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ABSTRACT Multimodal emotion recognition has the potential to impact various fields, including
human-computer interaction, virtual reality, and emotional intelligence systems. This study introduces a
comprehensive framework that enhances the accuracy and computational efficiency of emotion recognition
by leveraging knowledge distillation and transfer learning, incorporating both unimodal and multimodal
models. The framework also combines subject-specific and subject-independent models, achieving a balance
between localization and generalization. Subject-independent models include EEG-based, non-EEG-based
(i.e., electromyography, electrooculography, electrodermal activity, galvanic skin response, skin temperature,
respiration, blood volume pulse, heart rate, and eye movements), and multimodal models trained on all
training subjects, capturing a broader context. Subject-specific models, including EEG-based, non-EEG-
based, and multimodal models, are trained on individual subjects to provide localized knowledge. The
proposed framework then distills knowledge from these teacher models into a student model, utilizing
six different distillation losses to combine both subject-independent and subject-specific insights. This
approach makes the model subject-aware by using local patterns and modality-aware by incorporating
unimodal data, enhancing the robustness and generalizability of emotion recognition systems to varied real-
world scenarios. The framework was tested on two well-known datasets, SEED-V and DEAP, as well as
an immersive three-Dimensional (3D) Virtual Reality (VR) dataset, GraffitiVR, which captures emotional
and behavioral responses from individuals experiencing urban graffiti in a VR environment. This broader
application provides insights into the effectiveness of emotion recognition models in both 2D and 3D
settings, facilitating a wider range of assessment. Empirical results demonstrate that the proposed knowledge
distillation-based model significantly elevates performance across all datasets when compared to traditional
models. Specifically, the model demonstrated improvements ranging from 6.56% to 24.59% over unimodal
models and from 1.56% to 4.11% over multimodal approaches across the SEED-V, DEAP, and GraffitiVR
datasets. These results underscore the robustness and effectiveness of the proposed approach, suggesting that
it significantly enhances emotion recognition processes across various environmental settings.

INDEX TERMS Brain-computer interface, emotion recognition, knowledge distillation, transfer learning,
virtual reality, multimodal models, EEG-based models, cross-modal distillation, subject-specific models,
subject-independent models.

I. INTRODUCTION
In recent years, the study of emotion recognition through
physiological signals has gained significant attention due
to its applicability in psychology, healthcare, and human-
computer interaction. A variety of physiological signals are
employed to detect emotions in these research areas. These
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include ElectroEncephaloGraphy (EEG), ElectroMyoGraphy
(EMG), ElectroOculoGraphy (EOG), ElectroDermal Activ-
ity (EDA), Galvanic Skin Response (GSR), SKin Tem-
perature (SKT), RESPiration (RESP), Blood Volume Pulse
(BVP), Heart Rate (HR), and eye movements [1], [2], [3].

Recently, the popularity of Virtual Reality (VR) headsets
has increased, leading to the development of emotion-driven
applications in areas such as gaming, education, medi-
tation/therapy, and physical activity [4]. To tailor these
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applications to individual users, it is crucial to accurately
assess their emotional states and interactions within the vir-
tual environment. Traditional facial recognition systems are
ineffective in VR settings due to the use of headsets. Instead,
Brain-Computer Interfaces (BCIs) are utilized to detect emo-
tions through physiological signals like EEG, EMG, EOG,
EDA, GSR, SKT, RESP, BVP, HR, and eye movements, with
numerous studies exploring these methods [1], [5]. Creating
reliable emotion recognition models involves extensive data
collection frommany subjects and experiments, which can be
time-consuming and expensive. Consequently, it is important
to use previously gathered data and pre-trained models to
support new research in VR settings.

Transfer learning techniques facilitate the use of
pre-existing models and datasets. These methods were ini-
tially applied to image recognition, where they successfully
enhanced recognition accuracy [6]. However, physiological
signals exhibit significant variability [7], and factors like an
individual’s current mood and stress levels can affect the
reusability and generalization of models [8]. Consequently,
a novel transfer learning approach is needed to adapt models
with limited data while maintaining their learning capacity
despite individual differences.

Subject-specific emotion data may not capture the gen-
eral emotional patterns of an individual within a limited
recording period, often leading to subject-specific mod-
els overfitting to this limited data [9]. This overfitting
significantly prevents their generalization capabilities to
new, unseen emotion recognition scenarios. On the other
hand, subject-independent models, while useful in broader
contexts, fail to capture individual-specific patterns essen-
tial for personalized emotion recognition. This dichotomy
highlights the challenges in using subject-specific data alone
to model complex emotion recognition mechanisms effec-
tively. Additionally, the extensive calibration time required
to collect subject-specific data for all individuals makes
the development of subject-independent models a more
practical approach for zero-calibration and plug-and-play
applications [10].

Taking into account the nuances between EEG modalities
and non-EEG based sensory data is also crucial when
designing an emotion recognition system. EEG signals are
covert and vary significantly across individuals, making
them highly subject-dependent. Conversely, non-EEG based
sensors, such as EMG, EOG, EDA, GSR, SKT, RESP, BVP,
HR, and eye movements tend to exhibit more consistent
characteristics across different subjects, which can be univer-
sally applied in emotion recognition. This distinction allows
for the strategic use of subject-independent non-EEG-based
models and subject-specific EEG-based models as teachers
in our proposed approach. Moreover, by integrating various
modality-subject combinations, our method aims to develop
a model that is both modality-aware and subject-aware,
enhancing its generalizability and effectiveness.

To tackle these issues and improve the training
schemes for both subject-specific and subject-independent

models, we propose a novel end-to-end Knowledge
Distillation (KD) based training scheme. This approach
enhances the performance of individual subjects by
leveraging emotion-recognition mechanisms derived from
subject-specific and subject-independent models, as well as
from modality-based models.

This article introduces a novel approach leveraging the
power of KD, a technique widely recognized for its efficacy
in combining multimodal data and transferring knowledge
constructively from one network to another during train-
ing [11]. The versatility of KD makes it especially beneficial
in complex scenarios that require the integration of diverse
data types, thereby paving the way for advancements in the
field of emotion recognition.

This researchmakes several significant contributions to the
field of emotion recognition. Firstly, it introduces the concept
of KD-based Transfer Learning, a pioneering approach to
enhancing multimodal emotion recognition models by target-
ing both modality and subject awareness first time in the liter-
ature. Thismethodology offers a novel application, enabling a
comparative analysis across various emotion recognition set-
tings. Secondly, the study establishes a comprehensive bench-
marking framework to evaluate emotion recognition perfor-
mance in both 2D and 3D environments. This framework
demonstrates the effectiveness of the KD-based multimodal
emotion recognition architecture, resulting in improved
accuracy and overall system performance across different
contexts.

In addressing these aspects, the research sets a new
standard for emotion recognition, offering insights into
the potential of transfer learning and knowledge dis-
tillation to enhance generalization ability and model
accuracy across both traditional 2D and immersive
3D settings.

The remainder of this paper is structured as follows.
In Section II, we review the related works in the field
of emotion recognition, emphasizing recent advances in
transfer learning and knowledge distillation. Section III
describes the proposed framework for multimodal emotion
recognition using KD-based transfer learning. Section IV
details the datasets and the extracted features utilized in our
experiments. Section V presents a comprehensive analysis of
the relationships between sensory data and emotion across
multiple datasets. In Section VI, we outline the experimental
setup and methodologies used to test our framework. Sec-
tion VII presents the results obtained from the experiments.
Section VIII explores the implications of our findings and
compares them with existing studies. Finally, Section IX
summarizes our contributions and suggests directions for
future research.

II. RELATED WORKS
Advancements in sensor technology, signal processing, and
Artificial Intelligence (AI), especially within the domain
of BCI, have significantly propelled emotion recognition
research forward. This section critically reviews the literature
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on the impact of transfer learning and knowledge distillation
on BCIs and emotion recognition, with a focus on their role
in improving generalization ability and overall performance.

