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ABSTRACT The purpose of image style conversion is to transfer the style of one image to another,
so that the target image retains the original content and the style of the reference image. An image style
conversion technique based on generative adversarial network is proposed. This study innovatively adopts
dual synthesizer and dual discriminator structure to improve the quality and efficiency of style conversion,
and introduces extended convolution to enhance feature extraction. Combined with a well-designed loss
function to optimize the style conversion process, a convolutional module reconstruction generator network
including linear computation is added. The experimental results showed that in the training time test, the
research method maintained a training time of less than 97 seconds when the number of input style types
increased to 18. When conducting image style loss testing, the research method found that the image style
loss value was lower compared to other techniques when the input size was 1080p and the pixel count was
10M. In the analysis of pixel loss during image style conversion, the research method shows that the pixel
loss after processing virtual images is only 3.5k out of 10M, which hardly affects the expression of image
content. The designed image style conversion model can accomplish the task of image style conversion with
high quality and high efficiency.

INDEX TERMS Generative adversarial networks, image processing, linear calculation, convolution, image
style.

I. INTRODUCTION
With the rapid development of computer technology, image
processing technology has been widely applied in many
fields. Among them, image style conversion, as an important
image processing task, aims to transfer the style features of
one image to another, thereby achieving modification and
optimization of image style [1], [2]. The traditional image
style conversion methods mainly rely on image processing
techniques and machine learning algorithms. However, these
methods often require a large amount of manual involve-
ment and parameter adjustment. Meanwhile, its effectiveness
is poor when dealing with complex scenes. Balancing the
original image content and target image style in image style
conversion is a challenging issue [3], [4]. With the increase
of data size, traditional image style conversion models face
problems such as insufficient computing resources and long
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training time. Somemodels may cause distortion in the gener-
ated image during image style conversion, making it difficult
to perfectly integrate the original content and target style [5].
Some advanced methods require a large amount of comput-
ing resources and long training time, which is not practical
enough. Generative Adversarial Network (GAN) is an adver-
sarial learning framework composed of a generator and a
discriminator. Through continuous iterative training, the gen-
erator can generate increasingly realistic images, while the
discriminator can more accurately distinguish between gen-
erated images and real images. In image style conversion
tasks, GANs can effectively capture the style features of the
input image and transfer them to the output image [6]. In this
context, the research attempts to propose an image style con-
version model based on GAN, and then optimize the model
according to the characteristics of image style conversion.
It is expected to design an innovative image style conversion
technology, providing feasible technical references for the
image processing industry.
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The main contributions of the research are as follows: 1.
The adversarial network structure of twin synthesizer and
double discriminator is innovatively adopted in the research,
which effectively improves the quality and efficiency of style
conversion. 2. Expansion convolution is introduced into gen-
erator network to enhance feature extraction capability while
avoiding large increase in the number of model parame-
ters. 3. A compound loss function including adversarial loss,
cyclic consistent loss and edge consistent loss is designed to
optimize the style transfer process. 4. The attention mecha-
nism is added to the generator network to improve themodel’s
ability to recognize and transform key features in images.

The research mainly consists of four parts. The first part
discusses and summarizes the relevant research results on
image style conversion and GAN. The second part mainly
designs the image style conversion model based on GAN, and
elaborates on the optimization method involved. The third
part analyzes the effectiveness of the research method. The
final part summarizes the paper.

II. RELATED WORKS
Different image styles can present different image infor-
mation content. With the development of image processing
technology, more scholars have realized the importance of
image style conversion technology. Some scholars have
conducted relevant research on image style conversion tech-
niques. Yang et al. proposed an unsupervised continuous
kernel transformation method for the style conversion of
X-ray computed tomography images. The network was sub-
jected to adaptive strength normalization, converting images
along the interpolation path between two kernel domains.
The experimental results showed that the proposed method
effectively performed image style conversion [7]. Jang et al.
proposed a StyleCarri-based method to address the style con-
version in comic images. Shape exaggeration blocks were
used to modulate the energy efficiency of rough feature
maps. Layer mixing styles were used to finely exchange
photo styles, and then generated detailed style results. The
experimental results showed that the proposed method had
good realism for comic images [8]. Li et al. proposed a trans-
fer learning method to address the style conversion in road
surface images. The framework was constructed using data
transmission and model transmission. Image fusion was used
to synthesize the labeled data of the new scene, and domain
adaptation was adopted to complete feature transfer. The
experimental results showed that the proposed method had
good model accuracy [9]. Gal et al. proposed a wavelet-based
method for style conversion in image editing. The poten-
tial representation of frequency perception was strengthened.
Spectral deviation extracted high-frequency content to reduce
input of image structures that couldn’t be learned. The exper-
imental results showed that the proposed method effectively
completed image style conversion [10]. Li et al. proposed
a deep learning method for hyper-graph style conversion
in industrial design. A deep Convolutional Neural Network
(CNN) was used to establish an emotion recognition model

and generate images with emotional preferences. The exper-
imental results indicated that the research method effectively
provided scheme references for industrial designers [11].

