
Received 10 August 2024, accepted 29 August 2024, date of publication 2 September 2024, date of current version 13 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3453503

Integer Linear Programming-Based Simultaneous
Scheduling and Binding for SiLago Framework
DHILLESWARARAO PUDI 1, SHIVAM MALVIYA 1, SRINIVAS BOPPU 1, (Member, IEEE),
YU YANG 2, (Member, IEEE), AHMED HEMANI 2, (Senior Member, IEEE),
AND LINGA REDDY CENKERAMADDI 3, (Senior Member, IEEE)
1School of Electrical Sciences, Indian Institute of Technology at Bhubaneswar, Bhubaneswar 752050, India
2Division of Electronics and Embedded Systems, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
3Department of ICT, University of Agder, 4630 Grimstad, Norway

Corresponding author: Linga Reddy Cenkeramaddi (linga.cenkeramaddi@uia.no)

This work was supported in part by the Indo-Norwegian Collaboration in Autonomous Cyber-Physical Systems (INCAPS) through the
International Partnerships for Excellent Education, Research and Innovation (INTPART) Program from the Research Council of Norway
under Project 287918.

ABSTRACT Coarse-Grained Reconfigurable Array (CGRA) architectures are potential high-performance
and power-efficient platforms. However, mapping applications efficiently on CGRA, which includes
scheduling and binding operations on functional units and variables on registers, is a daunting problem.
SiLago is a recently developed VLSI design framework comprising two large-scale reconfigurable fabrics:
Dynamically Reconfigurable Resource Array (DRRA) and Distributed Memory Architecture (DiMArch).
It uses the Vesyla compiler to map applications on these fabrics. The present version of Vesyla executes
binding and scheduling sequentially, with binding first, followed by scheduling. In this paper, we proposed
an Integer Linear Programming (ILP)-based exact method to solve scheduling and binding simultaneously
that delivers better solutions while mapping applications on these fabrics. The proposed ILP combines two
objective functions, one for scheduling and one for binding, and both of these objective functions are coupled
with weightage factors α and β so that the user can have the flexibility to prioritize either scheduling
or binding or both based on the requirements. We determined the binding and execution time of image
processing tasks and various routines of the Basic Linear Algebraic Subprogram (BLAS) using the proposed
ILP for multiple combinations of weightage factors. Furthermore, a comparison analysis has been conducted
to compare the latency and power dissipation of several benchmarks between the existing and proposed
approaches. The experimental results demonstrate that the proposed method exhibits a substantial reduction
in power consumption and latency compared to the existing method.

INDEX TERMS Coarse-grain reconfigurable architecture, dynamically reconfigurable resource array,
distributed memory architecture, integer linear programming, high-level synthesis, scheduling, binding.

I. INTRODUCTION
In recent years, a new class of accelerators called Coarse-
Grained Reconfigurable Arrays (CGRA) has emerged, with
applications primarily in embedded systems [1]. The compu-
tationally intensive sections of an application can be executed
on these scalable, highly parallel platforms. CGRAs are an
attractive trade-off between custom ASICs (Application Spe-

The associate editor coordinating the review of this manuscript and

approving it for publication was Mario Donato Marino .

cific Integrated Circuits) and FPGAs (Field Programmable
Gate Arrays) since they provide power efficiency on par with
non-programmable hardware accelerators while yet being
programmable [2], [3], [4]. CGRAs are especially appeal-
ing when tailored to specific areas where computational
requirements are known, yet programmability is required to
meet evolving technical specifications. References [5] and [6]
provide a comprehensive review of CGRAs.

A High-Level Synthesis (HLS) framework is required
to map applications on CGRAs. The process of mapping

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 124081

https://orcid.org/0000-0001-7054-0254
https://orcid.org/0009-0003-4176-121X
https://orcid.org/0000-0001-9028-2563
https://orcid.org/0000-0003-2396-3590
https://orcid.org/0000-0003-0565-9376
https://orcid.org/0000-0002-1023-2118
https://orcid.org/0000-0001-8336-9150

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

an application onto a CGRA involves determining how to
schedule and bind the operations of the application to the
resources of CGRA in a way that considers the control and
data dependencies and any other architectural constraints.
Scheduling aims to minimize the time or control steps
needed for an application, considering hardware constraints.
Binding assigns operations and variables to resources while
minimizing their usage. Traditionally, scheduling and binding
were handled one after the other.

Simultaneous scheduling and binding in HLS are critical
due to their significant impact on the performance and
efficiency of the hardware. The simultaneous approach
ensures that these decisions are made cohesively, optimizing
resource utilization, reducing latency, and improving overall
performance. Efficient scheduling and binding can minimize
execution cycles and balance the workload across available
resources, leading to more efficient hardware designs. The
complexity of simultaneous scheduling and binding arises
from the intricate interdependencies between these two tasks.
Scheduling an operation for a specific time slot affects which
resources are available for binding, and vice versa. This
creates a highly combinatorial problem space, making it
challenging to find an optimal solution using straightforward
methods. Both scheduling and binding are individually NP-
hard problems [7], [8], and their combination further adds
to the complexity. This necessitates the use of optimization
techniques such as Integer Linear Programming (ILP) and
heuristics to find feasible solutions within reasonable time
frames. Timing and area constraints further aggravate the
complexity of the problem. Effective simultaneous schedul-
ing and binding must account for these constraints to ensure
that the hardware meets performance specifications while
minimizing area and power consumption. The use of ILP for
simultaneous scheduling and binding effectively addresses
these challenges by formulating the problem as a set of linear
equations and inequalities, allowing for precise control over
the optimization process and yielding high-quality solutions.

This paper focuses on SiLago, an end-to-end synthesis
framework [9], [10]. The SiLago framework takes into
account two CGRA fabrics: (a) Dynamically Reconfigurable
Resource Array (DRRA) [11], (b) Distributed Memory
Architecture (DiMArch) [12], and employs Vesyla [13],
[14] compiler to map ML and DSP applications onto
both DRRA and DiMArch. The current version of Vesyla
performs binding first, then scheduling [13]. The sequential
approach to binding and scheduling has led to suboptimal
resource utilization because decisions made during binding
do not account for the dynamic requirements of scheduling.
Therefore, in this paper, we opted to simultaneously perform
scheduling and binding to achieve better results.

The main contributions of this paper are:
1) We propose an Integer Linear Programming (ILP)

approach for the Simultaneous Scheduling and Binding
(SSB) problems.

2) The proposed ILP has multiple objectives and includes
weightage factors for scheduling and binding.

3) We determine execution time and binding for image
processing tasks and various BLAS functions imple-
mented on DRRA and DiMArch fabrics.

4) We show through our experiments that the proposed
ILP provides better results compared to the existing
method [13].

We want to emphasize that, although the ILP technique is
well-known, our contributions in this paper focus on adapting
the ILP method to our specific architecture. This adaptation
involves developing an appropriate objective function and
formulating constraints tailored to our needs. Our primary
goal is to perform binding and scheduling simultane-
ously within the SiLago framework, thereby improving the
underlying hardware’s performance and increasing designer
productivity.