A. TRANSFER LEARNING IN BCI
Transfer learning has been increasingly applied to enhance
the performance of BCIs in various contexts, including
emotion recognition. These applications often seek to lever-
age data from multiple subjects or sessions to overcome
the challenge of limited labeled data in a single-subject
context [12]. One notable study by Li et al. introduced a
multisource transfer learning method, which significantly
reduced the need for labeled data by selecting appropriate
sources and integrating source models, resulting in a 12.72%
improvement in emotion recognition accuracy on the SEED
dataset [13]. Xue et al. proposed a transfer framework
based on feature analysis using Transfer Component Analysis
(TCA). This method projected the source and target domains
into a Kernel Hilbert space to reduce the distance between
them, achieving a mean accuracy of 58.49% in emotion
recognition, an improvement over previous studies [14].
Similarly, Zheng et al. developed a subject transfer frame-
work using TCA and Kernel Principal Component Analysis,
reaching an accuracy of 79.83% for emotion recognition.
Their approach aimed to address the structural and functional
variability between subjects, enhancing the robustness of
affective brain-computer interfaces [15].
Yin et al. presented a transfer recursive feature elimination

method for selecting robust EEG features across different
subjects. Their approach significantly improved emotion
classification performance, demonstrating statistical gains in
accuracy on the DEAP database [16]. Ruan et al. proposed
a transfer discriminative dictionary pair learning approach
to handle individual differences in EEG data. This method
enhanced cross-subject emotion classification accuracy by
projecting data into a domain-invariant subspace and con-
structing a discriminative classifier in the target domain [17].
Lin and Jung introduced a conditional transfer learning
framework to improve EEG-based emotion classification
accuracy. Their framework selectively leveraged data from
other subjects with similar EEG signatures, resulting in a 15%
improvement in valence and a 12% improvement in arousal
classification [18].

Li et al. developed the Fast Online Instance Transfer
(FOIT) method for efficient instance transfer in EEG emotion
recognition. FOIT significantly improved classification accu-
racy in cross-subject and cross-session scenarios, offering a
fast and practical solution for enhancing the generalization of
affective brain-computer interfaces [19]. Zhong and Jianhua
proposed a subject-generic feature selection method using
transfer recursive feature elimination to identify robust EEG
features for emotion classification across different subjects.
Their method demonstrated significant improvements in
classification accuracy on the DEAP database, outperforming
several recent works [20].

Li et al. developed a multi-source transfer learning
approach based on style transfer mapping to reduce EEG
differences between the target domain and each source
domain. This method significantly improves emotion recog-
nition accuracy by facilitating the fast deployment of models
with minimal labeled data requirements [13]. Chai et al.
introduced an unsupervised domain adaptation strategy called
Multi-Subject Subspace Alignment (MSSA). By utilizing
differential entropy features, MSSA performs subspace
alignment for non-stationary EEG signals in multi-subject
emotion recognition scenarios, demonstrating its effective-
ness on the SEED dataset [21]. Xiao et al. proposed a
group division approach that compares the emotion signals
of different individuals and calculates the similarity of
EEG signals. This method creates a personalized machine
emotion expression system for robots, enhancing the dynamic
emotional interaction between humans and machines [22].

Lan et al. introduced the Maximum Independence Domain
Adaptation (MIDA) method to reduce intra- and inter-subject
variance in multiple emotion classification tasks. MIDA
significantly improves accuracy, with gains of up to 13.40%
compared to baseline accuracy, highlighting its effectiveness
in various datasets and cross-dataset applications [23].
Santana et al. employedmulti-objective genetic programming
and novel fitness functions that assess transferability to
train a cross-subject classifier for predicting stimulants
based on brain activity. Their approach focuses on evolving
transferable classifiers that improve classification accuracy
over classical classifiers incorporating domain adaptation
methods [24].

B. DEEP LEARNING-BASED TRANSFER LEARNING
ADeepNeural Network (DNN) is amachine learningmethod
that consists of an input layer, an output layer, and several
hidden layers. It is frequently applied to EEG-based emotion
recognition tasks [25], [26]. DNNs are also used in various
transfer learning tasks, including network adaptation, feature
transfer, and parameter transfer. Convolution-based transfer
learning, such as Convolutional Neural Networks (CNNs),
reuses pre-trained components in the source domain, while
adversarial-based transfer learning employs adversarial tech-
niques, such as Generative Adversarial Networks (GANs).
Olamat et al. utilized deep learning methods including
convolutional neural networks, such as AlexNet, DenseNet-
201, ResNet-101, and ResNet50, to achieve remarkable
classification accuracies of up to 100% on the SEED dataset.
Their study highlights the effectiveness of transfer learning
methods in emotion recognition tasks [27]. Özdenizci et
al. introduced an adversarial inference approach to reduce
inter-subject variability in a publicly available motor imagery
EEG dataset [28].
The ASTDF-Net proposes a spatial-temporal dual-stream

fusion network, specifically addressing the complex spa-
tiotemporal dynamics inherent in EEG signals. This method
incorporates a collaborative embedding module, stacked
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spatial and temporal attention streams, and a hybrid feature
fusion module, demonstrating superior performance on
public datasets such as DEAP and MAHNOB-HCI [29].
Similarly, SGLNet, a Spiking Neural Network combined
with adaptive graph convolution and Long Short-TermMem-
ory (LSTM), effectively captures intricate spatiotemporal
patterns in EEG signals for robust emotion recognition.
This approach utilizes a learnable spike encoder, adaptive
graph convolution, and spike-based LSTM units, evalu-
ated on datasets like DEAP and PhysioNet, showcasing
significant improvements over existing EEG classification
algorithms [30]. Furthermore, the Multi-modal Mood Reader
introduces a pre-trained model that excels in cross-subject
emotion recognition. By integrating masked brain signal
modeling with an interlinked spatial-temporal attention
mechanism, this approach achieves notable performance
enhancements across various datasets. This model also
provides valuable insights into emotion-related brain areas
through attention visualization, illustrating the power of
multimodal cross-scale fusion [31].

Lu et al. introduced a Domain adaptation with Few-
shot Fine-tuning Network (DFF-Net) designed to improve
cross-subject emotion recognition accuracy. By combin-
ing domain adaptation and fine-tuning techniques, their
approach achieved 93.37% accuracy on the SEED dataset
and 82.32% on the SEED-IV dataset, demonstrating sig-
nificant improvements in handling inter-individual dif-
ferences in EEG signals [32]. Zhang et al. proposed
a subject-independent approach to evaluate sleep quality
by applying Kullback–Leibler (KL) divergence to deep
autoencoders to calculate the difference between source
and target domains during feature extraction. Their exper-
imental results indicated that the deep transfer learning
model achieved superior classification accuracy compared
to an Support Vector Machine (SVM) based baseline
model [33].
Sidharth et al. employed Resnet50 along with a novel

feature combination approach for EEG-based emotion detec-
tion. Their method achieved a subject-dependent accuracy of
93.1% and a subject-independent accuracy of 71.6%, utiliz-
ing mean phase coherence and magnitude squared coherence
in combination with differential entropy features. This study
underscores the potential of advanced feature combinations in
enhancing emotion classification performance [34]. Li et al.
developed a domain adaptation method for cross-subject
emotion recognition models, utilizing adversarial training to
adapt themarginal distributions in the early layers of theDNN
model and employing association reinforcement to adapt the
conditional distributions in the final layers [35]. Aldayel et al.
investigated the use of deep transfer learning to improve the
classification accuracy of EEG-based preference recognition.
By transferring knowledge from emotion recognition tasks,
their approach achieved a high accuracy of 93%, showcasing
the versatility and effectiveness of transfer learning in various
EEG classification tasks [36].

C. KNOWLEDGE DISTILLATION IN EMOTION
RECOGNITION
Knowledge distillation has emerged as a pivotal strategy
in the enhancement of EEG-based classification systems,
particularly within the realm of emotion recognition.
By transferring knowledge from complex, high-capacity
models to simpler, more efficient ones, this technique has
been instrumental in addressing the inherent challenges
of EEG data, such as high dimensionality and subject-
specific variability. For instance, Wang et al. developed
a lightweight domain adversarial neural network utilizing
knowledge distillation to effectively manage domain shifts
in EEG data, thereby significantly boosting the accuracy of
cross-subject emotion recognition [37]. This model leverages
a deep, transformer-based architecture as the teacher model,
guiding a lighter Bidirectional Long Short-Term Memory
(Bi-LSTM) based student model to mimic robust feature
representations, which in turn enhances domain-invariant
feature learning for emotion classification.