Some scholars have conducted relevant research on GAN.
Wang et al. proposed a GAN method for movie rendering
style conversion. Edge features and self attention were fused,
and the edge feature extraction network was inserted into
the model for edge extraction of the original image. Then,
a perceptual loss was used for network optimization. The
experimental results showed that the proposed method had
good rendering style conversion effects [12]. Gao et al. pro-
posed a GAN technology for automatic detection of epilepsy.
The training set for the seizure period data was balanced.
An one-dimensional CNN was used to process the signal,
reducing the training parameters for deep structures. The
experimental results indicated that the proposed method had
good detection performance [13]. Daihong et al. proposed
a GAN method for solving image super-resolution. Multi-
scale pyramid modules were used to extract high-frequency
information features. A bi-cubic interpolation was used for
high-resolution image reconstruction, and mean square error
was added to reconstruct the loss function. The experimental
results showed that the proposedmethod obtained better qual-
ity super-resolution results [14]. Kench and Cooper proposed
a technique based on GAN for automatic generation of three-
dimensional images. A single representative two-dimensional
image was used for three-dimensional generation, and the
unified information density concept was adopted to ensure
the quality of nodes. The experimental results showed that
the proposed method had faster automatic generation effi-
ciency [15]. Lei et al. proposed a method based on GAN for
structural health monitoring. The deep convolutional network
and GAN were combined to establish realistic assumptions
about possible lost signals. The training generator extracted
features from the data set and used adversarial loss to process
high and low frequency features. The experimental results
showed that the proposed method had good data processing
accuracy [16]. Maeda et al. proposed a method based on
GAN for road damage detection. The Poisson mixing tech-
nology and growth were combined to manually generate road
damage training data and distinguish the authenticity of the
images. The experimental results showed that the proposed
method could accurately detect road damage [17].

In summary, GAN has been applied in many fields. It has
been confirmed that it can perform image processing, but the
research on image style conversion is still relatively limited.
In view of this, the study proposes an image style conversion
model based on GAN, aiming to provide more feasible tech-
nical references for image processing.

III. DESIGN OF IMAGE STYLE CONVERSION MODEL
BASED ON GENERATIVE ADVERSARIAL NETWORKS
The image style model can provide rich content variation for
fields such as image processing and design by transform-
ing images from one style to another. This section focuses
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on the technical means used in the image style conversion
model.

A. AN IMAGE STYLE CONVERSION MODEL BASED ON
DUAL GENERATORS AND DISCRIMINATORS FOR
GENERATIVE ADVERSARIAL NETWORKS
Image style conversion refers to converting the style features
of an image to a different style from the original image, while
preserving the main information of the image during the con-
version process [18], [19]. Image style conversion technology
is mainly applied in art and design, entertainment produc-
tion, and special image detection [20], [21]. Style conversion
involves rich image processing and computation, which may
result in slower computation speed, especially when process-
ing high-resolution images [22], [23]. Preserving the main
information of the image while fully expressing the style
image features during the conversion is a challenge [24],
[25]. Over-emphasizing style may lead to loss of content
information, while retaining content too much may result
in unclear style [26]. GAN can automatically learn feature
representations of content and style images, capture more
complex and rich image features, and generate high-quality
conversion results. On the basis of generating adversarial
networks, an image style conversion model is established.
The GAN consists of a generator and a discriminator, where
the generator is responsible for generating images, and the
discriminator is responsible for judging the authenticity of the
image. The main structure of the GAN is shown in Figure 1.

FIGURE 1. The main structure of generative adversarial networks.

In Figure 1, potential random variables are input into the
generator. The generator processes the input data, generates
corresponding fake data samples, and attempts to deceive
the discriminator by inputting them into the discriminator.
Meanwhile, real data samples are input into the discriminator
and then compared with the data output by the generator. The
discriminator determines the authenticity of the data gener-
ated by the generator. It sends the judgment results back to the
generator and discriminator for training. This operation loops
multiple times until Nash equilibrium is reached and the loop

ends. However, the commonly used U-net generator structure
may lose key information during the training, making it diffi-
cult for a single discriminator to effectively control local and
global structures when dealing with large-scale image style
conversions. To improve the performance and applicability of
style conversion models, the study introduces dual generators
and discriminators to reconstruct GAN. The GAN structure
of dual generators and discriminators is shown in Figure 2.