The remaining sections of the paper are structured in
the following manner: A concise overview of the SiLago
framework, encompassing the DRRA, DiMArch, and Vesyla
compiler are presented in Section II. The related work is
discussed in Section III, and the proposed ILP formulation
for simultaneous scheduling and the binding problem is
discussed in detail in Section IV. Results are discussed
in Section V. In Section VI, conclusions and future works
are presented.

II. BACKGROUND
A quick introduction to the Vesyla compiler, DRRA, and
DiMArch fabrics is given in this section. DRRA is a
coarse-grained fabric for spatial computing that consists of
control, arithmetic/logic, distributed storage, and connection
resources. TheDRRA fabric consists of DRRA cells arranged
in a grid fashion, with two rows and many columns. Each cell
is connected to both a vertical and horizontal bus via switch
boxes. The DRRA fabric is capable of being expanded in size
and can be adjusted to specific dimensions. The DRRA cell
consists of a Data-Path Unit (DPU), a Register File (RF),
a Sequencer (SEQ), and Switch Boxes (SB), as depicted
in Fig. 1. Each DRRA cell is distinguished by its coordinate
data. For instance, the top-right DRRA cell in Fig. 1, located
in the seventh column and second row, is designated as a
DRRA cell [1, 6].

The DPU functions as the primary arithmetic unit of the
DRRA fabric, with four 16-bit input ports and two 16-bit
output ports [11]. The RF refers to the distributed local
storage of the DRRA fabric. It contains two read/write ports
that can transfer 16 bits at a time. Each port is equipped
with its own Address Generation Unit (AGU) to generate
addresses [11], [15]. The RF is equipped with a 256-bit
bidirectional interface that is exclusively used for transferring
data between the RF and the SRAM macros. The RF’s depth
and breadth are parameterized, with default settings of 64 and
16, respectively. The DPU, switchboxes, and AGUs of the
register file are dynamically configured at run-time by the
sequencer (SEQ), the control unit of each DRRA [11], [16].
The sequencer governs the transmission of data between
DiMArch and the DRRA fabric through a circuit-switched

124082 VOLUME 12, 2024

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

data Network-on-Chip (NoC) and a packet-switched high
bandwidth configuration and control NoC. The DRRA
cells engage in communication using a sliding window
mechanism. The sliding window enables a cell to establish
communication with a limited group of neighboring cells,
demonstrating localized connectivity [17]. The size of the
sliding window is a parameter that is determined during
the design phase. In this study, we have selected a sliding
window with a size of two. This means that each DRRA
cell can communicate with other DRRA cells within a range
of two columns on both sides, resulting in a sliding range
of five columns. The switch box establishes connections
between the outputs of the RFile and DPU and the inputs
of the RFile and DPU of the DRRA cells located within the
sliding window [17]. DiMArch mostly consists of SRAM
macros, specifically mBanks, which are typically 2KB in
size. The SRAM macro’s dimensions, both in terms of depth
and breadth, are parameterized. The default settings for the
depth and width are 64 and 256-bit, respectively. Every
SRAM macro is provided with both a read and a write
port, which additionally feature Address Generation Units
(AGUs) identical to those mentioned above for Register
Files (RFs).

FIGURE 1. DRRA and DiMArch architecture, adopted from [18].

As previously indicated, Vesyla is utilized within the
SiLago framework to facilitate the mapping of applications
onto DRRA and DiMArch. Vesyla accepts input in the
form of Matlab-style code with pragmas and produces
the SiLago block layout, DRRA configware, and the cost
of the synthesized algorithm [13]. Once an input source
code is read into Vesyla, a Control Address and Data
Flow Graph (CADFG), which is used as an intermediate
representation, is used to capture all the information of
the input program [19]. In this work, numerous parameters
for the proposed ILP are derived from the CADFG. The
layout generated by Vesyla includes the specified number of
DRRA and DiMArch cells, known as SiLago blocks. These

blocks are composed by abutment and do not require physical
synthesis, as each block is hardened, effectively eliminating
the need for logic and physical synthesis in the SiLago design
flow. However, these SiLago blocks can be hardened using
standard synthesis tools. A key limitation of Vesyla is that it
specifically targets the DRRA+DiMArch architecture. How-
ever, because the SiLago CGRA platform shares similarities
with other CGRA platforms, the techniques used in Vesyla
could potentially be adapted for use with those platforms,
although with some necessary modifications. Currently, there
are no other tools available that can synthesize designs for
the DRRA+DiMArch architecture. The SiLago framework
is carefully designed to maintain composability across
functional, electrical, and cost estimation models, making it
a robust solution for large-scale designs.

The following sequence of steps occurs when a streaming
application is mapped onto the DRRA and DiMArch: a) input
streams are populated into DiMArch, which are subsequently
copied to RFs by SEQ, b) DPUs retrieve the input streams
from RFs and execute arithmetic operations, then store the
results/output streams back into the RFs, and c) the output
streams from the RF are transferred to the DiMArch by the
SEQ. The streaming applications on DRRA and DiMArch
utilize DiMArch SRAM macros to store their input and
output streams, which are often known as SRAM variables.
The operands used in the calculations are stored in register
file variables, which consistently retrieve data from SRAM
variables.

Over the past few years, several applications have been
implemented on DRRA and DiMArch fabrics. The authors
in [20] implemented a self-organizing map on DRRA
for rapid identification of bacterial genomes. In [15], the
Fast Fourier Transform (FFT) was mapped onto DRRA
fabric. The implementation of the mixed radix FFT on
DRRA fabric is discussed in [21]. In [22], [23], and [24],
the authors explored image processing operations such as
image averaging, 2D convolution, and Sobel edge detection
on DRRA and DiMArch fabrics. DRRA and DiMArch
fabrics have significant potential to accelerate machine
learning, artificial intelligence, and digital signal processing
algorithms, with many more implementations expected in the
near future.

III. RELATED WORK
Scheduling and binding are essential for mapping applica-
tions on CGRA architectures. This process has two main
approaches, depending on how the scheduling and binding
are performed. The first approach involves solving binding
and scheduling sequentially with heuristic [25], [26], [27]
or exact methods [28], [29]. In [27], the edge-centric
modulo scheduling heuristic is employed for scheduling.
In [26], the authors have used Iterative Modulo Scheduling
(IMS) [30] algorithm for scheduling and the binding problem
is tackled by combining a routing heuristic from FPGA
synthesis and a Simulated Annealing (SA) algorithm for
placement. Themethod presented in [25] uses heuristic-based

VOLUME 12, 2024 124083

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

binding and scheduling to address a simplified problem,
followed by a quantum-inspired evolutionary algorithm to
refine the initial solution. This approach yields high-quality
solutions but has a low convergence rate. In [28] and [29],
the authors applied exact and heuristic methods to solve
binding and scheduling problems sequentially. Scheduling
is implicitly done by altering the DFG and integrating
timing and architectural constraints. Levi’s approach [31] is
used to perform the binding, which identifies the common
sub-graph between the temporally enlarged CGRA and the
updated DFG.

The second solution addresses the binding and schedul-
ing problems concurrently. The ILP-based approaches are
employed in [32] and [33] to determine the optimal solutions
for binding and scheduling. The ILP model is utilized
in [34] to simultaneously perform the functional unit, register,
and interconnect binding with the scheduling. In [35], the
authors proposed a heuristic-enhanced scheduling algorithm
to solve scheduling problems for distributed two-level control
(D2LC) systems like DRRA fabric. The proposed algorithm
is scalable and has been validated by a large number of
experiments with varied problem sizes.

