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ABSTRACT Grape black root, black measles, and blight are three common grape leaf diseases that
significantly impact grape yield. However, current research lacks real-time detection methods for grape
leaf diseases, which cannot ensure the healthy growth of grape plants. To improve the accuracy of grape
leaf disease detection and enable easy deployment of the model on mobile devices, this study proposes a
lightweight grape leaf disease detection method based on improved YOLOv8.Firstly, the AKConv module is
employed to enable arbitrary sampling of targets of various sizes, replacing traditional convolutional (Conv)
modules, thereby reducing model parameters and enhancing disease detection. Secondly, the Coordinate
Attention (CA) mechanism is introduced at the end and neck of the backbone network, embedding positional
information into channel attention to strengthen feature extraction capabilities and suppress irrelevant feature
interference. Next, the lightweight Content-aware Reassembly of Features (CARAFE) module is introduced
to improve the model’s ability to extract important features. Lastly, the Wise-IoU (Weighted Interpolation of
Sequential Evidence for Intersection over Union) boundary loss function replaces the original loss function,
enhancing the network’s bounding box regression performance and detection accuracy for small target
diseases. The experimental results on a self-constructed dataset demonstrate that the improved YOLOv8-
ACCW exhibits strong detection capabilities for small target disease regions. In the identification of grape
leaf lesions, the model achieved F1 scores, mAP50, and mAP50-95 values of 92.4%, 92.8%, and 73.8%,
respectively. Compared to the original algorithm, these metrics represent improvements of 3.1%, 3.1%, and
5.6%, respectively. The model’s parameter size is only 2.8M, and its computational cost is merely 7.5G,
reflecting reductions of 6.6% and 8.5%, respectively. The algorithm’s detection speed reaches 143 FPS,
meeting the requirements for real-time detection and enabling the rapid and accurate identification of grape
leaf diseases. Through comparison with other mainstream object detection algorithms, the effectiveness and
superiority of this method have been verified. This advancement can provide references for the deployment
and application of mobile detection equipment such as grape leaf disease detection robots. It offers a valuable
pathway to enhance the grape industry in Guizhou and ensure its healthy development.

INDEX TERMS Image recognition, deep learning, object detection, lightweight, grape leaf diseases,
YOLOv8.
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I. INTRODUCTION
In China, grape cultivation and consumption occupy the
top position in the world. This fruit is not only an eco-
nomically important crop but is also widely cultivated in
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various regions globally [1]. Liupanshui in Guizhou, with
its unique geographical location, has become a key area for
grape cultivation. The grape industry has a significant impact
on the local economy and social development. Nevertheless,
the occurrence of grape diseases often leads to a substantial
reduction in yield, posing a threat to the economic benefits
of vineyards. Therefore, timely and accurate identification
of diseases and the implementation of effective management
and control measures are crucial [2].Currently, the detection
of grape leaf diseases is still primarily conducted through
manual observation. Relevant personnel need to observe the
spots on the leaves with the naked eye and rely on their
experience to determine whether a specific disease is present.
The accuracy of disease identification depends on the expe-
rience of the personnel. Additionally, some diseased areas
on grape leaves are very small, which not only increases
the difficulty of detection but also greatly affects the ability
of personnel to identify them, leading to a higher rate of
misdiagnosis [3], [4].

With the rapid advancement and widespread application
of technologies such as computer vision, machine learning,
and artificial intelligence, these high-tech tools have become
core elements of smart agriculture. They can automatically
collect and analyze various types of information in agricul-
tural production [5], [6], [7], [8], [9], [10]. For example,
support vector machines (SVM) andK-means clustering have
been employed in this context [11], [12], [13], [14], [15],
[16], [17]. However, due to the complexity of image pre-
processing and feature extraction, the detection efficiency of
these methods remains low. Convolutional Neural Networks
(CNNs), developed as end-to-end deep learning methods,
fully leverage large image datasets to directly discover dis-
criminative features from raw images. This approach avoids
complex image preprocessing and reduces memory usage.
Inspired by CNN breakthroughs in pattern recognition, using
CNNs to identify early plant leaf diseases has become a
new focus in smart agriculture [18], [19], [20], [21], [22].In
recent years, deep learning-based object detection algorithms
have developed rapidly. Currently, research on plant dis-
ease recognition based on computer vision can be roughly
divided into two categories: the two-stage detection algo-
rithms represented by R-CNN [23], Fast R-CNN [24], and
Faster R-CNN [25], which first generate candidate regions
and then recognize these regions. For instance, in 2017,
Fuentes [26] proposed a deep learning-based object detec-
tion method to identify and locate tomato diseases. In this
method, Faster R-CNN, R-FCN, and SSDwere used to detect
and identify tomato diseases and pests, with R-FCN achiev-
ing the highest mAP (mean Average Precision) of 85.98%.
In 2018, Liu [27] first removed the background of grape
disease images to reduce interference from non-disease areas
and employed Fast-RCNN technology to extract disease spots
on grape leaves, making the leaves more suitable for detec-
tion. For common grape diseases, this method achieved an
average mAP of 75.52%. In 2021, He [28] used SE attention

mechanism and asymmetric mixed convolution modules in
Mask R-CNN to detect three types of apple diseases, achiev-
ing an average Intersection over Union (IoU) of 94.7%,
and reducing the memory required for training. These stud-
ies indicate that image classification technology has made
significant progress in grape disease recognition, with high
accuracy in identifying specific diseases, but they primarily
focus on partial disease identification and have not achieved
precise annotation of disease regions.