Similarly, the application of knowledge distillation extends
beyond EEG to other physiological signals, as demonstrated
by Joshi et al. [38]. They proposed a cross-modal framework
that employs EEG-trained models to enhance electrocardio-
gram based sleep staging. This approach not only showcases
the versatility of knowledge distillation but also highlights
its potential in leveraging diverse physiological data for
improved diagnostic accuracy. Moreover, the framework
achieved significant improvements in sleep staging perfor-
mance, affirming the viability of knowledge distillation in
clinical applications.

Further advancing the field, Wang et al. optimized a
residual network for EEG-based emotion recognition through
knowledge distillation [39]. This approach significantly
reduced the model’s complexity while maintaining high
accuracy, demonstrating the potential for deploying such
models in resource-constrained environments like embedded
systems. The effectiveness of this methodology was validated
on standard datasets, showcasing substantial improvements in
performance over traditional models.

Liu et al. introduced EmotionKD, a cross-modal knowl-
edge distillation framework that enhances the performance
of models using GSR signals by distilling knowledge from
EEG signals [40]. This hybrid approach not only addresses
the challenges of multimodal emotion recognition but also
reduces the reliance on EEG data, making the technology
more accessible and feasible for real-world applications. The
framework incorporates an adaptive feedback mechanism
that dynamically adjusts based on performance, further
optimizing the distillation process.

Zhang and Etemad introduced a pioneering approach
to streamline EEG models for real-time applications on
smart devices [41]. They developed a knowledge distillation
pipeline where a heavily pre-trained teacher model distills
crucial EEG representations into a more compact student
model through a capsule-based architecture. This method
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effectively handles the complexity of large-scale EEG
datasets and demonstrates its efficacy by achieving state-
of-the-art results, enhancing the model’s performance while
maintaining a lower computational footprint.

Building on the cross-modal potential of knowledge
distillation, another study by Zhang et al. explored the
integration of visual and EEG modalities to improve emotion
recognition [42]. They leveraged a cascade of CNN and
Temporal Convolutional Network (TCN) architecture for
the teacher model, trained on visual data, to enhance a
TCN-based student model trained on EEG data. This visual-
to-EEG distillation not only improved the accuracy of
emotion prediction but also offered insights into the brain’s
synchronized activity across various areas, highlighting the
contribution of fast beta and gamma waves in emotional
processing. The success of this approach, evidenced by
significant statistical validation, illustrates the advantages of
integrating diversemodalities through knowledge distillation.

Further addressing the challenges inherent in brain-
machine interfaces, Wu et al. tackled the issue of epileptic
seizure prediction by proposing a novel training scheme
that utilizes knowledge distillation to merge the benefits of
patient-specific and patient-independent models [43]. Their
approach distilled informative features from a large corpus of
multi-subject data into a patient-specific model, significantly
improving the accuracy and generalizability of seizure
prediction. This method not only demonstrated superior
performance over traditional models but also bridged the gap
between personalized and universal modeling approaches in
medical applications.

The integration of transfer learning and knowledge
distillation within BCIs for emotion recognition offers a
significant research avenue. These methodologies address
critical challenges like data variability and model complexity,
contributing to the development of more robust and adaptable
emotion recognition systems. However, there remains a
distinct gap in the application of these techniques specifically
within 3D VR environments, where modality-aware and
subject-aware data integration is essential.

Review of the existing literature reveals a focus on
enhancing emotion recognition models primarily outside the
context of immersive environments. Key studies demonstrate
the application of knowledge distillation to improve model
efficiency and accuracy but often restrict their scope to
traditional, non-immersive settings or single-modal data.
These methodologies, while advancing the field in significant
ways, do not fully address the complexities of integrating
multiple types of modalities and subject-specific data, which
is crucial for comprehensive emotion recognition in VR
environments.

To bridge these gaps, our work expands the application
of knowledge distillation by implementing a modality-aware
and subject-aware framework that effectively integrates both
EEG and non-EEG sensory data across different environ-
ments. This approach not only caters to the conventional
2D datasets but is also adept at handling immersive 3D VR

environments. By employing both subject-independent and
subject-specific strategies within our knowledge distillation
framework, we enhance the adaptability and accuracy of
emotion recognition systems, ensuring they are robust across
various sensory inputs and user experiences.

III. KNOWLEDGE DISTILLATION FOR MULTIMODAL
EMOTION RECOGNITION MODELS
KD has emerged as a potent technique for enhancing the
performance of machine learning models by transferring
knowledge from complex, often cumbersome models (teach-
ers) to simpler, more efficient ones (students) [11]. In the
context of emotion recognition, leveraging KD can help
address the challenges of multimodal data integration and the
variability inherent in subject-specific responses. This section
introduces our novel KD framework designed to optimize
multimodal emotion recognition models by harnessing both
subject-specific and subject-independent data sources.

A. SYSTEM ARCHITECTURE
As depicted in Figure 1, our proposed framework presents
a structured approach to knowledge distillation for training
multimodal emotion recognition models. The architecture
is designed to optimize the integration of EEG and
non-EEG data across different subjects and modalities.
Below, we define and discuss each component in the
architecture:

1) SUBJECT-INDEPENDENT MODEL TRAINING
The subject-independent model training component is
designed to generalize across individuals, providing a robust
baseline for comparison and further refinement through
knowledge distillation:

• EEG-basedModel:Thismodel is trained on aggregated
data from multiple subjects, focusing on capturing
common features that are not overly subject-specific.

• Non-EEG-based Model: Similarly, this model pro-
cesses aggregated non-EEG data (such as EMG, EOG,
EDA, GSR, SKT, RESP, BVP, HR, and eye movements)
to identify general emotional indicators.

• Multimodal Model: Combining both EEG and
non-EEG data from various subjects, this model aims
to maximize the extraction of generalizable features.

2) SUBJECT-SPECIFIC MODEL TRAINING
These models are tailored to individual subjects, enhancing
the personalized handling of EEG and non-EEG data:

• EEG-based Models: Each subject-specific EEG model
is adapted to the unique brainwave patterns of individ-
uals, aiming to capture detailed emotional states from
EEG signals.

• Non-EEG-based Models: These models process
non-EEG data that are indicative of emotional states,
providing a complementary perspective to the EEG data.
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FIGURE 1. Architecture of knowledge distillation-based transfer learning in emotion recognition models.

• Multimodal Models: Integrating both EEG and non-
EEG data, these models offer a holistic view of emo-
tional states, leveraging the strengths of each modality
to improve accuracy and robustness.

3) KNOWLEDGE DISTILLATION-BASED MODEL TRAINING
Our framework’s knowledge distillation component revolves
around a single deep neural network model that is iteratively
updated through a systematic training process. This model
does not begin as pre-trained; on the contrary, it is configured
to adapt and enhance its parameters continuously through
exposure to a series of distillation losses. These losses are
derived from both subject-specific and subject-independent
models across each step of the training cycle.

As the model processes data from each subject, it under-
goes a sequence of updates where distillation losses play
a critical role. These losses are meticulously calculated to
ensure that the model refines its learning, tuning into the
nuanced emotional states captured in the EEG and non-EEG
data. Distillation losses such as L1, L2, L3, for generalization,
and L4, L5, L6, for personalization, facilitate this adaptive
learning process. How each loss function contributes to the
model’s learning and updating process is explained below:

Losses L1, L2, L3: These losses are used during the
initial stages of the model updates. They are calculated

by comparing the predictions of the student model against
the predictions derived from the subject-independent teacher
models for the corresponding subject’s data. These losses
help in aligning the student model more closely with
generalized patterns observed across different subjects.