In [25], [26], [27], [28], and [29], the authors present
methods that solve scheduling and binding in a sequentially.
In contrast, our paper addresses scheduling and binding
simultaneously. Although the authors in [32], [33], and
[34] use ILP for simultaneous scheduling and binding, their
approaches are not suited for the SiLago framework due to its
unique characteristics. These methods derive ILP parameters
from data flow graphs (DFG), while our work utilizes
CADFG, which differs significantly fromDFG. Furthermore,
in [35], the authors focus solely on list scheduling without
incorporating binding.

In recent years, numerous frameworks have emerged to
facilitate the mapping of applications onto CGRA. In [36],
the authors introduced HyCUBE which maps application
kernels to CGRA through modulo scheduling. An ILP-
based architecture-independent approach is presented in [37]
for application mapping on CGRA. Chin et al. introduced
CGRA-ME in [2], a unified framework for application
mapping on CGRA, offering adaptable scheduling, mapping,
placement, and routing tools. This framework is incorporated
with the popular LLVM compiler [38] to facilitate the
mapping of optimized C-language benchmarks onto specific
CGRAs. The authors in [39] introduced HiMap, a fast and
scalable CGRA mapping approach designed for multidi-
mensional kernels on larger CGRAs. In [40], the authors
introduced a compiler for CGRAs leveraging the OpenMP
programming model. The REVAMP framework is presented
in [41] for application mapping on heterogeneous CGRA
architectures.

The existing CGRA frameworks are restricted to generic
CGRA templates, they cannot accommodate the features
of DRRA fabric, such as address generation units, sliding
windows, and heterogeneous processing units. Consequently,
these generic CGRA compilers cannot handle the DRRA

fabric. On the other hand, the Vesyla compiler is specifically
designed for DRRA and can effectively accommodate all
these functionalities.

In our previous work [19], we introduced methods to
automate binding in Vesyla, which was previously done
manually using pragmas. We used a list scheduling-based
approach for functional unit binding and an ILP-based
method for register binding. Furthermore, scheduling and
binding were performed sequentially, with binding preceding
scheduling. Performing binding and scheduling sequentially
has led to inefficient resource utilization, as binding fails
to account for the dynamic requirements of scheduling.
Therefore in this paper, we have implemented a simultaneous
approach to scheduling and binding to achieve better
results. Our objective is to address a key challenge: Given
an application in Matlab-style code, efficiently schedule
all operations to minimize overall execution time while
determining optimal assignments of operations to DPUs,
register file variables to register files, and SRAM vari-
ables to SRAM macros. This approach aims to minimize
interconnect length between register files, SRAM macros,
and DPUs. Notably, prior research has not tackled simul-
taneous scheduling and binding on this specific target
architecture.

IV. METHODOLOGY
The Simultaneous Scheduling and Binding (SSB) problem is
an NP-complete problem [42]. Integer linear programming
(ILP) is a standard optimizationmethod. This section presents
an ILP-based approach for solving the SSB problem on
a target architecture that includes DRRA and DiMArch
fabrics.

A. INTEGER LINEAR PROGRAMMING (ILP) FORMULATION
The proposed ILP provides the scheduling information of
various DPU operations, binding of the SRAM variables,
register file variables, and DPU operations. To improve
the understanding of our ILP formulation, we begin by
introducing the notations employed in our formulation. The
parameters utilized in the proposed ILP are enumerated
in Table 1. Table 2 provides an overview of the variables
employed in the proposed ILP. The objective function and
constraints used in this ILP are presented below.

1) OBJECTIVE FUNCTION:
The ILP formulation encompasses two distinct objectives:
the first aims at reducing the number of clock cycles
required for processing a particular application, while the
second objective is to minimize the data transfer interconnect
length. In this scenario, the interconnect length refers to
the distance between the DPU and RF, or between the
RF and SRAM macro for RF binding and SRAM binding,
respectively. Shorter interconnect lengths result in lower
dynamic power dissipation. The interconnect length is
determined by calculating the number of hops, which is
the difference between the coordinates of the register file

124084 VOLUME 12, 2024

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

TABLE 1. Parameters and their definition.

variable, SRAM variables, and DPU operations, as illustrated
in Eq. (1), as shown at the bottom of the page. In Eq. (1), α and

β represent the weightage factors for scheduling and binding,
respectively.

min

α ×

T +

Nop∑
i=1

T sti

+ β ×

Nop∑
i=1

Nr∑
j=1

DRij ×
(
| Bdpui1 − Brfilej1 | + | Bdpui2 − Brfilej2 |

)

+

Ns∑
i=1

Nr∑
j=1

SRij ×
(
| (Bsrami1 + Ndr − Brfilej1) | + | Bsrami2 − Brfilej2 |

) (1)

VOLUME 12, 2024 124085

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

TABLE 2. Variables and their definitions.

2) CONSTRAINTS
Eqs. (2), and (3) ensures that each DPU operation has to
be executed exactly once and mapped on exactly one DPU.
Eqs. (4), and (5) define the start and end times of the
DPU operations. Eq. (6) guarantees that the end time of
each DPU operation depends on its start time and execution
time. Eq. (7) describes precedence relations and assures that
each operation’s start time is bounded by its predecessors’
completion times. Eq. (8) ensures that the total execution
time is bounded by the execution time of each operation.
Eq. (9) assures that each DPU operation starts and ends at
the same DPU. Eq. (10) ensures that each DPU performs at
most one operation at a time. Eq. (11) represents the existence
of DPU operations over time, capturing the temporal aspect
of these operations. This temporal representation is vital for
minimizing latency in the scheduling and binding process.
Eqs. (12), and (13) represent the DPU binding for various
DPU operations. Specifically, these equations provide the
coordinate information (i.e., row and column) of the DPU to
which each operation is mapped. Eq. (12) denotes the row
information, while Eq. (13) specifies the column information
of the assigned DPU. The DPU binding relies on the temporal
distribution of DPU operations and the availability of DPUs,
as determined by Ndr . Each DPU operation is allocated to an
available DPU within DRRA.