Another category is single-stage object detection algo-
rithms represented by SSD [29] and the YOLO series [30].
These algorithms do not require generating candidate frames
and instead convert the bounding box problem into a regres-
sion problem. They utilize features extracted from the
network to predict lesion locations and categories, charac-
terized by high accuracy, fast speed, short training time,
and low computational cost.In 2019, Qi [31] proposed a
real-time grape detection model using the YOLOv3 model
as the basic framework. This model replaced the Darknet-
53 backbone of YOLOv3 with EfficientNet to effectively
balance image resolution with the depth and width of the
training network, ultimately achieving a recognition rate of
97.29%. In 2020, Jiang [32] expanded the apple leaf disease
dataset and combined the Inception structure in GoogleNet
with the SSD network. Experimental results showed that the
mAP reached 78.80%, with a detection speed of 23.13 fps.
In 2022, Zhuo [33] proposed a real-time apple detection
model, YOLOV4-CA. In this model, MobileNet v3 was used
as the backbone feature extractor, and depthwise separable
convolution was introduced into the feature fusion network
to improve performance, achieving an average precision of
92.23%. Huang [34] achieved citrus fruit recognition in nat-
ural environments using artistic means and proposed a citrus
recognition method based on an improved YOLOv5 model.
Test results showed that the model’s average accuracy was
91.3%.These studies confirm the feasibility of object detec-
tion technology in plant disease and pest detection. However,
they have paid less attention to grape diseases and face chal-
lenges such as the difficulty of collecting large-scale disease
image data, low detection accuracy of existing models, and
the inapplicability of improved methods to detect early small
lesions.

In 2023, YOLOv8 rapidly emerged, and many researchers
achieved good results using YOLOv8 for object detection.
Dehuan [35] proposed the Light-SA YOLOV8 (Lightweight
Self-Attention YOLOV8) model, which addresses challenges
posed by complex backgrounds by incorporating the BRA
self-attention mechanism module before the SPPF layer in
the backbone. Additionally, to simplify computational com-
plexity, the backbone network integrated FasterNet blocks.
To improve the accuracy and computational efficiency of cit-
rus pest and disease detection, an AFPN (Asymptotic Feature
Pyramid Network) structure was introduced in the neck. The
average detection accuracy for six pest and disease categories
in the test dataset was 92.6%.Ye [36] proposed an improved
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YOLOv8 lesion detection method focusing on detecting tea
leaf wilt, tea white spot, tea anthracnose, and tea ring spot dis-
eases. The method enhances the feature extraction capability
of the YOLOv8 network framework by introducing a Recep-
tive Field Concentrated Attention Module (RFCBAM) to
replace C2f in the backbone network. Additionally, a Mixed
Pooling SPPF (MixSPPF) module was proposed to enhance
information mixing between different level features. In the
neck network, the RepGFPN module replaced the C2f mod-
ule to further enhance feature extraction. A dynamic head
module embedded in the detection head applied multiple
attention mechanisms to improve multi-scale spatial local-
ization and multi-task perception capabilities. The internal
IoU loss function was adopted to replace the original CIoU,
enhancing the learning ability for small lesion samples. Fur-
thermore, the AKConv module replaced the traditional Conv
module, allowing for arbitrary sampling of targets of various
sizes, thus reducing model parameters and enhancing disease
detection.

To integrate computer vision technology with dynamic
identification of grape leaf diseases, this study focuses on
grape black root, black measles, and blight as research sub-
jects. A lightweight grape leaf disease detection method
based on an improved YOLOv8 is proposed. This method,
based on the YOLOv8 network framework, introduces sev-
eral enhancements. Firstly, the AKConv module replaces
the traditional Conv module, allowing for arbitrary sam-
pling of targets of various sizes, thereby reducing model
parameters and strengthening disease detection. Secondly,
the Coordinate Attention (CA) mechanism is introduced
at the end of the backbone network and in the neck net-
work. This mechanism embeds positional information into
channel attention, enhancing feature extraction capabili-
ties and suppressing interference from irrelevant features.
Thirdly, the lightweight general upsampling content-aware
reassembly CARAFE module is introduced to improve the
model’s ability to extract important features. Finally, the
Wise-IoU boundary loss function replaces the original loss
function, enhancing the network’s bounding box regres-
sion performance and improving the detection of small
target diseases.

II. RELEVANT PRINCIPLES
A. YOLOv8 ALGORITHM STRUCTURE AND WORKING
PRINCIPLE
The YOLOv8 network is mainly composed of Backbone,
Neck, and Head components. The network structure is shown
in Figure 1.