Losses L4, L5, L6: Utilized in subsequent updates, these
losses compare the student model’s predictions with those
from the subject-specific teacher models. This comparison
is crucial for ensuring that the student model adapts to the
unique emotional patterns of each subject, thus personalizing
the learning process. The adjustments made via these losses
help in refining the integration of multimodal data specific
to each subject, ensuring that the model not only learns
from broad patterns but also captures essential characteristics
unique to individual modalities and subjects.

This structured approach to employing distillation losses
ensures that the student model dynamically integrates and
adapts to both subject-independent generalizations and
subject-specific nuances, resulting in a robust, adaptable final
model optimized for accurate emotion recognition.

This comprehensive framework aims to leverage the
robustness of multimodal data and the personalization poten-
tial of subject-specific models, driven by the efficiency of
knowledge distillation. By combining these approaches, our
model addresses several gaps in current literature, particularly
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in the integration of diverse data types and the customization
of emotion recognition systems to individual variability in
physiological responses.

B. KNOWLEDGE DISTILLATION-BASED MODEL
GENERATION
The training process begins with collecting data from various
training subjects. This data includes both EEG signals and
non-EEG sensory information, such as EMG, EOG, EDA,
GSR, SKT, RESP, BVP, HR, and eye movements.

In the following sections, we explain the algorithm for
training the proposed multimodal emotion recognition model
using knowledge distillation and define the knowledge
distillation loss function used to transfer knowledge from the
teacher models to the student model during training.

1) ALGORITHM OF KNOWLEDGE DISTILLATION
Algorithm 1 outlines the proposed KD framework for

multimodal emotion recognition models. The algorithm
consists of four main steps: 1) training subject-independent
teacher models, 2) training subject-specific teacher models,
3) knowledge distillation, and 4) evaluation. The algorithm
takes as input a set of training subjects S = {s1, si, . . . , sN },
where si represents the i-th subject and N is the total
number of subjects, and outputs the final multimodal emotion
recognition modelMfinal .

In the first step, subject-independent teacher models are
trained using EEG data, non-EEG sensory data, and a feature
level fusion of both data types. The Subject-Independent
EEG-based Model (MSIE ) is trained using EEG data from
all training subjects, while the Subject-Independent Non-
EEG-basedModel (MSINE ) is trained using non-EEG sensory
data from all training subjects. The Subject-Independent
Multimodal Model (MSIM ) is trained using a fusion of EEG
and non-EEG sensory data from all training subjects.

In the second step, subject-specific teacher models are
trained for each subject in the training set. Subject-Specific
EEG-based Models (M i

SSE ), Subject-Specific Non-EEG-
based Models (M i

SSNE ), and Subject-Specific Multimodal
Models (M i

SSM ) are trained using EEGdata, non-EEG sensory
data, and a fusion of both data types from subject si.
In the third step, knowledge distillation is performed

to transfer knowledge from the subject-independent and
subject-specific teacher models to the student model. For
each subject si in the training set, distillation losses are
computed between the student model (Mstudent ) and the
teacher models (subject-independent models MSIE , MSINE ,
MSIM , and the subject-specific modelsM i

SSE ,M
i
SSNE ,M

i
SSM ).

The distillation losses are combined to calculate a single
distillation loss, which is used to update the student model
(Mstudent ). Once updated,Mstudent is finalized asMfinal . In this
context, α functions as a hyperparameter that modulates the
trade-off between the student loss and the distillation loss.

In the final step, the performance of the final multimodal
model Mfinal is evaluated using test subjects. The model

Algorithm 1 Knowledge Distillation for Multimodal Emo-
tion Recognition
1: Input: Training subjects S = {s1, si, . . . , sN }

2: Output: Final modelMfinal
3: Step 1: Train Subject-independent Teacher Models:
4: Train subject-independent EEG-based modelMSIE using

EEG data from all training subjects.
5: Train subject-independent non-EEG-based modelMSINE

using non-EEG sensory data from all training subjects.
6: Train subject-independent Multimodal model MSIM

using a fusion of EEG and non-EEG sensory data from
all training subjects.

7: Step 2: Train Subject-specific Teacher Models:
8: for each subject si ∈ S do
9: Train subject-specific EEG-based model M i

SSE using
EEG data from subject si.

10: Train subject-specific non-EEG-based model M i
SSNE

using non-EEG sensory data from subject si.
11: Train subject-specific Multimodal model M i

SSM using
a fusion of EEG and non-EEG sensory data from
subject si.

12: end for
13: Step 3: Knowledge Distillation:
14: for each subject si ∈ S do
15: Compute Distillation Losses:
16: L1 = LKD(MSIE ,Mstudent )
17: L2 = LKD(MSINE ,Mstudent )
18: L3 = LKD(MSIM ,Mstudent )
19: L4 = LKD(M i

SSE ,Mstudent )
20: L5 = LKD(M i

SSNE ,Mstudent )
21: L6 = LKD(M i

SSM ,Mstudent )
22: Calculate combined distillation loss:
23: Ldistillation =

L1+L2+L3+L4+L5+L6
6

24: Compute the total loss:
25: L = α · Lstudent + (1 − α) · Ldistillation
26: Update the proposed model Mstudent using the com-

puted loss.
27: end for
28: Assign the updated model to the final model:
29: Mfinal = Mstudent
30: Step 4: Evaluation:
31: EvaluateMfinal using test subjects.

is tested on unseen data to assess its generalization and
performance on new subjects.

2) KNOWLEDGE DISTILLATION LOSS
The knowledge distillation loss function defines the loss
function used to transfer knowledge from the teacher
models to the student model during training. The Kullback-
Leibler divergence, denoted as KL, is a measure from
information theory that quantifies how one probability
distribution diverges from a second, expected probability
distribution [44]. In the context of knowledge distillation,
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KL is used to calculate the loss between the softened
predictions of student model (proposed multimodal model)
and the teacher models (subject-independent and subject-
specific models). The distillation losses for each pair of
teacher-student predictions are computed using the scaled
softmax function with a temperature parameter T , and are
then averaged to compute the final distillation loss [11].
The complete loss function, including the trade-off between
student loss and distillation loss controlled by the hyperpa-
rameter α, is defined as follows:

Lk = KL
(
softmax(Pkteacher/T ),

softmax(Pstudent/T )) · T 2 (1)

Ldistillation =
1
6

6∑
k=1

Lk (2)

L = α · Lstudent + (1 − α) · Ldistillation, (3)

where:

• Pkteacher and Pstudent are the softmax predictions of the
teacher and student models, respectively, for each set of
models.

• KL is the Kullback-Leibler divergence function applied
to the softened predictions of the teacher and student
models to compute the distillation loss.

• T is the temperature parameter that scales the softmax
function, controlling the smoothness of the output
probability distribution and influencing the magnitude
of gradients during training.

• α is a hyperparameter that balances the contribution of
the student’s loss and the distillation loss in the overall
training loss.

The distillation loss is used to update the final multimodal
model by minimizing the difference between the teacher
and student model predictions. By transferring knowledge
from the teacher models to the student model, the final
multimodal model can capture both subject-independent and
subject-specific features, leading to improved performance
and generalization.

IV. DATASETS AND EXTRACTED FEATURES
A. SEED-V
The SEED-V dataset, gathered by Liu et al. [45], includes
eye movements and EEG signals from 16 participants.
This dataset includes a wide range of eye-tracking features,
such as pupil diameter, fixation, saccades, and blinks. The
eye-tracking features extracted include themean and standard
deviation of pupil diameter, and Differential Entropy (DE)
in four frequency bands (0–0.2Hz, 0.2–0.4Hz, 0.4–0.6Hz,
0.6–1.0Hz). Additionally, the dataset records the mean and
standard deviation of dispersion, fixation duration, blink
duration, and saccade duration and amplitude. Event statistics
such as blink frequency, fixation frequency, fixation duration
maximum, fixation dispersion total, fixation dispersion
maximum, saccade frequency, saccade duration average,

saccade amplitude average, and saccade latency average are
also included.