∀i ∈ [1,Nop] :

Ncyc∑
j=1

Ndpu∑
k=1

ostijk = 1 (2)

∀i ∈ [1,Nop] :

Ncyc∑
j=1

Ndpu∑
k=1

oendijk = 1 (3)

∀i ∈ [1,Nop] : T sti =

Ncyc∑
j=1

(j×
Ndpu∑
k=1

ostijk) (4)

∀i ∈ [1,Nop] : T endi =

Ncyc∑
j=1

(j×
Ndpu∑
k=1

oendijk) (5)

∀i ∈ [1,Nop] : T endi = di + T sti − 1 (6)

∀i, j ∈ [1,Nop] : T stj ≥ Dij × (1 + T endi) (7)

∀i ∈ [1,Nop] : T endi ≤ T (8)

∀k ∈ [1,Ndpu] : ∀i ∈ [1,Nop] :

Ncyc∑
j=1

(ostijk − oendijk) = 0 (9)

∀k ∈ [1,Ndpu] : ∀j ∈ [1,Ncyc] :

Nop∑
i=1

(ostijk − oendijk) ≤ 0 (10)

∀i ∈ [1,Nop] : ∀j ∈ [1,Ncyc] : oPij =

Ndpu∑
k=1

j∑
l=1

(ostilk − oendilk)

+

Ndpu∑
k=1

oendijk (11)

∀i ∈ [1,Nop] : ∀j ∈ [1,Ncyc] :

Bdpui1 =

Ndpu∑
k=1

ostijk × (k − 1)

%Ndr (12)

∀i ∈ [1,Nop] : ∀j ∈ [1,Ncyc] :

Bdpui2 =

(∑Ndpu
k=1 o

st
ijk × (k − 1)

)
Ndr

(13)

Eq. (14) assures that every RF variable is associated with
exactly one register file in DRRA. Eq. (15) represents the
existence of the register file variables over time. Due to
the limited depth of RF, the total size/length of multiple
variables stored in it cannot go beyond its depth, which
is ensured by Eq. (16). The limited number of read and
write ports in RF limits the number of variables that can be
simultaneously written to or read from it. Eqs. (17), and (18)

124086 VOLUME 12, 2024

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

ensure that the number of variables read from or written to
the RF corresponds to the available number of read and write
ports, respectively. An RF can seamlessly communicate with
other DPUs and RFs in other DRRA cells that are present
within a sliding window spanning five columns. Eqs. (19),
and (20) ensure this local connectivity of RF. Eqs. (21),
and (22) represent the RF binding. Eq. (21) denotes the row
information, while Eq. (22) specifies the column information
of the assigned RF.

∀i ∈ [1,Nr] : ∀j ∈ [1,Ncyc] :

Nrfile∑
k=1

xijk = 1 (14)

∀i ∈ [1,Nr] : ∀j ∈ [1,Ncyc] : rPij =

Nop∑
k=1

(Pki × oPkj) (15)

∀k ∈ [1,Nrfile] : ∀j ∈ [1,Ncyc] :

Nr∑
i=1

xijk × Lri × rPij ≤ Drfile (16)

∀k ∈ [1,Nrfile] : ∀j ∈ [1,Ncyc] :

Nr∑
i=1

(xijk ×

Nop∑
m=1

(Rmi × oPmj)) ≤ Nrd (17)

∀k ∈ [1,Nrfile] : ∀j ∈ [1,Ncyc] :

Nr∑
i=1

(xijk ×

Nop∑
m=1

(Wmi × oPmj)) ≤ Nwr (18)

∀i ∈ [1,Nr] : ∀j ∈ [1,Nop] : Aji× | Bdpuj1 −Brfilei1 |≤ Lsw
(19)

∀i ∈ [1,Nr] : ∀j ∈ [1,Nop] : Aji× | Bdpuj2 −Brfilei2 |≤ Lsw

(20)

∀ ∈ [1,Nr] : ∀j ∈ [1,Ncyc] :

Brfilei1 =

Nrfile∑
k=1

xijk × (k − 1)

%Ndr

(21)

∀ ∈ [1,Nr] : ∀j ∈ [1,Ncyc] :

Brfilei2 =

(∑Nrfile
k=1 xijk × (k − 1)

)
Ndr

(22)

Eq. (23) guarantees that every SRAM variable in DiMArch
is associated with exactly one SRAM macro. SRAM, which
can also hold multiple input/output variables, is limited in
size, similar to RF. Therefore, Eq. (24) ensures that the total
combined length of variables stored in the SRAM cannot go
beyond its depth. Eqs. (25), and (26) guarantees that every
SRAMmacro will establish communication with RFs located
within the sliding window, which spans five columns. Eqs.
(27), and (28) represent the SRAM binding. Eq. (27) denotes
the row information, while Eq. (28) specifies the column

FIGURE 2. Flow chart of proposed method.

information of the assigned SRAM macro in DiMArch.

∀i ∈ [1,Ns] : ∀j ∈ [1,Ncyc] :

Nsram∑
k=1

yijk = 1 (23)

∀k ∈ [1,Nsram] : ∀j ∈ [1,Ncyc] :

Ns∑
i=1

yijk × Lsi ≤
Dsram ×Wsram

Wrfile
(24)

∀i ∈ [1,Ns] : ∀j ∈ [1,Nr] : Sij× | Bsrami1 − Brfilej1 |≤ Lsw
(25)

∀i ∈ [1,Ns] : ∀j ∈ [1,Nr] : Sij× | Bsrami2 − Brfilej2 |≤ Lsw

(26)

∀ ∈ [1,Ns] : ∀j ∈ [1,Ncyc] :

Bsrami1 =

(Nsram∑
k=1

yijk × (k − 1)

)
%Ndr (27)

∀ ∈ [1,Ns] : ∀j ∈ [1,Ncyc] :

Bsrami2 =

(∑Nsram
k=1 yijk × (k − 1)

)
Ndr

(28)

We implemented the ILP formulations inVesyla using IBM
CPLEX solver [43]. Although the number of variables and
inequalities in an ILP formulation grows exponentially as the
complexity of the problem grows, the motivation of this paper
is to achieve an improved solution.

VOLUME 12, 2024 124087

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

Fig. 2 depicts the flowchart for the proposed method.
The process begins with defining the parameters used in
the ILP formulation. These parameters, detailed in Table 1,
are derived from the DRRA+DiMArch architectural spec-
ifications and CADFG. The next step involves identifying
and defining the decision variables as integers, as listed
in Table 2. The objective function is formulated once the
variables are defined, as shown in Eq. (1). Constraints are
then formulated and categorized into four types: scheduling
constraints (Eq. (2)-Eq. (8)), DPU binding constraints (Eq.
(9)-Eq. (13)), register file binding constraints (Eq. (14)-Eq.
(22)), and SRAM binding constraints (Eq. (23)-Eq. (28)).
After defining the parameters, decision variables, objective
function, and constraints, the ILP model is formulated and
solved using the IBM CPLEX solver. The final step is to
verify if the ILP provides an optimal solution. If not, the
objective function and constraints are revised. If the solution
is optimal, the scheduling and binding results are used further
to generate the configware for DRRA and DiMArch cells.

The proposed ILP formulation incorporates weightage
factors α and β for scheduling and binding, respectively.
By defining these factors, users can optimize execution
time and data transfer interconnect length. In contrast, the
sequential execution of scheduling and binding in the existing
SiLago framework results in performance degradation and
limits effective resource utilization. This limitation is due
to the underlying architecture’s interdependence between
scheduling and binding processes during application map-
ping. Moreover, the current version of Vesyla requires
manual binding, whereas the proposed approach automates
this process. This automation allows users with limited
architectural knowledge to effectively utilize the framework,
significantly reducing the design space and saving time
compared to manual binding. By allowing users to select
appropriate values for α and β based on the specific
application, the proposed method significantly improves the
performance of the underlying architecture. Another notable
advantage of the proposed ILP approach is its adaptability to
architectural changes. For instance, if the depth and width of
RF and SRAM macros increase in the future, it is sufficient
to adjust the corresponding ILP parameters (i.e.,Drfile,Wrfile,
Dsram, and Wsram) to reflect these changes. This flexibility
ensures that the proposed approach remains effective and
relevant despite architectural modifications.