The backbone is primarily used for feature extraction.
YOLOv8 replaces the Cross Stage Partial (CSP) module from
YOLOv5 with a lightweight C2f module, enhancing feature
expression capabilities through a dense residual structure.
It changes the number of channels via split and concatenate
operations based on the scaling factor, reducing computa-
tional complexity and model size. The end of the backbone

FIGURE 1. YOLOv8n network architecture.

employs a fast spatial pyramid pooling layer (SPPF) to
increase the receptive field and capture multi-level feature
information from the scene.

The neck part is mainly used for feature fusion, utilizing
a path aggregation network and C2f module to fuse feature
maps of different scales output by the three stages of the
backbone, aiding in the aggregation of shallow information
into deeper features.

The head part uses a decoupled head structure,
divided into classification and localization prediction
branches, to alleviate the conflict between classifica-
tion and localization tasks. An anchor-free framework
is adopted to improve detection performance, which is
advantageous for detecting targets with irregular aspect
ratios.

Loss calculation includes classification loss (Varifocal
Loss) and regression loss (Complete IoU Loss+Distribution
Focal Loss). Varifocal Loss, based on the focal loss func-
tion, handles class imbalance better, improving the model’s
detection accuracy. CIOU Loss handles the overlap between
predicted and ground truth boxes more effectively. DFL
Loss addresses class imbalance and background class issues,
enabling the network to quickly focus on areas close to the
target location’s distribution.

B. PROBLEMS WITH THE ALGORITHM
When applying the YOLO algorithm to the rapid identi-
fication of grape leaf diseases, it is necessary to consider
the limited hardware performance of mobile devices. Simply
choosing the YOLOv8x algorithm is impractical because,
although it offers the best detection performance, it cannot
meet the real-time requirements of grape leaf disease detec-
tion tasks. Therefore, this study selects the smallest weight
model of the YOLOv8n algorithm. However, during practical
detection, several issues arise with the YOLOv8n algorithm.
Firstly, the YOLOv8n algorithm uses a large number of stan-
dard convolutions and C2f modules, which, while improving
accuracy, reduces running speed and increases the model’s
parameters. Secondly, rapidly changing scenes in mobile
detection require sufficient detection precision. However, the
YOLOv8n algorithm does not perform ideally in detecting
grape leaf diseases, often resulting in false positives and
missed detections.
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III. YOLOv8 MODEL IMPROVEMENT
To enhance the accuracy of grape leaf disease detection,
a lightweight grape leaf disease detection method based on
improved YOLOv8 is proposed. Table 1 lists the number
of layers, parameter count, module names, and parame-
ters for YOLOv8-ACCW. Figure 2 illustrates the modified
YOLOv8n structure. Firstly, the AKConv module replaces
the traditional convolution Conv module, allowing arbi-
trary sampling of targets of various sizes, thereby reducing
model parameters and enhancing disease detection. Sec-
ondly, a coordinate attention mechanism (CA) is introduced
after C2f in the neck part of YOLOv8n, embedding posi-
tional information into channel attention to strengthen fea-
ture extraction and suppress irrelevant features. Next, the
lightweight general up-sampling content-aware reassembly
(CARAFE) module is introduced to improve the model’s
capability to extract important features. Lastly, the Wise-IoU
boundary loss function replaces the original loss function to
enhance network bounding box regression performance and
improve detection accuracy for small target diseases.

FIGURE 2. YOLOv8-ACCW network architecture.

A. AKConv MODULE
Currently, convolutional neural networks (CNNs) utilizing
convolution operations have made remarkable strides in the
field of deep learning. However, traditional convolution oper-
ations still face limitations. Firstly, the fixed shape and size
of the sampling window restrict the convolution operation to
a local window, hindering the capture of information from
other locations. Secondly, the fixed size of the convolution
kernel, set at k×k square, leads to exponentially increasing
parameter calculations with size, posing challenges for con-
structing lightweight models. To address these issues, this
study introduces Adaptive Kernel Convolution (AKConv),
which allows the convolution kernel to use an arbitrary
number of parameters and sampling shapes. This not only
enhances model performance but also reduces the number of
model parameters. The structure is illustrated in Figure 3.

TABLE 1. Parameters of YOLOv8-ACCW layers.

FIGURE 3. AKConv structure.