EEG signal processing applied to the SEED-V dataset
involves downsampling the raw data to 200 Hz, applying
a bandpass filter within the 1-75 Hz range, and extracting
Differential Entropy (DE) features across five frequency
bands. The dataset comprises 310 dimensions from 62 EEG
channels, 33 eye movement dimensions, and 5 emotional
class labels: Happy, Sad, Disgust, Neutral, and Fear. For
the SEED-V dataset, the proposed framework utilizes eye
movement data as the non-EEG sensory data.

B. DEAP
The DEAP dataset consists of physiological and EEG record-
ings from 32 participants exposed to 60-second video stimuli
intended to provoke emotional responses. These recordings
are categorized into dimensions such as arousal, valence,
like/dislike, dominance, and familiarity, as described in [5].
The EEG data, collected from 32 channels, cover the theta
(4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-
45 Hz) frequency bands. The DEAP dataset EEG recordings
are limited to a frequency range of 3 to 47 Hz, which
inherently excludes the delta rhythm, typically below 3 Hz,
from consideration in the analysis. The upper limit of the
gamma frequency band is set at 45 Hz to mitigate the risk of
signal contamination from electrical noise and other higher
frequency interferences. Additionally, the dataset includes
various non-EEG sensory data such as horizontal and vertical
EOG, zygomaticus major EMG, trapezius EMG, GSR, RESP
amplitude, BVP via plethysmograph, and SKT.

For our analysis, we selected the first 16 subjects from
the dataset, aligning with the SEED-V dataset. The emo-
tional responses were classified within the Valence-Arousal
space and divided into four quadrants: High Valence, High
Arousal (HVHA), High Valence, LowArousal (HVLA), Low
Valence, Low Arousal (LVLA), and Low Valence, High
Arousal (LVHA). These ratings, ranging from 1 to 9, were
split using the median value as the threshold to categorize the
responses into these quadrants.

Regarding EEG signal processing, we extracted DE
features from the theta, alpha, beta, and gamma bands across
all 32 EEG channels, using 3-second time windows with 2-
second overlaps, focusing on the power spectrum of EEG
signals sampled at 128 Hz. This sampling rate was chosen to
adequately capture the EEG frequency components relevant
to emotional processing, while also considering the practical
aspects of data handling and analysis.

For processing the non-EEG sensory data, we extracted
eight distinctive features: mean, standard deviation, mini-
mum, maximum, first differences, second differences, power
spectrum, and average gradient. This process was similar to
the EEG windowing approach, using 3-second time windows
with 2-second overlaps. As a result, the feature extraction
yielded 128 features for EEG and 64 features for non-EEG
sensory data, providing a comprehensive overview of the
participants’ physiological and emotional states.
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C. GRAFFITIVR
The GraffitiVR dataset is a carefully curated collection aimed
at analyzing the relationship between human emotional
responses and their behavioral manifestations in response to
urban graffiti, using VR to create immersive experiences for
participants [46]. This study involved 39 participants, focus-
ing on emotional reactions, specifically fear and pleasure,
elicited by facial expressions depicted in graffiti.

For EEG data collection, the study utilized the Looxid Link
package for Vive, an integrated accessory for the HTC Vive
VR headset. This wireless, dry device features six channels
and captures brainwave frequencies including delta (1–3 Hz),
theta (3–8Hz), alpha (8–12Hz), beta (12–38Hz), and gamma
(38–45 Hz) from the brain’s prefrontal area through channels
AF3, AF4, AF7, AF8, Fp1, and Fp2 at a sampling rate
of 500 Hz [47]. To quantify the electrical activity across
these bands, the average band powers were computed using
Welch’s periodogram [48]. This method involved aggregating
the areas under parabolas fitted to the power spectral density
estimates for each frequency band, providing an accurate
measure of the power within each EEG signal frequency
band.

In the GraffitiVR dataset, we selected the initial 16 subjects
to maintain consistency with the SEED-V and DEAP
datasets. Emotional responses were evaluated within the
Valence-Arousal framework and categorized into four quad-
rants: HVHA, HVLA, LVLA, and LVHA, aligning with the
labels in the DEAP dataset. Ratings, ranging from 1 to 7, were
divided by the median score to systematically categorize the
responses into these quadrants.

Behavioral data within the dataset were meticulously
recorded through video capturing and analyzed using the
robust Lucas/Kanade optic flow algorithm [49]. This tech-
nique was instrumental in extracting detailed patterns of head
movements. The analysis provided a comprehensive set of
15 features derived from the changes in yaw, pitch, and roll
directions of head movements, including the minimum, max-
imum, mean, median, and standard deviation for each direc-
tion. These behavioral metrics offer a granular view of how
participants’ physical responses align with their emotional
experiences. For the GraffitiVR dataset, the proposed frame-
work uses head movements as the non-EEG sensory data.

In total, the EEG portion of the dataset utilizes 35 features,
which include 30 features from the five frequency bands
across six channels and an additional set of 5 features:
attention, relaxation, asymmetry, left brain activity, and
right brain activity. Combined with the 15 features from
head movement analysis, the dataset offers 50 features
in total. This comprehensive set enables the exploration
of the dynamic interplay between emotional states and
corresponding physical responses within VR environments.

V. ANALYSIS OF CORRELATIONS BETWEEN SENSORY
DATA AND EMOTIONAL STATES
This section presents a comprehensive analysis of three
key datasets: SEED-V, DEAP, and GraffitiVR. The analysis

separately explores the correlations between EEG data and
emotional states, as well as between non-EEG sensory data
and emotional states. By examining these datasets, we aim
to highlight the relationships and patterns that emerge across
different modalities in emotion recognition. Correlations
are extracted and statistically analyzed; those found to be
insignificant (p-value not lower than 0.05) are discarded.
The resulting correlation coefficients are visualized, with
red colors indicating positive correlations and blue colors
indicating negative correlations. The analysis of both EEG
and non-EEG data provides a nuanced view of how
different physiological measures correlate with emotional
states, indicating complex interactions between various brain
regions and bodily responses to emotions.

A. CORRELATION ANALYSIS IN THE SEED-V DATASET
The SEED-V dataset includes EEG and non-EEG data related
to five emotional states: disgust, fear, happy, neutral, and
sad. This analysis explores the relationships between these
emotional states and various physiological signals.

Figure 2 presents a heatmap of the EEG feature cor-
relations for the SEED-V dataset. From the 310 EEG
features analyzed, the ten features included are those with
correlation coefficients that are not only the highest but
also statistically significant (p-value lower than 0.05). These
significant features are alpha rhythms at electrodes FC5, PO8,
F6, F5, F3, and F1; delta rhythms at electrode CPZ; gamma
rhythms at electrodes TP8 and CB2; and theta rhythms at
electrode PO6. This selection showcases a wide array of
brain activity patterns that are important for understanding
emotional responses.

FIGURE 2. Heatmap of statistically significant eeg feature correlations on
SEED-V.

The alpha band at electrode F5 shows a positive correlation
with the happy state (0.13) and a negative correlation with the
sad state (−0.07). Alpha rhythms are often linked to relaxed,
wakeful states, which explain their positive association with
the happy state [50]. Conversely, their reduction in sad
emotional states suggests a shift in brain activity patterns
during low mood or depressive states [51].

Figure 3 displays correlations of non-EEG features,
including eye movement features like pupil size and saccadic
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movements. Among the 33 non-EEG sensory data features
analyzed in the SEED-V dataset, the ten features with
the highest correlation coefficients are pupil x-axis mean
(pupil_x_mean), average saccade duration (sacc_dur_avg),
saccade frequency (sacc_freq), maximum fixation dispersion
(fix_disp_max), total fixation dispersion (fix_disp_total),
standard deviation of pupil y-axis (pupil_y_sd), standard
deviation of pupil x-axis (pupil_x_sd), pupil y-axis mean
(pupil_y_mean), standard deviation of y-axis dispersion
(disp_y_sd), and average saccade latency (sacc_lat_avg).
Each of these features distinctly correlates with various
emotional states, showcasing their pivotal role in emotion
recognition.

FIGURE 3. Heatmap of statistically significant non-EEG feature
correlations on SEED-V.