V. RESULTS AND DISCUSSIONS
We conducted the experiments on a set of Basic Lin-
ear Algebra Subprograms (BLAS), namely, matrix-vector
multiplication (blas3gemv), matrix-matrix multiplication
(blas3gemm, blas3axbxc), and matrix-matrix multiplication
and addition (blas3mmadd), listed in Table 3. In addition,
we considered the BLAS function using matrices and vectors
of dimension 4. Specifically, all the benchmarks presented
in Table 3 consist of matrices of size 4 × 4 and vectors
of size 1 × 4. Table 3 also includes the total number of
DPU operations, RF variables, and SRAM variables in the

TABLE 3. Benchmarks.

BLAS routines. Table 4 lists the utilized parameters in all the
experiments.

TABLE 4. Parameters and their values.

The proposed ILP is very flexible since it permits
user-defined weightage factors α and β to determine the
relative importance of the two objectives, execution time, and
data transfer connection length. Here, minimization in data
transfer interconnect length determines the dynamic power
dissipation. Shorter interconnect lengths lead to less dynamic
power dissipation. Therefore, the execution time, binding,
and power value will vary depending on the values α and
β. In this work, we considered three combinations of α

and β, i.e., α = 1, β = 0 (Case 1), α = 0, β = 1
(Case 2), α = αopt , andβ = βopt (Case 3). The values
of α and β depend on operations and variables present in
input Matlab code, execution times of operations, and data
movement between DPUs, register files, and SRAM macros.
The generalized values of α and β for which the proposed
ILP yields better results are shown in Eq. (29) and Eq. (30).
Here, x1 and x2 are objective function values for Case 1 and
Case 2, respectively. By using Eq. (29) and Eq. (30), we have
calculated the values of α and β that yield better results for
BLAS functions as listed in Table 5.

αopt =
x2

x1 + x2
(29)

βopt =
x1

x1 + x2
(30)

In Case 1, weightage is given to the scheduling objective,
which reduces the total execution time, but no weightage is
assigned to the binding objective. Table 6 shows the number
of clock cycles required to execute all the operations, DPU,
register file, and SRAM binding of various BLAS functions
for α = 1 and β = 0. From Table 6, it is obvious that
the blas3gemv function containing two DPU operations is
mapped to DPU in the DRRA cell [0, 0] in the DRRA

124088 VOLUME 12, 2024

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

TABLE 5. The optimal values of α and β for BLAS functions.

TABLE 6. Scheduling and binding of BLAS functions for α = 1, β = 0.

fabric. The register file variables mapped over two columns
of DRRA lead to an increase in interconnect length. All the
SRAM variables are mapped to the SRAM macro [0, 0].

In Case 2, a weighted binding objective is considered,
which minimizes data transfer interconnect length, but no
weightage is given to the scheduling objective. In this case,
the proposed ILP yields better binding results, i.e., it provides
the appropriate mappings for the operations and variables.
Table 7 shows the number of clock cycles required to execute
all the operations, DPU, register file, and SRAM binding of
various BLAS functions for α = 0 and β = 1. Table 7
clearly shows that the blas3gemv function, which includes
two DPU operations, maps to the DPU in the DRRA cell [0,
0] within the DRRA fabric. The register file variables mapped
over the first column of DRRA lead to a minimization in
interconnect length compared to Case 1. All the SRAM
variables are mapped to the SRAM macro [0, 0]. Since
the scheduling objective is not weighted, the execution time
increases compared to Case 1.

In Case 3, equal weightage is given to both the scheduling
and binding objectives. In this case, the proposed ILP yields
better scheduling and binding results, with the minimum
number of clock cycles needed to process a given application,
and provides appropriate mappings for the operations and
variables. This results in less execution time and low power
dissipation. Table 8 shows the number of clock cycles
required to execute all the operations, DPU, RF, and SRAM

TABLE 7. Scheduling and binding of BLAS functions for α = 0, β = 1.

TABLE 8. Scheduling and binding of BLAS functions for α = αopt ,
β = βopt .

binding of aforementioned BLAS functions for α = αopt and
β = βopt .
Fig. 3 shows the comparison of execution times of the

BLAS functions for different combinations of weightage
factors α and β. From Fig. 3, it is observed that the proposed
ILP yields an optimum number of clock cycles for Case 1 and
Case 3 compared to Case 2. Fig. 4 shows the comparison
of power values of various BLAS functions for different
combinations of weightage factors α and β. From Fig. 4,
it is observed that the proposed ILP yields low power values
for Case 2 and Case 3 compared to Case 1. From Fig. 3
and Fig. 4, it is evident that the proposed ILP provides
better scheduling and binding results for Case 3, where
equal weightage is assigned to both scheduling and binding
objectives. We employed Synopsys Design Compiler and
Cadence Innovus for logic synthesis and physical synthesis,
respectively. Mentor’s Questasim was utilized for simulating

VOLUME 12, 2024 124089

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

FIGURE 3. The execution time of BLAS functions for different
combinations of weightage factors α and β.

FIGURE 4. The power dissipation of BLAS functions for different
combinations of weightage factors α and β.

the switching activity, which is subsequently stored in Value
Change Dump (VCD) format. This VCD file was used later
in power calculations using Innovus. Furthermore, the DRRA
fabric was realized using a 28 nm technology node and limited
by a clock of 200 MHz.

In addition, we performed experiments that involved 2D
convolution, a range of image-processing tasks, imagine aver-
aging, and Sobel edge detection. The outcomes of scheduling
and binding for each application and the compilation time for
each function are listed in Table 9 including the optimized
values of α and β. In Table 9, ‘‘2Dconv_m’’ represents
the implementation of 2D convolution on the ‘‘m’’-column
DRRA. Similarly, ‘‘imgavg_n’’ and ‘‘Sobel_n’’ denote the
image averaging and Sobel edge detection for a window of
size n×n. For 2D convolution, we have considered the kernel
of size 3×3. For all experiments, we have considered an input
matrix of size 16×16, stride of one, and zero padding. Table 9
shows that the compilation time increases with larger window
sizes for Sobel edge detection and image averaging. This
is due to the increased computational complexity associated
with larger window sizes, leading to increased decision
variables and constraints in the ILP formulation. Similarly,
for 2D convolution implemented on a two-column DRRA,
the ILP solver requires more time than a one-column DRRA.
This trend emerges due to the enlarged DRRA fabric size,

which in turn increases the number of decision variables
and constraints in the ILP formulation, resulting in a longer
optimization process.

Power dissipation and latency for both the proposed and
existing method are compared, see Fig. 5. The existing
method [13] performs binding first, then scheduling, with
binding manually provided through pragmas [13]. In the
existing method, the list scheduling algorithm [35] is used
to schedule the DPU operations. The proposed approach not
only performs scheduling and binding simultaneously but
also automates the binding in Vesyla. Based on Fig. 5, it can
be noted that the proposed method yields significantly lower
power values compared to the existing method. Moreover, the
proposed method demonstrates superior latency performance
compared to the existing method.