In AKConv, the input image size is set to (C,H ,W ), where
C represents the number of channels, and H andW represent
the height and width of the image, respectively. The convo-
lution operation initially applies the initial sampling shape of
the convolution kernel to the input image using Conv2d. Sub-
sequently, the initial sampling shape is adjusted by learned
offsets, a critical step in AKConv that enables the convolution
kernel’s shape to dynamically adapt to image features. Fol-
lowing this adjustment, AKConv resamples the feature map
based on themodified sampling shape. The resampled feature
map undergoes reshaping, convolution, normalization, and
activation by the SiLU function to generate the final output.
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AKConv innovatively improves the design of convolution
kernels to enhance the adaptability and efficiency of con-
volutional networks. Unlike traditional convolution kernels,
these kernels do not have fixed sizes and shapes but can
dynamically adjust based on the density and characteristics
of diseases to determine the required number of parameters.
Considering different types of diseases with varying sizes and
distributions of lesions, AKConv automatically adjusts the
size of the convolution kernel during processing to effectively
capture the sizes and shapes of various diseases, thereby
enhancing feature extraction efficiency. Adaptive sampling
shapes are illustrated in Figure 4. Furthermore, by designing
different initial sampling shapes for a 5 × 5 sampling grid,
AKConv accurately covers and processes different image
regions, thereby improving the accuracy of feature extraction,
as shown in Figure 5. Additionally, AKConv can adjust the
position of the convolution kernel using offsets to adapt to
local feature variations in different positions of the target
image, better accommodating non-rigid deformations, occlu-
sions, and complex backgrounds. This capability forms a
solid foundation for enhancing disease detection, as depicted
in Figure 6.

FIGURE 4. Initial sampling shape.

B. CA MODULE
Due to the complex and variable environment of grape leaf
diseases, to enhance the model’s ability to express features of
grape leaf diseases, the CA attention mechanism was added
between every two feature fusions at the end and neck of
the YOLOv8 backbone network. This local feature enhance-
ment enables the network to ignore irrelevant information
interference and ensures that the fused feature maps con-
tain more effective information. Attention mechanisms are
generally divided into channel attention mechanisms, spatial
attention mechanisms, and combinations of both. Traditional
attention mechanisms like Squeeze-and-Excitation (SE) and

FIGURE 5. The 5 × 5 different initial sample shapes.

FIGURE 6. Offset adjusts the sample shape.

Convolutional Block Attention Module (CBAM) have many
shortcomings. SE attention focuses only on building inter-
dependencies between channels, ignoring spatial features.
CBAM introduces large-scale convolution kernels to extract
spatial features but overlooks long-range dependency issues.
While other attention modules without these problems have
good performance, they have too many parameters and are
not suitable for application deployment.

The CA module is a new attention module proposed for
channel attention, which not only captures inter-channel
information but also directional and positional perception.
This helps the model to more accurately locate and identify
the target of interest. The CA module is highly flexible and
can be added at multiple positions in existing models without
introducing excessive parameters or computational overhead.
Its structure is depicted in Figure 7, where inputs are hor-
izontally and vertically pooled to maintain long-distance
dependencies in both directions. Subsequently, the stitched
information from both directions undergoes segmentation
and convolution to simultaneously focus on horizontal and
vertical directions. The two resulting feature maps precisely
indicate the rows and columns of the target object of interest.

C. CARAFE UPSAMPLING
In the YOLOv8 object detection network model, the fea-
ture pyramid structure uses nearest-neighbor interpolation
for upsampling. However, this method relies solely on the
spatial positions of pixels to determine the upsampling kernel,
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FIGURE 7. CA module.

lacking mechanisms to fully utilize feature information.
To address this issue, Wang et al. proposed the content-aware
feature reassembly (CARAFE) structure, which incorporates
a larger receptive field. CARAFE not only aggregates con-
textual information better and utilizes feature details based
on the input feature map but also links the upsampling kernel
with semantic information, enhancing perception of impor-
tant content while maintaining model lightweight due to its
reduced computational overhead. Through efficient upsam-
pling operations, CARAFE preserves fine-grained image
details effectively, thereby improving the model’s accuracy
in recognizing disease features.

CARAFE upsampling consists primarily of the kernel pre-
diction module and the content-aware reassembly module.
In the kernel prediction module, initially, the number of
channels of input feature map H ×W × C is reduced to Cm,
resulting in feature mapCm×H×W , which helps in reducing
subsequent computational workload. Then, content encoding
is performed using a kup×kup convolutional kernel to generate
the reassembled kernel, producing a σ 2

× k2up feature map,
as shown in Equation (1).

Cm = σ 2
× k2up (1)

In the equation, Cm represents the number of channels in the
dimensionally reduced feature layer, σ denotes the upsam-
pling factor (typically 2), and σH × σW × k2up indicates the
predicted size of the upsampling kernel. Next, the channels
are expanded in the spatial dimension and rearranged to form
a 4 × 44 \ times 44 × 4 upsampling kernel, followed by
softmax normalization to ensure the weights sum up to 1.

In the equation, Cm represents the number of channels
in the dimension-reduced feature layer, σ is the upsampling
factor (usually 2), and kup denotes the predicted size of the
upsampling kernel. Subsequently, the channels are expanded
in the spatial dimension, then rearranged to form an upsam-
pling kernel of size σH × σW × k2up, followed by Softmax
normalization to ensure their weights sum to 1. Within the

content-aware reassembly module, the obtained upsampling
kernel is utilized for feature reassembly to extract target
features. For each target position in the output feature map,
a region of size kup × kup centered on the target is taken,
and a dot product is performed with the predicted upsampling
kernel at that point, mapping it back to the input feature map
to obtain a feature map of size σH×σW ×C . The CARAFE
upsampling network structure is illustrated in Figure 8.