FIGURE 2. Dual generators and discriminators generate adversarial
network structures.

In Figure 2, the GAN with dual generators and discrim-
inators converts the image style to the target style through
the first generator after inputting the original image. The
first conversion result and the original image are subjected
to edge extraction to calculate the edge loss value. The first
discriminator compares the first conversion result with the
target style, and outputs adversarial loss. The second dis-
criminator converts the image style to the original image
based on the first conversion result. The second discriminator
compares the second style conversion with the original image
and outputs adversarial loss. Specifically, the first generator
is responsible for converting the input original image into
the target style image, while the second generator converts
to the original image style based on the first conversion.
This bi-directional conversion strategy helps to better balance
retention and conversion of content and style. During model
training, the discriminator and generator are trained using the
obtained loss values. The two generators have the same struc-
ture, with a symmetrical structure from input to output and the
same number of convolutional layers in the up-sampling and
down-sampling sections. Skip connections connect the scores
corresponding to up-sampling and down-sampling, achiev-
ing higher feature extraction while preserving more image
details [27]. In the last three convolutional layers of the down-
sampling section, extended convolution is used to improve
feature space resolution. The receptive field calculation of
extended convolution is shown in equation (1).

f =
(
np − 1

)
× (k − 1) + k (1)

In equation (1), f represents the convolutional kernel
receptive field. np represents the expansion rate. k represents
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the size of the convolution kernel. Extended convolution does
not increase model parameters when increasing the receptive
field, which can reduce the amount of data required for
image style conversion. Two discriminators can be distin-
guished based on their functions as primary discriminators
and secondary discriminators. The design of the discriminator
focuses on capturing the global and local features of the
image. The main discriminator pays attention to the global
information of the image to ensure the overall consistency
of the style. The secondary discriminator, on the other hand,
focuses on the local content of the image to ensure the quality
of details. While retaining the original content, it fully shows
the converted style characteristics. The structural hierarchy of
two discriminators is shown in Figure 3.

FIGURE 3. Discriminator structure hierarchy.

In Figure 3, the discriminator extracts the input image data
and model information based on high-frequency structural
information. In the model, key areas of the image are sub-
jected to terminal illumination to extract information output
matrix. The value of the output matrix is used to determine the
authenticity of the image. In the modeling and constructing
output matrices, parameter redundancy caused by irrelevant
information is reduced, improving the training effectiveness
of the model. The convolution layer of the generator and
discriminator uses a convolution kernel of size 3 × 3, with
the fill set to 1 and the step size to 2. In the design of
the loss function, a combination of antagonistic loss, cyclic
consistent loss and edge consistent loss is used to ensure that
the style and content of the generated image are consistent
with the target image. The antagonistic loss enables the image
generated by the generator to deceive the discriminator. The
cyclic coincidence loss ensures the reversibility of the style
conversion process. The edge consistent loss ensures that the
edge information of the style conversion image is consistent
with the original image. The total loss function during model

training is shown in equation (2).

L (G,F,DX ,DY ) = LGAN + λ1Lcyc (G,F) + λ2Ledge (X ,G)

(2)

In equation (2), L (G,F,DX ,DY ) represents the total loss
function value. LGAN represents the value of the adversarial
loss function. Lcyc (G,F) represents the cyclic consistent
loss function. Ledge (X ,G) represents the edge consistent loss
function.G and F represent generators.DX andDY represent
discriminators. X and Y represent different image domains.
λ represents the coefficient of the loss function value. The
adversarial loss function consists of the adversarial losses
from two different generators, as shown in equation (3).

LGAN = LGAN (G,DY ,X ,Y ) + LGAN (F,DX ,X ,Y ) (3)

In equation (3), LGAN (G,DY ,X ,Y ) represents the adver-
sarial loss function of the main discriminator during the
image conversion from the X domain to the Y domain.
LGAN (F,DX ,X ,Y ) represents the generated adversarial loss
function of the secondary discriminator when the image is
converted from the Y domain to the generator. The cyclic
consistent loss function is shown in equation (4).