For instance, the pupil x standard deviation shows a strong
positive correlation with the fear state (0.47) and a strong neg-
ative correlationwith the happy state (−0.34). Increased pupil
dilation is generally associated with heightened emotional
arousal, which is consistent with the response to fear [52].
The negative correlation with the happy state reflects a more
relaxed and content state, leading to less pupil dilation [53].

B. CORRELATION ANALYSIS IN THE DEAP DATASET
The DEAP dataset includes EEG and non-EEG data related
to arousal and valence. This section explores the correlation
between these physiological signals and the emotional states:
HVHA, HVLA, LVHA, LVLA.

Figure 4 presents the heatmap of statistically significant
EEG feature correlations. Among the 128 EEG features
analyzed in the DEAP dataset, the ten features with the
highest correlation coefficients include theta rhythms at
electrodes O1, Fp1 and Oz, beta rhythms at electrodes F4,
O1, Oz, and Fp2, alpha rhythms at electrodes O1 and Oz, and
gamma rhythms at electrode O2.

For instance, beta waves at electrode Oz show varying
correlations across emotional states: a positive correlation
with HVHA (0.04), and a negative correlation with LVLA
(−0.05). Beta waves are associated with active, alert
states and cognitive engagement, which aligns with their
positive correlation in HVHA conditions [54]. The negative

FIGURE 4. Heatmap of statistically significant EEG feature correlations on
DEAP.

correlation in LVLA conditions indicates reduced cognitive
activity or relaxation [55].
Figure 5 illustrates the heatmap for non-EEG feature

correlations such as GSR and EMG. Among the 64 non-
EEG sensory data features analyzed on the DEAP dataset,
the ten features with the highest correlation coefficients
are the mean horizontal electrooculography (hEOG_mean),
maximum galvanic skin response (GSR_max), first and
second differences in GSR (GSR_diff1, GSR_diff2), power
spectrum of GSR (GSR_psd), mean, minimum, and maxi-
mum trapezius electromyography (tEMG_mean, tEMG_min,
tEMG_max), and the second difference and power spectrum
of temperature (Temperature_diff2, Temperature_psd).

FIGURE 5. Heatmap of statistically significant non-EEG feature
correlations on DEAP.

GSR maximum exhibits a strong positive correlation
with HVHA (0.06) and a negative correlation with HVLA
(−0.07). Increased GSR typically reflects heightened phys-
iological arousal, which is consistent with its positive corre-
lation in high arousal states [56]. The negative correlation in
HVLA suggests complex interactions between physiological
arousal and emotional valence.

C. CORRELATION ANALYSIS IN THE GRAFFITIVR DATASET
The GraffitiVR dataset offers a unique 3D immersive
environment for emotion recognition. This section explores
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the EEG and non-EEG responses to emotional stimuli within
this immersive setting, highlighting distinctive findings that
emerge from the data.

Figure 6 shows a heatmap of statistically significant EEG
feature correlations. Among the 35 EEG features examined
in the GraffitiVR dataset, the ten features with the highest
correlation coefficients are delta rhythms at AF3, measures
of relaxation and attention, gamma and beta rhythms at AF8,
alpha and beta rhythms at Fp1, gamma rhythms at Fp1, beta
rhythms at AF4, and right brain activity.

FIGURE 6. Heatmap of statistically significant EEG feature correlations on
GraffitiVR.

There is a strong positive correlation of gamma wave
activity at electrode Fp1 with HVHA states (0.22), contrast-
ing with its negative correlation with HVLA states (−0.11).
Gamma waves are linked to high-level information process-
ing and cognitive functioning, which aligns with intense
engagement in high valence conditions [57]. The negative
correlation in LVHA states might reflect cognitive stress
or disengagement in challenging emotional contexts [58].
In immersive settings, all frontal brain waves exhibit positive
correlations with HVHA conditions, indicating that increases
in either positive valence or arousal are associated with
enhanced frontal brain activity. This pattern underscores the
significant role of the frontal regions in modulating emotional
responses within immersive environments [59].
Figure 7 illustrates the heatmap for non-EEG feature

correlations, such as head movement metrics. Among the
15 non-EEG sensory data features analyzed in the GraffitiVR
dataset, the statistically significant features are Z_min,
X_mean, X_median, Y_median, and Y_sd. These features
represent measurements of head movements along the Z, X,
and Y axes respectively, reflecting the dynamic interaction
between physical positioning and emotional responses within
immersive VR settings.

X_mean, X_median and Y_median show slight positive
correlations with HVLA. Such metrics may indicate physical
responsiveness to emotional stimuli in the virtual envi-
ronment, with greater head movements possibly reflecting
positive engagement or emotional reactions [60]. Conversely,
Y_sd show slight positive correlations with LVHA, which

FIGURE 7. Heatmap of statistically significant non-EEG feature
correlations on GraffitiVR.

may suggest increased physical instability or agitation in
more stressful or negatively valenced situations [61].

VI. EXPERIMENTS
A. HARDWARE AND SOFTWARE
Development was conducted on a laptop featuring an Intel
Core i7-12650HCPU, 16GBRAM, and an NVIDIAGeForce
RTX 3060 GPU. The software tools utilized for development
included Python 3.10, PyTorch 2.1, Keras 2.12.0, NumPy
1.23, Matplotlib 3.7, Scikit-learn 1.2.1, and Visual Studio
Code. The experimental code was executed on Google Colab
with a GPU runtime, specifically using a Tesla T4 with 15 GB
of VRAM and 12 GB of system RAM.

B. ARCHITECTURE AND PARAMETER DETAILS
The experimental framework is designed to evaluate the
efficacy of the proposed KD-based emotion recognition
architecture, as illustrated in Figure 1. This setup adopts a
standardized approach to optimizing hyperparameters across
different datasets, streamlining the development of robust
emotion recognition models.

For the datasets SEED-V, DEAP, and GraffitiVR, the
neural network architectures were specifically tailored
to align with the complexity of the input features
and the requirements of the emotion recognition tasks.
Across all models—including subject-specific EEG-based,
subject-specific non-EEG-based, subject-specific multi-
modal, subject-independent EEG-based, subject-independent
non-EEG-based, subject-independent multimodal, and
knowledge distillation-based—the architecture employed the
same network structure to ensure consistency in model
evaluation. The architecture configurations for the datasets
are as follows:

• Layers of (128, 64) for both SEED-V and DEAP,
reflecting their similar complexity and feature set sizes.

• A reduced configuration of (64, 32) for GraffitiVR,
adapted to its unique demands and smaller feature set.
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These dimensions were carefully chosen to balance model
complexity with training efficiency and generalization capa-
bility across diverse emotional datasets.

The neural network architecture for each dataset is struc-
tured as follows, blending performance with computational
efficiency:

• A dense layer with hidden size corresponding to the first
dimension, using ReLU activation, tailored to the feature
size of the dataset.

• A dropout layer set at 0.5 to mitigate overfitting by
randomly omitting a portion of the feature detectors on
each iteration.

• Another dense layer with the second dimension, again
using ReLU activation.

• A second dropout layer at 0.5 to further enhance the
model’s generalization.

• A final dense layer with a single output unit, employing
a sigmoid activation function to predict the probability
of an emotional state.

1) SUBJECT-INDEPENDENT EXPERIMENT SETTINGS
The Subject-One-Leave-Out (SOLO) approach is utilized,
where for each subject’s testing, the model is trained on data
from the other 15 subjects. A network architecture similar to
that of the subject-specific and knowledge-distillation-based
models is used. There is one subject-independent EEG-based,
one non-EEG-based, and onemultimodalmodel evaluated for
each subject.

2) SUBJECT-SPECIFIC EXPERIMENT SETTINGS
For the subject-specific settings, each subject’s data is used
to train a model individually. The knowledge distillation
approach involves using a loss derived from the predictions of
this model. To ensure fair comparisons, data for each subject
are split 50/50 for training and testing. This setup is used
exclusively to compare the subject-specific and knowledge
distillation results related to the respective subject. There is
one subject-specific EEG-based, one subject-specific non-
EEG-based, and one subject-specific multimodal model
evaluated for each subject.