FIGURE 8. CARAFE upsampling network structure.

Due to CARAFE upsampling’s ability to generate distinct
upsampling kernels for different features and to focus on
the distribution of features across the global feature map,
this study replaces the original nearest-neighbor interpolation
upsampling module in the YOLOv8n model with CARAFE
upsampling. This replacement enhances the model’s ability
to recognize important features during upsampling without
adding extra parameters or computational overhead, thereby
improving the network’s capability to extract disease-related
features.

D. THE WISE-IoU LOSS FUNCTION
In grape leaf disease detection tasks, black measles disease,
characterized by small pathological features, constitutes a
significant proportion. Detecting these small disease features
is crucial for the entire disease detection task. Traditional
loss functions only consider the intersection over union (IoU)
between predicted and ground truth bounding boxes during
calculation, neglecting classification information. Therefore,
by designing an appropriate loss function, model detection
accuracy can be improved. YOLOv8 employs DF Loss and
CIoU Loss to compute bounding box regression losses. CIoU
uses amonotonic focalmechanism but lacks consideration for
balancing hard and easy examples. When the target detection
training set contains low-quality examples, this can degrade
model performance. The computation of CIoU is shown
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in equation (2).

LCloU = 1 − IoU +
ρ2
(
bA, bB

)
c2

+ αv (2)

In the equation, bA and bB respectively represent the centers
of the predicted and ground truth bounding boxes, ρ denotes
the Euclidean distance between the two points, c represents
the diagonal length of the minimum bounding rectangle
of the predicted and ground truth boxes; α is a balancing
parameter; v is used to calculate the consistency of aspect
ratios between predicted and target bounding boxes. This
study introduces the Wise-IoU loss function with a dynamic
non-monotonic focusing mechanism to balance samples.
By replacing IoU with outlier-aware anchor box qual-
ity assessment through a dynamic non-monotonic focusing
mechanism, the model avoids excessive penalties from geo-
metric factors (such as distance and aspect ratio), as shown in
equations (3) to (5).

LWIoU = rRWIoULIoU, r =
β

δαβ−α
(3)

β =
L∗

IOU

LIoU
∈ [0, +∞) (4)

RWIoU = exp

((
x − xgt

)2
+
(
y− ygt

)2(
c2w + c2h

)∗
)

(5)

In the equation, LIoU ∈ [0, 1] represents the IoU loss, which
weakens the penalty for high-quality anchor boxes, enhances
focus on the distance between centers when the overlap
between anchor and predicted boxes is high; RWIoU ∈

[1, exp] represents the penalty term in Wise-IoU, strengthen-
ing the loss for average-quality anchor boxes. The superscript
∗ indicates non-participation in backpropagation, effectively
preventing gradients that may prevent the network model
from converging. LIoU acts as a normalization factor, rep-
resenting the incremental moving average. β represents the
outlier score, where a lower value indicates higher anchor box
quality, assigning a smaller gradient boost. Simultaneously,
smaller gradient boosts are allocated to predicted boxes with
larger outlier values, effectively reducing harmful gradients
for low-quality training samples. This ensures that the bound-
ing box regression loss focuses on average-quality anchor
boxes, thereby enhancing overall network performance.

IV. EXPERIMENTAL DESIGN AND RESULT ANALYSIS
A. DATA COLLECTION
This paper collected grape leaf disease images from theGrape
Industry Demonstration Park in Zhongshan District, Liupan-
shui City, Guizhou Province, China, totaling 10,000 images.
The images were captured using a Canon EOS 550D camera
with a resolution of 640 × 640 pixels and saved in.JPG
format. Among the 10,000 images, there are four types: black
measles, black root, blight, and healthy leaves. All 10,000
images are of high quality and have been annotated. The
grape leaf disease annotation work was performed using the

FIGURE 9. Schematic diagram of Wise-IoU parameters.

labelImg annotation software, marking the positions of dif-
ferent types of lesions in the images. The dataset was then
randomly divided into training, validation, and test sets in
an 8:1:1 ratio, and formatted in YOLO format. Specifically,
8,000 images were used for training, 1,000 for validation,
and 1,000 for testing. Annotations and visual experiments
were conducted for the four types as shown in Figure 10.
Each matrix cell in the figure represents a label used in
model training, with cell color depth reflecting the correla-
tion between respective labels. Darker cells indicate stronger
learning of correlations between labels, while lighter cells
indicate weaker correlations. Panel A shows a histogram of
category counts in the dataset; B illustrates the lengths and
widths of each labeled box when all x and y values of the
labels are set to the same position; C depicts the distribution of
x and y values in the images; D shows the ratio of label width
to height in the dataset; and E provides detailed information
on the distribution of labels in the original dataset. Analysis
reveals an uneven distribution of diseases in the self-built
dataset. The precise localization of rectangular annotation
boxes indicates the proposed method’s suitability for detect-
ing grape leaf diseases in the Liupanshui region.