Lcyc (G,F)

= Ex∼p(x)
[
∥F (G (x)) − x∥1

]
+ Ey∼p(y)

[
∥F (G (y)) − y∥1

]
(4)

In equation (4), E represents the mathematical expectation.
x and y represent data samples. The edge consistent loss
function is established in the edge extraction network and
implemented by the Canny edge algorithm.When performing
edge extraction, there is no need to overly focus on noise,
only to accurately extract strong and weak edges. Therefore,
differential first-order partial derivatives are used to calcu-
late image gradients. The edge loss function is shown in
equation (5).

Ledge (x,G) = ∥E (x) − E (G (x))∥2 (5)

In equation (5), E (x) represents the result obtained from
edge extraction of the original image. E (G (x)) represents
the result obtained from edge extraction of the image after
style conversion. When performing image style conversion,
the model is first trained. Then the image style conversion is
performed using the trained model.

B. GENERATIVE ADVERSARIAL NETWORK IMAGE STYLE
CONVERSION MODEL DESIGN BASED ON LINEAR
MODULE OPTIMIZATION
The image style conversion model needs to extract useful
feature representations from the original image and the style
image when performing feature extraction. These features not
only contain the specific content of the image, but also the
artistic style of the image [28], [29]. Convolutional opera-
tions can effectively extract image features. Adding linear
modules to the convolutional layer can generate more feature
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maps [30], [31]. Linear modules are inserted into the GAN
to optimize the design of image style conversion models.
The output features of the convolutional layer are shown in
Figure 4.

FIGURE 4. Convolutional layer output feature process.

In Figure 4, the original information is convolved after
being input, followed by linear transformation to obtain the
output featuremap. The form of the output featuremap is sim-
ilar to the shadow of the intrinsic feature map. The final data
output is concatenated by the feature information obtained
from convolution operation and the shadow features obtained
from linear operation. When performing feature output, the
number of parameters in the convolution kernel and bias term
is determined by the size of the feature map. The output
feature is shown in equation (6).

Yt = XR × fj + b (6)

In equation (6), Yt represents an output feature with mul-
tiple channels. XR represents input data. fj represents the
convolution kernel. b represents the bias term. The output
of each convolution layer is first passed through a linear
transformation consisting of a learnable weight matrix and
bias vector. Then, the result of the linear transformation is
spliced with the original convolution feature map to get the
final output feature map. To simplify the algorithm, the bias
term is removed. The hyper-parameters used in convolution
operations are consistent with those used in regular con-
volution. The shadow feature map obtained through linear
operation is shown in equation (7).

yij = 8i,j
(
y′i

)
(7)

In equation (7), yij represents the shadow feature map.
8i,j represents linear operation. y′i represents the i-th intrinsic
feature map in the intrinsic feature map. In the implementa-
tion, the weight matrix and bias vector of the linear module
are initialized to zero to avoid introducing unnecessary noise.
The structure of the input image is better preserved. Then the
convolutional module is modified to reconstruct the generator
network, as shown in Figure 5.

In Figure 5, the generator network after modifying
the convolutional module still includes up-sampling and
down-sampling parts, while retaining skip connections. The

convolutional layer begins the down-sampling phase, fol-
lowed by instance normalization andmax pooling. The output
after instance normalization is concatenated with the input of
residual blocks. After the residual module, an attention layer
is added. During down-sampling, serial skip connections are
used for module connections. After the data enters the up-
sampling layer, high-level and low-level features are fused to
output a three-channel image. To learn effective features at a
higher intensity while reducing ineffective feature learning,
attention mechanisms are incorporated into down-sampling.
The attention mechanismweights the feature map by learning
the importance of different channels in the input feature
map to highlight key information and suppress unimportant
information. The content of adding attention mechanism is
shown in Figure 6.
In Figure 6, the attention mechanism mainly includes

three stages: compression, stimulation, and weighting. The
compression operation is performed in spatial order and rep-
resents the two-dimensional input feature channels in real
numbers. Real numbers are required to contain global infor-
mation to a certain extent. The output dimension of the
compression operation needs to correspond to the number
of feature channels of the operation input, to ensure that the
network has global characteristics at the channel level. The
stimulation operation is similar to the gating mechanism,
which learns the relationships between channels and gener-
ates weights for different channels. The importance of feature
channels is represented by the weights. Weighting operation
is performed on the channel dimension, weighting the feature
information obtained from previous operations to obtain the
final feature result. The number of feature maps generated
by the convolution module during runtime matches that of
existing images, which can reduce the computational cost
of image style conversion. The improved convolution theory
acceleration is shown in equation (8).