We calculated the time the ILP solver took to solve
the proposed ILP for the aforementioned BLAS routines
and image processing tasks, as shown in Fig. 6. We can
conclude from the observations in Fig. 6 that the proposed
approach yields solutions within a reasonable time. The
proposed approach can easily accommodate architectural
modifications and necessitates only minor adjustments to
input parameters to work with larger DRRA fabrics.

Fig. 7 shows the compilation times for the aforementioned
tasks of image processing implemented on various sizes of
DRRA fabric. It is to be noted that due to coupling issues
with interconnect wires and power consumption, the number
of rows is fixed at two in DRRA fabric. As the DRRA
fabric size increases, the compilation times also increase as
shown and evident from Fig. 7. The reason for this increase
is that a bigger fabric size creates additional constraints
and inequalities in the ILP formulation, which leads to the
solver requiring more time to find the optimal solution.
Our proposed methods offer efficient solutions for 16 ×

16 matrices, even when dealing with huge DRRA fabrics.
The compilation times of various benchmark applications

subject to different input matrix/vector dimensions is shown
in Fig. 8. In this case, we have considered the DRRA size of 2
× 2. According to Fig. 8, there is a significant exponential
growth in compilation time as the size of the matrix increases.
This occurs because increasing the dimensions of the matrix
leads to a greater number of constraints, inequalities, and
design possibilities. When the dimensions of the matrix are
smaller, we have noticed only a slight increase in the time
it takes to compile. However, for bigger matrix sizes, this
increase is significant. As an example, the amount of time
it takes to compile the blas2gemv BLAS subroutine for a
16 × 16 input matrix is 39 seconds, while it increases to
1541 seconds for a 64 × 64 input matrix. Hence, for smaller
andmedium-sizedmatrix dimensions, our proposed approach
effectively delivers solutions within a reasonable time.

The proposed ILP approach is tailored to the SiLago
framework to solve scheduling and binding problems.
Consequently, we have not validated it on current state-of-
the-art CGRA architectures. Nonetheless, our method can be
adapted to other CGRA architectures with minimal modifica-

124090 VOLUME 12, 2024

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

TABLE 9. Scheduling, binding, and compilation time for image processing operations.

FIGURE 5. Power dissipation and latency comparison for both existing [13] and proposed methods.

tions, enabling customization to the unique architectural con-
straints of each target system. For example, DRRA features
a register file with a capacity of 64 bytes, while other CGRA
architectures might have a register file capacity of 128 bytes.
To apply our approach to these architectures, the ILP model

can be easily modified by adjusting the register file width
and depth parameters to match the particular architectural
constraints. Another key aspect of DRRA is its sliding
window communication, which allows unrestricted access
to data within a sliding window. Other CGRA architectures

VOLUME 12, 2024 124091

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

FIGURE 6. Compilation times for various benchmarks.

FIGURE 7. Comparison of compilation times for various DRRA sizes.

FIGURE 8. Comparison of compilation times for different matrix
dimensions.

may have different sliding window lengths or may lack this
feature entirely, necessitating further adjustments to the ILP
model. Apart from register file capacity and sliding window
communication, other parameters, such as memory storage
capacity and the number of read/write ports, may differ
across various CGRA architectures. The proposed method
can effectively adapt by recognizing and incorporating these
differences. This flexibility ensures that the proposed method
can be utilized to solve scheduling and binding problems
across a wide range of CGRA architectures.

VI. CONCLUSION
In this paper, we have proposed an Integer Linear Program-
ming (ILP) based exact method to solve the simultaneous
scheduling and binding problems for the target architecture,
comprising DRRA and DiMArch fabrics. The proposed ILP
considers two distinct objective functions: the first objective
aims to reduce the number of clock cycles required to run
a particular application, while the second objective strives
to minimize data transfer interconnect length. We have
calculated the execution times and binding of various BLAS
routines and image processing tasks using the proposed
ILP for different scheduling and binding weightage factor
combinations. The proposed ILP formulation yields better
results for both scheduling and binding while providing equal
weightage to both the scheduling and binding objectives.
The proposed approach is observed to have significantly
less power dissipation and latency than the existing method.
We demonstrate that the ILP solver can solve the proposed
ILP in a reasonable time for benchmarks. Only the SiLago
framework, consisting of DRRA and DiMArch fabrics,
is meant to use the Proposed ILP. For this reason, we have
not validated the proposed ILP on state-of-the-art CGRA
architectures.

REFERENCES
[1] Y. Kim and R. N. Mahapatra, ‘‘Hierarchical reconfigurable computing

arrays for efficient CGRA-based embedded systems,’’ in Proc. 46th
ACM/IEEE Design Autom. Conf., Jul. 2009, pp. 826–831.

[2] S. A. Chin, N. Sakamoto, A. Rui, J. Zhao, J. H. Kim, Y. Hara-Azumi, and
J. Anderson, ‘‘CGRA-ME: A unified framework for CGRAmodelling and
exploration,’’ in Proc. IEEE 28th Int. Conf. Appl.-Specific Syst., Archit.
Processors (ASAP), Jul. 2017, pp. 184–189.

[3] Y.-H. Lai, H. Rong, S. Zheng, W. Zhang, X. Cui, Y. Jia, J. Wang,
B. Sullivan, Z. Zhang, Y. Liang, Y. Zhang, J. Cong, N. George, J. Alvarez,
C. Hughes, and P. Dubey, ‘‘SuSy: A programming model for productive
construction of high-performance systolic arrays on FPGAs,’’ in Proc.
39th IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2020,
pp. 1–9.

[4] J. Wang, L. Guo, and J. Cong, ‘‘AutoSA: A polyhedral compiler for
high-performance systolic arrays on FPGA,’’ in Proc. ACM/SIGDA Int.
Symp. Field-Program. Gate Arrays, Feb. 2021, pp. 93–104.

[5] M. Baron, ‘‘Trends in the use of re-configurable platforms,’’ in Proc.
41st Annu. Design Autom. Conf. New York, NY, USA: Association for
Computing Machinery, Jun. 2004, p. 415, doi: 10.1145/996566.996685.

[6] R. Hartenstein, ‘‘A decade of reconfigurable computing: A visionary
retrospective,’’ in Proc. Design, Autom. Test Europe. Conf. Exhib., 2001,
pp. 642–649.

[7] A. Zhang, Y. Chen, L. Chen, and G. Chen, ‘‘On the NP-hardness of
scheduling with time restrictions,’’ Discrete Optim., vol. 28, pp. 54–62,
May 2018.

[8] N. Min-Allah, M. B. Qureshi, S. Alrashed, and O. F. Rana, ‘‘Cost efficient
resource allocation for real-time tasks in embedded systems,’’ Sustain.
Cities Soc., vol. 48, Jul. 2019, Art. no. 101523. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2210670718300635

[9] S. M. A. H. Jafri, N. Farahini, and A. Hemani, ‘‘SiLago-CoG: Coarse-
grained grid-based design for near tape-out power estimation accuracy
at high level,’’ in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2017, pp. 25–31.

[10] A. Hemani, N. Farahini, S. M. A. H. Jafri, H. Sohofi, S. Li, and
K. Paul, ‘‘The SiLago solution: Architecture and design methods for a
heterogeneous dark silicon aware coarse grain reconfigurable fabric,’’ in
The Dark Side of Silicon. Cham, Switzerland: Springer, 2017, pp. 47–94,
doi: 10.1007/978-3-319-31596-6_3.

