAM and 64QAM, but its performance
decreases when the SNR ratio drops below −10dB. It’s
important to mention that the recognition accuracy ofWBFM
(Wideband FrequencyModulation) falls below 60%. This can
be explained by the origin of the WBFM modulation signal,
which is obtained from a real-time audio dataset. The dataset
may potentially encompass instances of silence or glitches in
the speech signal. As a result, the WBFM-modulated signal
may not contain valid information, making it challenging for
the classifier to correctly identify it.

V. CONCLUSION
The present paper introduces an innovative approach to the
recognition of wireless signal modulation, employing a joint
neural network. The method consists of three modules: signal
enhancement module, 2DSWM module, and modulation
recognition module. These modules are cascaded and jointly
trained to performmodulation recognition. Moreover, a flow-
based signal enhancement module for collaborative training
is employed to enhance signals. The signal enhancement
processing module is introduced to address the noise impact
and phase shift caused by communication environment and
channel, minimizing the impact of extraneous data on the
outcome of AMR. To enhance the efficiency of modulation
recognition, we incorporate a 2DSWM module into our
proposed approach. This module enhances the attention to
different feature dimensions and suppresses unimportant
features by considering their contribution factors, making
more efficient use of limited resources. We cascade CNN,
GRU and Dense layers to form our proposed joint neural
network framework. Different CNN layers extract features
of different sizes, and the time features of the signal are
considered by twoGRU layers, which additionally derive data
characteristics using a relatively small number of parameters
and training duration. The effectiveness of the SE-JNNet
model is analyzed by modulation recognition accuracy and
SNR on the RadioML2016.10a dataset. In the exact same
experimental conditions, an evaluation is carried out to
compare the proposed model with the baseline model. The
findings suggest that the effectiveness of the suggested
approach becomes evident when the SNR surpasses −14dB,
highlighting its advantages.
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