rs =
n · h′

· w′
· c · k2

n
s h

′ · w′ · c · k2 + (s− 1) ns h
′ · w′ · d2

(8)

In equation (8), rs represents the theoretical acceleration
ratio. d represents the edge length of the linear operation ker-
nel. h′ represents the width of the output data. w′ represents
the height of the output data. c represents the number of input
feature channels. s represents the number of linear operations.
The compression ratio is shown in equation (9).

rc =
n · c · k2

n
s · c · k + (s− 1) ·

n
s · d2

(9)

In equation (9), rc represents the compression ratio.
To reduce the feature dimension during feature extraction,
the maximum pooling is selected as the pooling layer. When
performingmaximum pooling, feature points within the max-
imum domain are selected. The main methods of pooling
and convolution operations are similar. The pooling pro-
cess focuses on filter size and ignores internal values. The
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FIGURE 5. The generator network after modifying the convolutional module.

FIGURE 6. Content of attention mechanism.

maximum pooling calculation is shown in equation (10).

MaxPooling (xi, i, j)

= max(p,q)∈pooling window xi [i+ p, j+ q] (10)

In equation (10), xi represents the input data. (i, j)
represents the upper left position of the pooling win-
dow. (p, q) represents the position in the pooling window.
MaxPooling (xi, i, j) represents the maximum value found
in the pooling window. To reduce the bias and loss of the
image style conversion model during training, the gradient
descent method is selected for optimization. To improve the
calculation speed, some data is processed simultaneously.
The objective function is shown in equation (11).

Jbatch (θ) =
1
b

∑b

i=1
L

(
y(i), hθ

(
x(i)
i

))
(11)

In equation (11), Jbatch (θ) represents the gradient descent
objective function value. b represents the batch size.
L

(
y(i), hθ

(
x(i)
i

))
represents the loss of a single sample. θ

represents the parameter to be optimized. The gradient is
shown in equation (12).

∇Jbatch (θ) =
1
b

∑b

i=1
∇L

(
y(i), hθ

(
x(i)

))
(12)

In equation (12),∇Jbatch (θ) represents the gradient, which
is the change direction of the loss function under the current

parameters. ∇L
(
y(i), hθ

(
x(i)

))
represents the gradient of a

single sample loss with respect to the parameters to be opti-
mized. The learning rate is flexibly adjusted at different stages
using first-order momentum and second-order momentum
control. The first-order momentum is shown in equation (13).

vt = βvt−1 + (1 − β) ∇Jt (θ) (13)

In equation (13), vt represents the first-order momentum.
β represents the attenuation coefficient. vt−1 represents the
first-order momentum of the previous step.∇Jt (θ) represents
the current step gradient. The second-order momentum is
shown in equation (14).

st = ρst−1 + (1 − ρ) ∇Jt (θ) (14)

In equation (14), st represents the second-order momen-
tum. ρ represents the attenuation coefficient. st−1 represents
the second-order momentum of the previous step. The com-
plete running process of the designed image style conversion
model is shown in Figure 7.

In Figure 7, the designed image style conversion model can
be mainly divided into two parts: model training and image
style conversion. After the model starts running, the first step
is to input the target style image, followed by model training.
The model was trained using the Adam optimizer with an
initial learning rate of 0.0002 and a batch size of 64. The
learning rate attenuation strategy was used during training,
reducing the learning rate by 0.1 per 100 epochs. During
the training process, the image style features are extracted
and the model parameters are optimized. When the preset
training frequency or duration is reached, the model training
is completed. The image style features are extracted and the
model parameters are optimized. When the preset training
frequency or duration is reached, the model training is com-
pleted. Afterwards, the original image that needs to undergo
style conversion is input, and the generator generates the
converted image. The discriminator identifies and outputs the
loss value. Then, the generator restores the image, and the dis-
criminator performs discrimination again and outputs the loss
value. If the converted image does not meet the conversion
requirements, the loss information is output and the model
is retrained. If the image meets the conversion requirements
after style conversion, the style conversion image result is
output. The image style conversion is completed.
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FIGURE 7. The complete running process of image style conversion model.

IV. EFFECTIVENESS ANALYSIS OF IMAGE STYLE
CONVERSION MODEL BASED ON GENERATIVE
ADVERSARIAL NETWORKS
With the rapid development of computer vision and deep
learning technology, image style conversion has become
a highly focused research field. This section analyzes the
designed image style conversion model from two perspec-
tives: performance testing and application analysis.