[11] M. A. Shami, ‘‘Dynamically reconfigurable resource array,’’ Ph.D. disser-
tation, KTH Roy. Inst. Technol., Stockholm, Sweden, 2012.

124092 VOLUME 12, 2024

http://dx.doi.org/10.1145/996566.996685
http://dx.doi.org/10.1007/978-3-319-31596-6_3

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

[12] M. A. Tajammul, S. M. A. H. Jafri, A. Hemani, and P. Ellervee,
‘‘TransMem: A memory architecture to support dynamic remapping and
parallelism in low power high performance CGRAs,’’ in Proc. 26th Int.
Workshop Power Timing Modeling, Optim. Simul. (PATMOS), Sep. 2016,
pp. 92–99.

[13] Y. Yang andA. Hemani, ‘‘Vesyla-II: An algorithm library development tool
for synchoros VLSI design style,’’ 2022, arXiv:2206.07984.

[14] O. Malik, A. Hemani, and M. A. Shami, ‘‘A library development
framework for a coarse grain reconfigurable architecture,’’ in Proc. 24th
Int. Conf. VLSI Design, Jan. 2011, pp. 153–158.

[15] M. A. Shami, M. A. Tajammul, and A. Hemani, ‘‘Configurable FFT
processor using dynamically reconfigurable resource arrays,’’ J. Signal
Process. Syst., vol. 91, no. 5, pp. 459–473, May 2019.

[16] M. A. Shami and A. Hemani, ‘‘An improved self-reconfigurable intercon-
nection scheme for a coarse grain reconfigurable architecture,’’ in Proc.
NORCHIP, Nov. 2010, pp. 1–6.

[17] M. A. Shami and A. Hemani, ‘‘Partially reconfigurable interconnection
network for dynamically reprogrammable resource array,’’ in Proc. IEEE
8th Int. Conf. ASIC, Oct. 2009, pp. 122–125.

[18] Y. Yang, D. Stathis, P. Sharma, K. Paul, A. Hemani, M. Grabherr, and
R. Ahmad, ‘‘RiBoSOM: Rapid bacterial genome identification using self-
organizing map implemented on the synchoros SiLago platform,’’ in
Proc. 18th Int. Conf. Embedded Comput. Syst., Archit., Modeling, Simul.,
Jul. 2018, pp. 105–114.

[19] D. Pudi, U. Tiwari, S. Boppu, Y. Yang, and A. Hemani, ‘‘Automating
functional unit and register binding for synchoros CGRA platform,’’
Des. Automat. Embedded Syst., pp. 1–32, 2024. [Online]. Available:
https://link.springer.com/article/10.1007/s10617-024-09286-y

[20] D. Stathis, Y. Yang, S. Tewari, A. Hemani, K. Paul, M. Grabherr,
and R. Ahmad, ‘‘Approximate computing applied to bacterial genome
identification using self-organizing maps,’’ in Proc. IEEE Comput. Soc.
Annu. Symp. VLSI (ISVLSI), Jul. 2019, pp. 560–567.

[21] R. Kallapu, D. Stathis, S. Boppu, and A. Hemani, ‘‘DRRA-based
reconfigurable architecture for mixed-radix FFT,’’ in Proc. 36th Int.
Conf. VLSI Design 22nd Int. Conf. Embedded Syst. (VLSID), Jan. 2023,
pp. 25–30.

[22] P. Dhilleswararao, R. Ryansh, S. Boppu, Y. Yang, and A. Hemani,
‘‘Efficient implementation of 2-D convolution on DRRA and DiMArch
architectures,’’ in Proc. 13th Int. Symp. Highly Efficient Accel. Reconfig-
urable Technol., Jun. 2023, pp. 86–92.

[23] D. Pudi, V. Goudu, S. Boppu, R. Ratnu, and A. Hemani, ‘‘Implementation
of image averaging on DRRA and DiMArch architectures,’’ in Proc. 36th
SBC/SBMicro/IEEE/ACM Symp. Integr. Circuits Syst. Design (SBCCI),
Aug. 2023, pp. 1–6.

[24] D. Pudi, R. Ryansh, V. Goudu, S. Boppu, andA. Hemani, ‘‘Implementation
of Sobel edge detection on DRRA and DiMArch architectures,’’ in
Proc. 26th Euromicro Conf. Digit. Syst. Design (DSD), Sep. 2023,
pp. 16–23.

[25] G. Lee, K. Choi, and N. D. Dutt, ‘‘Mapping multi-domain applications
onto coarse-grained reconfigurable architectures,’’ IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 30, no. 5, pp. 637–650,
May 2011.

[26] S. Friedman, A. Carroll, B. Van Essen, B. Ylvisaker, C. Ebeling, and
S. Hauck, ‘‘SPR: An architecture-adaptive CGRA mapping tool,’’ in
Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays, Feb. 2009,
pp. 191–200.

[27] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H.-S. Kim, ‘‘Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures,’’
in Proc. Int. Conf. Parallel Archit. Compilation Techn., Oct. 2008,
pp. 166–176.

[28] M. Hamzeh, A. Shrivastava, and S. Vrudhula, ‘‘EPIMap: Using epimor-
phism tomap applications on CGRAs,’’ in Proc. 49th Annu. Design Autom.
Conf., Jun. 2012, pp. 1280–1287.

[29] M. Hamzeh, A. Shrivastava, and S. Vrudhula, ‘‘REGIMap: Register-
aware application mapping on coarse-grained reconfigurable architectures
(CGRAs),’’ in Proc. 50th ACM/EDAC/IEEE Design Autom. Conf.,
May 2013, pp. 1–10.

[30] B. R. Rau, ‘‘Iterative module scheduling: An algorithm for software
pipelining loops,’’ in Proc. 27th Annu. IEEE/ACM Int. Symp. Microarchit.,
Nov. 1994, pp. 63–74.

[31] G. Levi, ‘‘A note on the derivation of maximal common subgraphs of
two directed or undirected graphs,’’ Calcolo, vol. 9, no. 4, pp. 341–352,
Dec. 1973.

[32] J. Brenner, J. Van Der Veen, S. Fekete, J. Filho, and W. Rosenstiel,
‘‘Optimal simultaneous scheduling, binding and routing for processor-
like reconfigurable architectures,’’ in Proc. Int. Conf. Field Program. Log.
Appl., 2006, pp. 1–6.

[33] E. Raffin, C.Wolinski, F. Charot, K. Kuchcinski, S. Guyetant, S. Chevobbe,
and E. Casseau, ‘‘Scheduling, binding and routing system for a run-time
reconfigurable operator based multimedia architecture,’’ in Proc. Conf.
Design Archit. Signal Image Process. (DASIP), Oct. 2010, pp. 168–175.

[34] C. H. Gebotys andM. I. Elmasry, ‘‘Optimal synthesis of high-performance
architectures,’’ IEEE J. Solid-State Circuits, vol. 27, no. 3, pp. 389–397,
Mar. 1992.

[35] Y. Yang, A. Hemani, and K. Paul, ‘‘Scheduling persistent and fully
cooperative instructions,’’ in Proc. 24th Euromicro Conf. Digit. Syst.
Design (DSD), 2021, pp. 229–237.