3) KNOWLEDGE DISTILLATION-BASED EXPERIMENT
SETTINGS
The knowledge distillation-based approach is designed to
improve the performance of the student model through
guidance from both subject-specific and subject-independent
teacher models. Key hyperparameters were selected based
on heuristic methods to optimize the training process and
ensure model stability while preventing overfitting. The
hyperparameters include:

• α = 0.4 which allocates the weight to student loss and
(1 − α) to distillation loss.

• Temperature of 4 for softening probability distributions,
facilitating a smoother knowledge transfer.

• The Adam optimizer, renowned for its effectiveness in
handling sparse gradients and adaptive learning rate
adjustments.

This configuration not only supports the rigorous com-
parison of different uni-modal and multi-modal emotion
recognition models but also underscores the robustness of
the KD framework in accurately recognizing emotional states
across varied environments.

C. EVALUATION CRITERIA
Accuracy remains a fundamental metric for evaluating
the performance of classification models in various fields,
including emotion recognition. It is defined as the proportion
of true results (both true positives and true negatives) among
the total number of cases examined. The mathematical
expression for accuracy is given by:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

where the terms are defined as follows:
• True Positives (TP) represents the number of instances
the model correctly identified as positive.

• TrueNegatives (TN ) denotes the number of instances the
model correctly identified as negative.

• False Positives (FP) stands for the number of instances
the model incorrectly identified as positive.

• False Negatives (FN ) refers to the number of instances
the model incorrectly identified as negative.

Accuracy is especially pertinent in the evaluation of our
knowledge distillation-based multimodal emotion recogni-
tion models. It provides a straightforward and intuitive
measure of the model’s overall effectiveness in correctly pre-
dicting emotional states across various datasets. In our study,
accuracy is utilized to assess the performance enhancements
brought about by the KD approach on the SEED-V, DEAP,
and GraffitiVR datasets. These datasets have been chosen
for their diversity in emotional content and representation,
which tests the robustness and adaptability of our models.
Employing accuracy helps to ensure that the improvements
in model performance are not only statistically significant
but also relevant in practical scenarios where balanced class
distribution is common.

VII. RESULTS
A. EMOTION RECOGNITION RESULTS USING DIFFERENT
MODELS
To understand the key elements in emotion recognition, this
study benchmarks the performance of seven distinct models
across three datasets: SEED-V, DEAP, and GraffitiVR. These
models include: a subject-independent EEG-based model,
a subject-independent non-EEG-based model, a subject-
independent multimodal model, and a knowledge distillation-
based model. Additionally, subject-specific models are incor-
porated to demonstrate the target-only results of the transfer
learningmethodology. To facilitate fair comparisons, subject-
specific data are split into two equal parts, with one half
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TABLE 1. Emotion recognition results of different models with respect to the datasets.

used for training and the other for testing. The performance
outcomes, summarized in Table 1, reveal the comparative
efficacy of each model.

For the SEED-V dataset, the subject-independent EEG-
based and non-EEG-based models record accuracies of
0.61 and 0.66, respectively. The knowledge distillation-based
model outperforms the others with a mean accuracy of 0.74,
representing an improvement of 21.31% over the subject-
independent EEG-based model and about 12.12% over the
subject-independent non-EEG-based model. The subject-
specific EEG-based model illustrates a slight improvement
over its subject-independent counterpart. This increment
indicates the potential of tailoring models to individual emo-
tional profiles, which can yield better performance, though
at the expense of generalizability. The subject-independent
multimodal model, which integrates EEG data with non-EEG
sensory data, shows improved accuracy at 0.72, suggesting
the benefits of a multimodal approach in enhancing model
robustness. When the proposed model is compared to the
subject-independent multimodal model, the improvement is
more modest at approximately 2.78%. These enhancements
suggest that the knowledge distillation approach leverages
both unimodal and multimodal models, demonstrating a
superior ability to generalize emotion recognition across
subjects by utilizing a modality-aware and subject-aware
approach.

The DEAP dataset shows less variability in model
performances with the knowledge distillation-based model
marginally leading at 0.65. All models exhibit relatively
similar accuracy levels around the 0.61 mark, with the
multimodal approach showing a slight advantage at 0.64.
The knowledge distillation-based model shows a 6.56%
improvement over the unimodal models and 1.56% over
the multimodal model. This minimal increase indicates that
while the proposed model does provide an advantage, the
unique characteristics of the DEAP dataset may limit the
effectiveness of the enhancements brought by knowledge
distillation.

The study was extended to include our proprietary
GraffitiVR dataset, which analyzes emotional and behavioral
responses to urban graffiti in a 3D VR setting. The
knowledge distillation-based model again ranks highest with
an accuracy of 0.76, which supports its effectiveness in
diverse and potentially more immersive environments. This
is an improvement of 24.59% over the subject-independent
EEG-based and non-EEG-based models, both of which

scored 0.61. The subject-independent multimodal model
also shows robust performance with an accuracy of 0.73.
Compared to the subject-independent multimodal model, the
improvement stands at 4.11%. These results underscore the
effectiveness of the knowledge distillation-based model in
handling the complex and immersive environments typical
of virtual reality, suggesting that the integration of multiple
modalities or advanced knowledge distillation techniques
might be particularly beneficial in virtual reality settings
where emotional cues can be highly varied.

B. EMOTION RECOGNITION RESULTS USING SEED-V
DATASET
Table 2 depicts the subject-based emotion recognition results,
displaying the performance of various classifiers across
subjects from the SEED-V dataset. Each cell in the table
reflects the accuracy of a specific classifier for a given
subject. Each row corresponds to a different subject ID, and
the final row labeled ‘mean’ indicates the average accuracy
for each classifier across all subjects.

The knowledge distillation-based model consistently out-
performs the other models, as evidenced by its superior
performance across multiple subjects. For instance, the
models achieved remarkable accuracies of 0.81, 0.84, 0.83,
and 0.88 on subjects 8, 9, 13 and 15, respectively, which are
significantly higher compared to their counterparts in other
models. These results are indicative of the robustness and
efficacy of the knowledge distillation approach, particularly
in subjects where other models struggle to maintain high
accuracy.

This comprehensive analysis not only underscores the
advantages of the knowledge distillation-based model but
also demonstrates its capability to generalize across different
individuals in emotion recognition tasks. The consistent
outperformance across subjects highlights the model’s adapt-
ability and its potential in real-world applications where
subject variability can pose significant challenges.

C. EMOTION RECOGNITION RESULTS USING DEAP
DATASET
Table 3 illustrates subject-based emotion recognition results
on DEAP dataset. The DEAP dataset exhibits less variability
in performance among the models, suggesting that the
emotional states reflected in this dataset may not distinctly
favor one model over another due to similar mapping across
all modalities.
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TABLE 2. Comparison of emotion recognition models across subjects on SEED-V.

TABLE 3. Comparison of emotion recognition models across subjects on DEAP.

Despite the close performance values, the knowledge
distillation-based model slightly leads in accuracy across
several subjects. For instance, while the emotion recognition
accuracy for Subject 4 reached 0.71, this is an improvement
over the 0.68, 0.61, and 0.69 recorded by the subject-
independent EEG-based, non-EEG-based, and multimodal
models respectively. Similar improvements are observed for
Subject 6, where the proposed model achieves a notable
accuracy of 0.71, significantly surpassing the accuracies
achieved by the other models.

Furthermore, subject-specific models display varying
degrees of success; for example, the non-EEG-based model
of Subject 7 reached the highest accuracy among subject-
specific classifiers, demonstrating that personalized models
can occasionally match or exceed the performance of more
generalized approaches, particularly in handling unique or
nuanced emotional data.

A particularly exceptional case is Subject 10, where the
accuracy with the knowledge distillation-based model is
0.70, surpassing the 0.59 accuracy achieved with both the

subject-independent EEG-based and non-EEG-based models
and significantly outperforming the 0.62 accuracy with the
multimodal model. This instance highlights the potential
of knowledge distillation in certain contexts to effectively
enhance emotion recognition tasks within the DEAP dataset.