A. PERFORMANCE TESTING OF IMAGE STYLE
TRANSFORMATION MODEL BASED ON
GENERATIVE ADVERSARIAL NETWORKS
To analyze the designed image style conversion model, the
WikiArt data set and CelebA data set are selected as the test-
ing data sets for performance testing. The research method,
abbreviated as Optimized Generative Adversarial Network
(OGAN), is compared with Watchdog Generative Adver-
sarial Network (WGAN) and Instance Normalized Network
(INN). The basic software and hardware environment of the
experiment is shown in Table 1.

TABLE 1. Basic environmental parameters of the experiment.

The training time of different methods is tested, as shown
in Figure 8.

In Figure 8, the training time of different methods
increasedwith the number of input style types. In Figure 8 (a),
in theWikiArt data set, theWGANwas 23s when the number
of input style types was 3. When the number of input style

FIGURE 8. Training time consumption.

types increased to 18, the training time was 125s. The INN
was 54s when the number of input style types was 3. When
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the input style types increased to 18, the training time was
221s. The training time for OGAN with 3 input style types
was 14s. When the number of input style types increased to
18, it was 97s. In Figure 8 (b), in the CelebA data set, the
training time of the WGAN was 26s when the number of
input style types was 3. The training time when the number of
input style types increased to 18 was 152s. The training time
of the INN was 89s when the number of input style types
was 3. When the number of input style types increased to
18, it was 239s. For OGAN with 3 input style types, it took
9s. When the number of input style types increased to 18,
it was 56s. This indicates that the research method has faster
model pre-training efficiency, which can be deployed faster.
In general, when the number of input style types increased
to 18, the training time of OGAN model remained below
97 seconds, which significantly reduced the training time
compared with other methods. This advantage is mainly due
to the dual synthesizer and dual discriminator structure of
the model, which allows the model to converge faster and
effectively reduces the computational complexity by reducing
the number of model parameters. The Peak Signal-to-Noise
Ratio (PSNR) is tested, as shown in Figure 9.

FIGURE 9. Peak signal-to-noise ratio test.

In Figure 9, the PSNR of different methods increased
overall with the increase of bit rate. In Figure 9 (a), in the
WikiArt data set, the PSNR of the WGAN was 15.1dB at
a bit rate of 200kb/s. The PSNR increased to 25.3dB when
the bit rate reached 1000kb/s. The INN was 10.1dB at a bit
rate of 200kb/s. The PSNR increased to 20.0dB when the bit
rate reached 1000kb/s. The PSNR of OGAN was 20.8dB at
a bit rate of 200kb/s. The PSNR increased to 34.1dB when
the bit rate reached 1000kb/s. In Figure 9 (b), in the CelebA
data set, the PSNR of the WGAN was 13.7dB at a bit rate
of 200kb/s. The PSNR increased to 25.3dB when the bit rate
was 1000kb/s. The INN was 4.1dB at a bit rate of 200kb/s.
The PSNR increased to 16.9dB when the bit rate reached
1000kb/s. The PSNR of OGAN at a bit rate of 200kb/s was
22.6dB. The PSNR increased to 32.4dB when the bit rate
reached 1000kb/s. This indicates that the data processed by
the research method has less distortion. When the bit rate
reaches 1000kb/s, the peak signal-to-noise ratio of OGAN
model reaches 34.1dB, which indicates that the model has
excellent performance in image quality preservation. This is
attributed to the use of cyclic consistent loss functions and
edge consistent loss functions in the model, which help to
retain more image detail and edge information during style
transitions. The F1 values of eachmethod are tested, as shown
in Figure 10.
In Figure 10, the F1 values of different methods

continuously increased with the number of iterations.
In Figure 10 (a), in the WikiArt data set, the F1 value of
the WGAN was 58.8 at 50 iterations. When the number of
iterations increased to 250, the F1 value was 76.1. The INN
was 72.4 at 50 iterations. When the number of iterations
increased to 250, the F1 value was 86.7. The OGAN was
77.7 at 50 iterations. When the number of iterations increased
to 250, the F1 value was 98.2. In Figure 10 (b), in the CelebA
data set, the F1 value of the WGAN at 50 iterations was
56.3. When the number of iterations increased to 250, the
F1 value was 73.1. The INN at 50 iterations was 67.5. When
the number of iterations increased to 250, the F1 value was
81.9. The OGANwas 79.1 at 50 iterations. When the number
of iterations increased to 250, the F1 value added to 95.0.
This indicates that the research method has better accuracy
and recall. When the number of iterations of OGAN model
increased to 250, the F1 value remained above 95.0, showing
better accuracy and recall rate. This result is due to the intro-
duction of an attentionmechanism in themodel, which allows
the model to pay more attention to key features in the image,
thus improving the accuracy of style transformation. The
image style loss at runtime is tested, as shown in Figure 11.