FIGURE 10. Dataset annotation file statistics and visualization.
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Sample images of grape leaf disease are shown in
Figure 11.

FIGURE 11. Examples of grape leaf disease images.

B. PRODUCTIONEXPERIMENTAL ENVIRONMENT AND
HYPERPARAMETER SETTINGS
C. EVALUATION METRICS
This paper uses evaluation metrics including F1 score, mean
Average Precision (mAP), number of parameters (Params),
Giga Floating-point Operations per second (GFLOPs), and
Frames Per Second (FPS). Among these, precision and recall
are used as basic metrics, with F1 score and mAP calculated
based on precision and recall serving as the final evaluation
metrics to measure model recognition accuracy. GFLOPs
measure the complexity of the model or algorithm, while
Params indicate the model size. Generally, smaller Params
and GFLOPs indicate lower computational requirements and
easier construction on low-end devices with lower hardware
performance demands. FPS refers to the number of frames
detected per second, influenced by algorithm weights and
experimental hardware configurations.

TABLE 2. Hyperparameter settings.

Precision is the ratio of correctly predicted posi-
tive observations among all predicted positive results,

TABLE 3. Experimental setup.

defined as follows:

Precision =
TP

TP+ FP
(6)

Recall is the ratio of correctly predicted positive observations
to all observations in the class, defined as follows:

Recall =
TP

TP+ FN
(7)

where TP is the number of correctly predicted targets, FP is
the number of incorrectly predicted targets, and FN is the
number of targets that were not predicted correctly.

The formula for average precision across n classes is:

mAP =
1
n

n∑
i=1

∫ 1

0
Precison(Recall)d(Recall) (8)

The F1-score combines precision and recall, providing a
comprehensive measure of overall network performance. It is
computed as the harmonic mean of the two metrics:

F1 = 2
Precision× Recall
Precision+ Recall

(9)

Model complexity is measured by the number of parameters
(Params) and computational complexity (GFLOPs), while
inference speed is measured by Frames Per Second (FPS).
FPS represents the number of frames detected per second,
influenced not only by algorithmic weights but also by the
hardware configuration of the experimental setup.

D. THE IMPACT OF DIFFERENT ATTENTION MECHANISMS
ON NETWORK PERFORMANCE
Attention mechanisms can generally be divided into chan-
nel attention mechanisms, spatial attention mechanisms, and
their combinations. Traditional attention mechanisms like
Squeeze-and-Excitation attention (SE) and Convolutional
BlockAttentionModule (CBAM) have several shortcomings.
SE attention focuses solely on constructing inter-channel
dependencies and ignores spatial features. Although CBAM
introduces large convolutional kernels to extract spatial
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features, it neglects long-range dependency issues. Other
attention modules that address this problem often have a high
number of parameters, making them unsuitable for applica-
tion deployment.Experiments were conducted comparing the
SE attention module and CBAM attention module with the
CA module. The experimental results are shown in Table 4.

As seen in Table 4, compared to other attention mecha-
nism modules studied, such as the SE and CBAM attention
modules, the inclusion of the CA attention module signif-
icantly improved the network’s detection accuracy. This is
because the CA attention module, proposed specifically for
channel attention, captures not only cross-channel informa-
tion but also directional and positional awareness, aiding the
model in more accurately locating and recognizing targets.
By adding the CA attention mechanism between every two
feature fusions at the end of the YOLOv8 backbone and neck,
local feature enhancement is achieved, allowing the network
to ignore irrelevant information interference and resulting in
feature maps that contain more effective information.

TABLE 4. Comparison results of multiple attention mechanisms.

E. THE IMPACT OF THE AKConv MODULE ON NETWORK
PERFORMANCE
To verify the relationship between the introduction of the
AKConv module at different positions and network perfor-
mance, an ablation experiment was designed as shown in
Table 5. AKConv-backbone refers to replacing the Conv
modules in the backbone network with AKConv modules
while keeping the neck network unchanged. AKConv-neck
indicates that the Conv modules in the neck network are
replaced with AKConv modules, with the Conv modules in
the backbone network remaining unchanged. AKConv-all
means replacing the Conv modules in both the backbone net-
work after the first Conv module and the neck network with
AKConv modules.The introduction of the AKConv module
into the YOLOv8n backbone network mainly provides a flex-
ible convolution mechanism. AKConv allows convolution
kernels to have any number of parameters, enabling them
to be adjusted in size and shape according to actual needs,
thereby adapting more effectively to changes in targets. For
different sizes of convolution kernels, AKConv proposes a
new algorithm to generate initial sampling coordinates, fur-
ther enhancing its flexibility in handling various target sizes.
To adapt to different changes in targets, AKConv adjusts the
sampling positions of irregular convolution kernels based on
obtained offsets, thereby improving the accuracy of feature

extraction. AKConv supports the linear increase and decrease
of convolution parameters, helping to optimize performance
in hardware environments, especially suitable for lightweight
model applications. This improvement breaks through the
limitations of traditional convolutions, which are restricted
to fixed local windows and fixed sampling shapes, allowing
convolution operations to adapt more precisely to different
datasets and target positions.Experimental results indicate
that replacing the Conv modules in both the backbone net-
work after the first Conv module and the neck network with
AKConv modules yields the best performance.