[36] M. Karunaratne, A. K. Mohite, T. Mitra, and L.-S. Peh, ‘‘HyCUBE:
A CGRA with reconfigurable single-cycle multi-hop interconnect,’’ in
Proc. 54th Annu. Design Autom. Conf., Jun. 2017, pp. 1–6.

[37] S. A. Chin and J. H. Anderson, ‘‘An architecture-agnostic integer linear
programming approach to CGRA mapping,’’ in Proc. Annu. 55th Design
Autom. Conf. (DAC), Jun. 2018, pp. 1–6.

[38] C. Lattner and V. Adve, ‘‘LLVM: A compilation framework for lifelong
program analysis & transformation,’’ in Proc. Int. Symp. Code Gener.
Optim. (CGO), 2004, pp. 75–86.

[39] D. Wijerathne, Z. Li, A. Pathania, T. Mitra, and L. Thiele, ‘‘HiMap: Fast
and scalable high-quality mapping on CGRA via hierarchical abstraction,’’
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 41, no. 10,
pp. 3290–3303, Oct. 2022.

[40] T. Kojima, B. Adhi, C. Cortes, Y. Tan, and K. Sano, ‘‘An architecture- inde-
pendent CGRA compiler enabling OpenMP applications,’’ in Proc. IEEE
Int. Parallel Distrib. Process. Symp. Workshops (IPDPSW), May 2022,
pp. 631–638.

[41] T. K. Bandara, D. Wijerathne, T. Mitra, and L.-S. Peh, ‘‘REVAMP:
A systematic framework for heterogeneous CGRA realization,’’ in Proc.
27th ACM Int. Conf. Architectural Support Program. Lang. Operating
Syst., Feb. 2022, pp. 918–932.

[42] D. S. Johnson and M. R. Garey, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman,
1979.

[43] S. Nickel, C. Steinhardt, H. Schlenker, W. Burkart, and
M. Reuter-Oppermann, IBM ILOG CPLEX Optimization Studio. Berlin,
Germany: Springer, 2021, pp. 9–23, doi: 10.1007/978-3-662-62185-1_2.

DHILLESWARARAO PUDI received theM.Tech.
degree in microelectronics and VLSI from the
National Institute of Technology, Durgapur, India,
in 2014, and the Ph.D. degree from Indian Institute
of Technology Bhubaneswar, India, in 2024.
He is currently an Assistant Professor with KL
University, Hyderabad, India. His current research
interests include programmable hardware accel-
erators, hardware/software co-design, compilers,
and high-level synthesis.

SHIVAM MALVIYA received the B.Tech. degree
in ECE from Indian Institute of Technology
Bhubaneswar, India, in 2022. He is currently a
Compiler Software Engineer with MathWorks,
Hyderabad, India. His research interests include
compilers and software application development.

VOLUME 12, 2024 124093

http://dx.doi.org/10.1007/978-3-662-62185-1_2

D. Pudi et al.: ILP-Based Simultaneous Scheduling and Binding for SiLago Framework

SRINIVAS BOPPU (Member, IEEE) received
the dual International M.Sc. degree in IC design
from Nanyang Technological University (NTU),
Singapore, and the Technical University ofMunich
(TUM), Germany, and the Ph.D. degree in the
chair for hardware/software co-design from the
Department of Computer Science, University of
Erlangen–Nuremberg, Germany, in 2015. He has
been an Assistant Professor with the School
of Electrical Sciences, IIT Bhubaneswar, since

October 2017. Before moving to India, he was a Senior Consultant
with Infineon Technologies, Munich, Germany. He was with Freescale
Semiconductors, India, and STMicroelectronics, as a Physical Design
Engineer, before pursuing the Ph.D. degree. He has more than 15 years of
experience in both academia and industry in the field of the VLSI domain.
His research interests include high-level synthesis, programmable hardware
accelerators, compilers, scheduling and mapping approaches, low-power
VLSI design, SoC design, and design automation of integrated circuits.
He was awarded the full scholarship by Infineon Technologies Asia Pacific
Pte., Ltd., for the M.Sc. degree in IC design jointly offered by NTU
and TUM.

YU YANG (Member, IEEE) received the bache-
lor’s degree from Sichuan University, China, the
master’s degree from the Politecnico di Torino,
Italy, and the Ph.D. degree from the KTH Royal
Institute of Technology, Stockholm, Sweden,
in 2022. He is currently a Postdoctoral Researcher
with the KTH Royal Institute of Technology. His
research interest includes high-level and system-
level synthesis flow for synchoros VLSI design.

AHMED HEMANI (Senior Member, IEEE) has
been a Professor with the Electronics Depart-
ment, School of EECS, KTH Royal Institute of
Technology, Stockholm, Sweden, since 2006. His
doctoral thesis on HLS was the basis for one
of CADENCE’s first commercial HLS products.
Later, he contributed to latency-insensitive design
style with research on GALS and GRLS. He also
pioneered the concept of NOCs. His current
research interests include massively parallel archi-

tecture and design methods to achieve comparable ASIC performance.
He has introduced the concept of synchoricity and driven the development
of the SiLago as an experimental synchoros VLSI design platform. He is
applying synchoros VLSI design to artificial neural networks, biologically
plausible models of the brain and complex multimedia, and telecom
applications.

LINGA REDDY CENKERAMADDI (Senior
Member, IEEE) received the master’s degree in
electrical engineering from Indian Institute of
Technology Delhi (IIT Delhi), New Delhi, India,
in 2004, and the Ph.D. degree in electrical engi-
neering from Norwegian University of Science
and Technology (NTNU), Trondheim, Norway,
in 2011.

He was with Texas Instruments, on mixed-
signal circuit design before joining the Ph.D.

degree with NTNU. After finishing the Ph.D. degree, he was involved
in radiation imaging for an atmosphere–space interaction monitor (ASIM
mission to the International Space Station) with the University of Bergen,
Bergen, Norway, from 2010 to 2012. He is currently the Leader of the
Autonomous and Cyber-Physical Systems (ACPS) Research Group and
a Professor with the University of Agder, Grimstad, Norway. He has
co-authored over 210 research publications that have been published in
prestigious international journals and standard conferences in the research
areas of the Internet of Things (IoT), cyber-physical systems, autonomous
systems, robotics and automation involving advanced sensor systems,
computer vision, thermal imaging, LiDAR imaging, radar imaging, wireless
sensor networks, smart electronic systems, advanced machine learning
techniques, and connected autonomous systems, including drones/unmanned
aerial vehicles (UAVs), unmanned ground vehicles (UGVs), unmanned
underwater systems (UUSs), 5G- (and beyond) enabled autonomous
vehicles, and socio-technical systems, such as urban transportation systems,
smart agriculture, and smart cities. He is also quite active inmedical imaging.
He is a member of ACM and a member of the editorial boards of various
international journals and the technical program committees of several IEEE
conferences. Several of his master’s students won the Best Master Thesis
Award in information and communication technology (ICT). He serves as
a reviewer for several reputed international conferences and IEEE journals.
He is the Principal Investigator and the Co-Principal Investigator of many
research grants from the Norwegian Research Council.

124094 VOLUME 12, 2024