D. EMOTION RECOGNITION RESULTS USING GRAFFITIVR
DATASET
Table 4 illustrates subject-based emotion recognition results
on GraffitiVR dataset. The knowledge distillation-based
model generally exhibits superior performance across the
dataset, demonstrating notable enhancements in accuracy,
especially in immersive VR environments. For example,
Subject 5 shows a dramatic improvement, where the
proposed model scores 0.96, outperforming the 0.57 of
the subject-independent EEG-based model, 0.76 of the
subject-independent non-EEG-based model, and 0.95 of the
subject-independent multimodal model. Similar significant
improvements are observed in Subject 8, where the proposed
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TABLE 4. Comparison of emotion recognition models across subjects on GraffitiVR.

model also achieves an accuracy of 0.96, compared to the
respective accuracies of the other models.

Although subject-specificmodels offer tailored approaches
to emotion recognition, they generally exhibit lower
accuracies compared to subject-independent and knowledge
distillation-based models in the GraffitiVR dataset. This
result arises from the complex sensory data inherent in
VR environments, which may contain intricate patterns that
require extensive data for effective model training—data that
is often insufficient in subject-specific settings.

Subjects 11 and 14 also highlight the effectiveness of the
proposed model, with accuracies of 0.96 and 0.85 respec-
tively, showcasing its capability to leverage the complex
sensory data inherent in VR settings more effectively than
other models.

These results underscore the knowledge distillation-
based model’s ability to surpass traditional and multimodal
approaches in VR contexts, where immersive experiences
may significantly influence emotional responses. The data
demonstrates the potential of this model to facilitate
high-fidelity emotion recognition in challenging VR environ-
ments, making it particularly suited for applications where
understanding nuanced emotional dynamics is critical.

E. COMPARATIVE ANALYSIS WITH RELATED WORKS
This comparative analysis assesses the effectiveness of
various transfer learning approaches in EEG-based emotion
recognition. Improvements are quantified and ordered from
lowest to highest in Table 5, which includes selected research
studies that detail the extent of their improvements using
transfer learning.

Ma et al. improved emotion recognition accuracy by 2.8%
through the Cross-subject Source Domain Selection (CSDS)
method [62]. Ren et al. demonstrated a 2-3% improvement
in cross-subject emotion recognition scenarios through their
multisource instance transfer learning framework [63]. Li et
al. presented a Transferable Attention Neural Network
(TANN) that optimizes emotional recognition by prioritizing

EEG samples with high transferability; the mean improve-
ment is about 2.5% and 3.4% [64]. Luo et al. employed a
Manifold-based Domain Adaptation with Dynamic Distribu-
tion (MDDD) method to effectively align source and target
domains, showing an average improvement of 3.54% over
traditional non-deep learning methods [65]. The integration
of transfer learning with dictionary learning in Gu et al.’s
Multi-source Domain Transfer Discriminative Dictionary
Learning (MDTDDL) enhances the adaptability of EEG fea-
tures across different emotional states and subjects, improv-
ing accuracy by 3.94% to 4.02% [66]. Wang et al. enhanced
emotion classification accuracy by 4.51% through automated
feature extraction using Electrode-Frequency Distribution
Maps (EFDMs) and a Residual Block-based Deep CNN [67].
Xue et al. utilized TCA to improve feature alignment
between different subjects, thereby demonstrating a 6.43%
improvement in the accuracy of emotion recognition [14].
Wang et al. incorporated an inter-subject contrastive loss and
a pairwise similarity mechanism in their transfer learning
model, achieving substantial generalization improvements
with an 8% increase on the target domain [68]. Tang et al.
demonstrated the effectiveness of their meta-transfer learning
model in improving average accuracy by 6.23% on the SEED
dataset and 10.43% on the SEED-IV dataset, underscoring
its potential in cross-subject scenarios [69]. The multisource
transfer learning approach introduced by Li et al. improves
emotion recognition accuracy by 12.72% [13].

In comparison to existing methodologies, which predomi-
nantly utilize only EEG data, our model not only achieves a
significantly broader range of accuracy enhancements—from
6.56% to 24.59% over unimodal models and 1.56% to 4.11%
over multimodal approaches—but also demonstrates these
improvements across multiple datasets, including SEED-V,
DEAP, andGraffitiVR. By employing pre-trainedmodels and
integrating multimodal data, our approach enhances general-
izability across different datasets and subjects. Furthermore,
this multi-modal strategy, particularly its application to the
GraffitiVR dataset, underscores its potential in immersive 3D
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TABLE 5. Comparative analysis of EEG-based emotion recognition improvement rates using transfer learning.

environments, leveraging the synergistic effects of various
physiological signals to enhance robustness and accuracy in
diverse real-world scenarios. This comprehensive application
promises significant advancements in the field of EEG-based
emotion recognition, adapting effectively to the complexities
of real-world applications.

VIII. DISCUSSION
The proposed knowledge distillation framework integrates
the strengths of subject-independent and subject-specific
models to enhance multimodal emotion recognition. This
integration allows the final model to effectively capture a
comprehensive range of features that are both generic and
unique to individual subjects. By employing a combination
of EEG and non-EEG sensory data, the framework accom-
modates diverse data modalities, enhancing its capability
to predict emotion accurately. Optimization of the model
involves a dual approach using both student loss and
distillation loss, which facilitates the effective transfer of
knowledge from the teacher models to the student model.
This approach ensures that the final multimodal model is
not only robust but also demonstrates high performance
on unseen test data, thereby confirming its generalization
capabilities.

Empirical evidence from the study underscores the efficacy
of the proposed KD framework in the field of emotion
recognition. The framework exhibited commendable per-
formance on the SEED-V, DEAP, and GraffitiVR datasets,
surpassing benchmark results set by existing models. These
results are particularly significant, demonstrating that the use
of knowledge distillation can indeed enhance the accuracy
of multimodal emotion recognition systems in line with
existing studies such as [40], and [42]. The improvement
in accuracy highlights the framework’s ability to leverage
distilled knowledge effectively, optimizing the recognition
process across varied datasets.

The success of the proposed KD framework in achieving
superior performance across multiple datasets illustrates
its potential as a scalable and versatile tool in emo-
tion recognition. By harmonizing knowledge from both
subject-independent and subject-specific models, the frame-
work not only boosts performance but also enriches the

model’s adaptability to new and varying contexts. This adapt-
ability is crucial for applications that require high fidelity in
emotion recognition, such as in virtual reality and healthcare,
where personalized and accurate emotion assessment is key.
The methodology’s emphasis on optimizing both student
and distillation losses further refines the model’s efficiency,
making it a valuable contribution to the advancements in
emotion recognition technology.

IX. CONCLUSION
In this study, we introduced a novel knowledge distillation
framework tailored for multimodal emotion recognition. This
innovative approach harnesses both subject-independent and
subject-specific data to comprehensively capture emotional
features, thereby enhancing model performance and gen-
eralization capabilities. By adeptly transferring knowledge
from varied models into a cohesive multimodal model, our
framework not only excels at accurately predicting emotion
labels but also significantly outperforms existing emotion
recognition models. The efficacy of this framework has been
robustly demonstrated on three datasets: SEED-V, DEAP,
and particularly GraffitiVR, which emphasizes its substantial
advantages in complex VR environments.

In conclusion, the knowledge distillation framework pro-
posed in this article marks a significant advancement in the
field of emotion recognition by enabling enhancedmodel per-
formance through the strategic integration of subject-specific
and subject-independent data. The promising results obtained
from rigorous testing on benchmark datasets, especially
in VR settings with the GraffitiVR dataset, underscore
the potential of knowledge distillation as a powerful tool
for boosting the performance and generalization abilities
of emotion recognition models. This research sets a new
standard for future studies and paves the way for the practical
application of multimodal emotion recognition technologies
in diverse and immersive environments.

Moving forward, our future research will incorporate
cutting-edge techniques such as attention mechanisms and
reinforcement learning to refine the performance of multi-
modal emotion recognition models further. We also plan to
explore the application of transfer learning and meta-learning
strategies to boost generalization across various settings.
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An extensive evaluation of our framework on larger and
more diverse datasets, especially in VR contexts, will be
essential to verify its scalability and robustness in real-world
applications.
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