TABLE 5. Comparison results of different positions of C2FGHOST.

F. ABLATION EXPERIMENT COMPARISON
To validate the accuracy of the proposed improved algorithm,
experiments were conducted by establishing several models:
YOLOv8n, YOLOv8n-A, YOLOv8n-AC, YOLOv8n-ACC,
and YOLOv8n-ACCW. Among them, YOLOv8n-A employs
the AKConv module in YOLOv8n, allowing arbitrary sam-
pling for targets of various sizes, replacing the traditional
Conv module, thus reducing model parameters and enhanc-
ing disease detection. YOLOv8n-AC utilizes the AKConv
module to replace the traditional Conv module and incor-
porates the Coordinate Attention (CA) mechanism at the
end of the backbone network and in the neck network to
embed positional information into channel attention, thereby
enhancing feature extraction and suppressing irrelevant fea-
tures. YOLOv8n-ACC uses the AKConv module, replaces
the traditional Conv module, introduces the CA mechanism
at the end of the backbone network and in the neck network,
and then incorporates the lightweight general upsampling
content-aware reassembly (CARAFE) module to improve
the model’s ability to extract important features. YOLOv8n-
ACCW uses the AKConv module, replaces the traditional
Conv module, introduces the CAmechanism at the end of the
backbone network and in the neck network, incorporates the
CARAFE module, and finally uses the Wise-IoU boundary
loss function to replace the original loss function. YOLOv8n-
ACCW is the algorithm proposed in this paper.

As shown in Table 6, the improved algorithm adopts a
more efficient network structure to enhance the YOLOv8n
network structure, improving accuracy and reducing model
parameters and computational complexity. It also proves
that the AKConv module does not reduce the algorithm’s
accuracy but rather decreases model parameters and com-
putational load. The introduction of the lightweight general
upsampling content-aware reassembly (CARAFE) module
improves the model’s ability to extract important features,
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TABLE 6. Results of ablation experiment.

while the CA attention mechanism only slightly increases
the parameters, effectively enhancing detection accuracy. The
use of the Wise-IoU boundary loss function plays a cru-
cial role in detecting small target diseases. Combining these
improvements with the YOLOv8n algorithm minimizes the
model size, with parameters reduced to only 2.8M and com-
putational complexity to 7.5G, respectively reducing by 6.6%
and 8.5%. This effectively lowers the difficulty and cost of
deploying the model on mobile terminals, and while meeting
real-time requirements, significantly enhances accuracy.

G. PRACTICAL APPLICATION DETECTION EVALUATION
Diseases were captured in the grape leaf disease dataset.
Figure 12 shows the detection results of the YOLOv8-ACCW
algorithm on the grape leaf disease dataset. The improved
algorithm identifies more instances of grape leaf diseases
compared to the original algorithm and provides more precise
detection. The results indicate that the improved YOLOv8-
ACCW algorithm can effectively detect grape leaf disease
targets and accurately identify their locations, demonstrating
strong robustness and accuracy.

To further validate the model’s detection performance on
grape leaf disease targets, Table 7 compares the performance
of YOLOv8n and the improved YOLOv8-ACCW model in
detecting grape leaf diseases. The data show that YOLOv8-
ACCW has higher detection accuracy for grape leaf diseases
than YOLOv8n. Compared to YOLOv8n, the mAP50 and
mAP50-90 improved by 3.1% and 5.2%, respectively.

Based on YOLOv8n, the training and validation process
curves of the grape leaf disease detection model are shown
in Figure 13. From Figure 13, it can be observed that during
the training and validation processes, the loss curve initially
decreases rapidly and then gradually stabilizes. Meanwhile,
the validation metrics such as accuracy, recall rate, and mAP
(mean Average Precision) show a rapid increase followed by
a tendency to plateau and stabilize.

Based on YOLOv8-ACCW, the training and validation
process curves of the grape leaf disease detection model are
shown in Figure 14. From Figure 14, it can be observed that
the convergence of the relevant curves is well demonstrated,
which confirms the reliability of the grape leaf disease detec-
tion model based on YOLOv8-ACCW.

FIGURE 12. Detection effect.

The experiment provides a comparison of the training
and validation process curves between the YOLOv8n and
YOLOv8-ACCW models, as shown in Figure 13. It can be
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FIGURE 13. Training and validation process curves of grape leaf disease
detection model based on YOLOv8n.

FIGURE 14. Training and validation process curves of the grape leaf
disease detection model based on YOLOv8-ACCW.

seen from Figure 13 that the improved convergence of the
relevant curves is evident, with a greater improvement in
accuracy. The model’s predicted results are closer to the true
values. Table 7 presents a comparison of grape leaf disease
detection results from the grape leaf disease dataset.

TABLE 7. Comparison of grape leaf disease detection results on the
grape leaf disease dataset.