In Figure 11, the style loss of different methods increased
with the increase of input image pixels. In Figure 11 (a),
in the WikiArt data set, the image style loss value of the
WGAN was 17.8 when the input image pixel count was 2M.
The image style loss value increased to 33.4 when the input
image pixel size was 10M. The INN had an image style loss
value of 24.1 when the input image pixel count was 2M.
The image style loss value increased to 40.2 when the input
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FIGURE 10. F1 value.

image pixel count was 10M. When the input image pixel
count was 2M, the OGAN was 11.9. The image style loss
value increased to 20.9 when the input image pixel count was
10M. In Figure 11 (b), in the CelebA data set, the image style
loss value of theWGANwas 16.2 when the input image pixel
count was 2M. The loss value increased to 32.1 when the
input image pixel count was 10M. The INN had an image
style loss value of 26.3 when the input image pixel count
was 2M. The image style loss value increased to 37.8 when
the input image pixel count was 10M. When the input image
pixel count was 2M, the OGAN was 10.0. The image style
loss value increased to 18.9 when the input image pixel count
was 10M. This indicates that the research method has bet-
ter accuracy in maintaining image style. The OGAN model
maintains an image style loss value below 20.9when the input
size is 1080p and the pixel count is 10M. This result indicates
that the model has high accuracy in preserving image style

FIGURE 11. Image style loss test.

features. It is related to the design of the anti-loss function in
the model, which prompts the generator to generate images
more in line with the target style characteristics.

B. APPLICATION ANALYSIS OF IMAGE STYLE
CONVERSION MODEL BASED ON GENERATIVE
ADVERSARIAL NETWORKS
When conducting application analysis, 100 real images and
100 virtual images are used for image style conversion appli-
cation testing and analysis. The average running time of
image style conversion is analyzed, as shown in Figure 12.

In Figure 12, the running time of different methods
increased with the increase of image clarity. In Figure 12 (a),
when processing real images, the average running time of the
WGAN was 194ms when the image clarity was 480p. The
average running time increased to 768ms when the image
clarity increased to 2160p. The INN at image clarity of 480p
was 426ms. The average running time increased to 973ms
when the image clarity increased to 2160p. The OGAN
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FIGURE 12. Average running time.

at image clarity of 480p was 57ms. The average running
time increased to 272ms when the image clarity was 2160p.
In Figure 12 (b), the WGAN had an average running time of
159mswhen the image clarity was 480p. The average running
time increased to 641ms when the image clarity was 2160p.
The INN at image clarity of 480p was 378ms. The average
running time increased to 889ms when the image clarity was
2160p. The OGAN at image clarity of 480p was 91ms. The
average running time increased to 391ms when the image
clarity was 2160p. This indicates that the researchmethod has
a faster image style conversion speed. The memory usage of
the computer model during operation is tested, as shown in
Figure 13.

In Figure 13, the memory usage of different methods fluc-
tuated within a certain range during operation. The WGAN
fluctuated between 8% and 63%within 100s, with an average
memory usage of about 41%. The INN fluctuated between
40% and 68% within 100s, with an average memory usage
of about 54%. The OGAN fluctuated between 26% and 37%
within 100s, with an average memory usage of approximately
31%. This indicates that the research method has more sta-
ble memory usage and lower memory space requirements

FIGURE 13. Memory usage rate.

during actual operation. The optimized design of OGAN
model reduces unnecessary computation and memory usage
through efficient data utilization. Introduce other commonly
used DualStyleGAN and GigaGAN for comparison. Analyze
the pixel loss when performing style conversion on images
containing 10M pixels, as shown in Figure 14.
In Figure 14, the pixel loss of different methods in image

style conversion increased with the depth of image con-
version. As shown in Figure 14 (a), when processing real
images, the watchdog generative adversarial network has a
pixel loss of 3.7k at 20% conversion completion; The pixel
loss of GigaGAN increases to 8.4k when the conversion is
fully completed. The pixel loss of the instance normalization
network at 20% conversion completion is 6.5k; The pixel
loss of DualStyleGAN increases to 6.9k when the conver-
sion is fully completed. The pixel loss of OGAN at 20%
conversion completion is 1.1k; The pixel loss increases to
4.8k when the conversion is fully completed. As shown in
Figure 14 (b), when processing virtual images, the watchdog
generative adversarial network has a pixel loss of 1.9k at 20%
conversion completion; The pixel loss of GigaGAN increases
to 6.7k when the conversion is fully completed. The pixel
loss of the instance normalization network at 20% conver-
sion completion is 8.0k; The pixel loss of DualStyleGAN
increases to 8.5k when the conversion is fully completed.
The OGAN at 20% conversion completion was 0.7k. The
pixel loss increased to 3.5k when the conversion was fully
completed. The research method can better maintain pixel
integrity during image style conversion. It is related to the
extended convolution used in the model, which improves the
resolution of feature extractionwithout increasing the number
of parameters. The conversion results of the two example
images are analyzed, as shown in Figure 15.
In Figure 15, different methods successfully generated the

image style conversion results. In Figure 15 (a), when con-
verting real images, the Maillard style was used as the target
style. The conversion results of the WGAN had significant
deficiencies overall. There was rich noise and high color
saturation in the image. The conversion results of the INN
exhibited over-exposure in the bright areas, with much noise
in the highlight area. The conversion result of OGAN was
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FIGURE 14. Pixel loss.

quite similar to the Maillard style, without too much noise.
In Figure 15 (b), the Dunhuang mural style was used as the
target style when converting virtual images. The conversion
results of adversarial networks generated by Watchdog had
low image brightness and lacked dark details. For the INN,
the contrast of the conversion results was too low, resulting in
an overall explosion. The conversion results of OGAN were
quite similar to the style of Dunhuang murals, maintaining
good picture quality.

C. DISCUSSION
In the field of image style conversion, maintaining
high-quality images is a key indicator of model performance.
The optimized generative adversarial network model pre-
sented in this study has demonstrated excellent image quality
retention ability in multiple tests. The OGAN model uses an
innovative twin and dual discriminator architecture, which

FIGURE 15. Analysis of conversion results.

significantly improves the convergence speed and training
efficiency of the model. In the WikiArt dataset, even if the
number of input style types is increased to 18, the training
time of the OGAN model can still be controlled under
97 seconds, which is particularly significant compared to the
traditional single generator model.

The expansive convolution technique is introduced into the
subsampling part of the generator in OGAN model, which
enhances the ability of the model to capture image details
by enlarging the receptive field of the convolution kernel.
In image style conversion, the application of this technique
can keep the image style loss of 10Mpixels below 20.9, which
highlights the advantages of the model in processing high-
resolution images. By introducing attention mechanisms into
the model, OGAN models can more accurately identify
and emphasize key features of images while suppressing
unimportant information. The application of this mechanism
enables the model to process 2160p high definition images
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with an average running time of only 272 milliseconds, while
maintaining image quality, which is of great value in real-time
application scenarios.

OGAN model adopts the combination of counter loss,
cyclic consistent loss and edge consistent loss, which not only
ensures the reversibility of the style conversion process, but
also ensures the high consistency of the edge information of
the style conversion image with the original image. In the test
of image style loss, the OGAN model’s style loss value can
be maintained at a low level even in the image processing of
10M pixels, which highlights the importance of loss function
design in maintaining image quality. In the training process of
OGAN model, Adam optimizer and learning rate attenuation
strategy are adopted, and the optimization of these strategies
makes the model parameters converge to the optimal state
faster. In the experiment, the F1 value of OGAN model can
reach more than 95.0 after 250 iterations, which shows the
model’s efficient performance in style conversion accuracy.
It shows that the research method can realize the effective
maintenance of image quality through a series of innovative
technologies.

V. CONCLUSION
Amethod based onGANwas proposed to improve the quality
of image style conversion. In the process, extended convo-
lution was used in the down-sampling of the generator, the
differential first-order deflection was used to calculate the
image gradient, and the attention mechanism was inserted in
the down-sampling.

The experimental results showed that the research method
achieved a PSNR of 34.1dB when the bit rate reached
1000kb/s. The F1 value of the research method remained
above 95.0 when the number of iterations increased to 250.
In the average running time analysis of image style conver-
sion, the research method had a maximum running time of
272ms when processing real image clarity of 2160p. The
memory usage of the research method fluctuated between
26% and 37% during operation. In the analysis of conver-
sion results, the conversion results had less noise and more
accurate style types.

This indicates that the research method can effectively
convert image styles and has higher conversion efficiency.
However, the study only tests a single non-continuous image,
which cannot yet determine the consistency and continuity
of image style conversion in continuous frame video images.
Subsequent research will expand the testing scope and opti-
mize the method.
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