In this study, under the same experimental environment
and dataset conditions, traditional YOLOv8 model and the

improved YOLOv8-ACCW model were trained using con-
sistent experimental methods.

Figure 15 shows the Precision-Recall (PR) curves of both
the traditional YOLOv8 model and the improved YOLOv8-
ACCWmodel. It can be observed that the improved algorithm
model has increased the mAP50 (mean Average Precision at
IoU 0.5) for various grape leaf disease detections to some
extent. The overall mAP50 has improved from the original
89.7% to 92.8%, representing an increase of 3.1%.

FIGURE 15. Precision–recall diagram of different methods.

Figure 16 displays the confusion matrices for the
YOLOv8n and YOLOv8-ACCW models, used to classify
four categories of grape leaf diseases.

H. COMPARISON WITH DETECTION RESULTS FROM
DIFFERENT ALGORITHMS
To further validate the algorithm’s performance, this study
compares YOLOv8-ACCW with other mainstream object
detection algorithms using the grape leaf disease dataset.
The results are shown in Table 8. Compared to two-stage
algorithms like Faster-RCNN and Cascade-RCNN, and
single-stage algorithms like Efficientnet and CenterNet,
YOLOv8-ACCW achieves improvements of 1.6%, 0.5%,
3.5%, and 4.4% inmAP50, and improvements of 1.3%, 2.5%,
5.6%, and 6.3% in mAP50-95. Significant improvements in
FPS (frames per second) are also observed.

In comparison with the real-time object detection
algorithm RT-DETR, YOLOv8-ACCW shows almost no
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FIGURE 16. Confusion matrices of the YOLOv8n and YOLOv8-ACCW
models.

decrease in F1 and mAP50, while having only 7.2% and
6.7% of the parameters and computations of RT-DETR,
respectively. Moreover, there are significant improvements
in mAP50-95 and FPS.Additionally, to assess its per-
formance within the YOLO series, YOLOv8-ACCW is
compared with lightweight networks such as YOLOv3tiny,
YOLOv4tiny, YOLOv5s, YOLOv6n-ReLU, YOLOv7tiny,
and YOLOv8n. As shown in Table 8, YOLOv8-ACCW
achieves improvements of 8.2%, 7.3%, 4.1%, 3.9%, 3%,
and 3.1% in mAP50 compared to these networks, while
reducing computation and parameter sizes to varying degrees.
Similarly, improvements inmAP50-95 are also notable across
these comparisons.Furthermore, based on the same improve-
ment approach applied to YOLOv7tiny, YOLOv7-ACCW is
designed, showing enhanced detection accuracy compared
to YOLOv7tiny. However, improvements on YOLOv8n are
more significant than on YOLOv7tiny, primarily due to
YOLOv8’s better scalability and potential for performance
enhancement through improvements in model structure and
hyperparameters.

In conclusion, experimental results demonstrate that com-
pared to other mainstream object detection algorithms,
YOLOv8-ACCW achieves high detection accuracy with
minimal model size, lower usage costs, higher detection

efficiency, and simpler deployment. This makes it efficient
and superior for practical applications.

TABLE 8. Comparison results of different algorithms.

V. CONCLUSION
This paper focuses on three common grape leaf diseases:
black root, black measles, and blight. Addressing the issue of
poor detection performance for small lesions, a lightweight
grape leaf disease detection method based on improved
YOLOv8 is proposed, overcoming challenges faced by tra-
ditional YOLOv8n in object detection applications. The
AKConv module replaces traditional convolutional mod-
ules, allowing arbitrary sampling of targets of various sizes
to reduce model parameters and enhance disease detec-
tion. Additionally, a coordinate attention mechanism (CA)
is introduced into the backbone and neck networks of
YOLOv8 to embed positional information into channel atten-
tion, thereby strengthening feature extraction and suppressing
irrelevant features. Furthermore, a lightweight universal
upsampling content-aware reassembly module (CARAFE) is
introduced to improve the model’s ability to extract impor-
tant features. Finally, the Wise-IoU boundary loss function
is used to enhance boundary box regression performance
and improve detection of small target diseases.Experimental
results demonstrate that YOLOv8-ACCW offers advantages
such as fewer parameters, lower computational requirements,
and higher detection accuracy, meeting real-time require-
ments. Compared to the original YOLOv8, the proposed
algorithm achieves a 3.1% increase in mean average preci-
sion (mAP) and performs well in both natural and simple
environments. This method achieves high detection accuracy
while reducing demands on platform computing and storage
capabilities, making it easy to deploy on resource-constrained
devices.
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This study acknowledges limitations in disease category
detection on grape leaves. To validate the robustness of
the proposed model, expanding the categories in the grape
disease dataset is necessary to obtain more comprehensive
results. Moreover, the algorithm can be applied to detect other
agricultural diseases. Future research will focus on deploy-
ing the improved model on resource-constrained embedded
detection devices and refining the proposed algorithm for
grape leaf disease recognition under conditions of strong
reflection and extremely low light in practical applications.
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