
Received 7 August 2024, accepted 29 August 2024, date of publication 2 September 2024, date of current version 10 September 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3453249

Multi-Vehicle Tracking and Counting Framework
in Average Daily Traffic Survey Using RT-DETR
and ByteTrack
YUSUF GLADIENSYAH BIHANDA , CHASTINE FATICHAH , (Member, IEEE),
AND ANNY YUNIARTI , (Member, IEEE)
Department of Informatics, Institut Teknologi Sepuluh Nopember, Surabaya 60117, Indonesia

Corresponding author: Chastine Fatichah (chastine@if.its.ac.id)

This work was supported in part by the Ministry of Education, Culture, Research, and Technology Republic of Indonesia through the
Penelitian Terapan Scheme under Grant 55/IT2/T/HK.00.01/2023; and in part by the patent under Grant S00202402259.

ABSTRACT The average daily traffic survey is essential for repairing and maintaining road sections.
This method is generally conducted using a semi-manual approach that counts vehicles using CCTV. This
approach is not effective or efficient because of the potential for human error. This paper have three
contributions as follows. First, this paper proposes a framework by applying the RT-DETR architecture
for vehicle detection and ByteTrack for vehicle tracking and counting in an average daily traffic survey.
Second, this paper proposes a multi-vehicle voting algorithm to filter false identification of the same vehicle
during the tracking process prior to vehicle counting. Third, to demonstrate the robustness of the proposed
frameworks, we evaluated its performance using seven CCTV camera videos taken from diverse scenes
during the day and night. RT-DETR Resnet 101, which is trained in an average daily traffic survey dataset,
outperforms all object detection architectures with mAP@50 value of 0.992 and mAP@50-95 value of
0.891. RT-DETR Resnet101 also achieve best F1-score among all object detectors with value of 0.91. This
framework using a combination of RT-DETR andByteTrack also succeeded in counting vehicleswith various
video backgrounds, with an average counting accuracy value above 83% for all conditions. We compare the
effect of using a multi-vehicle voting algorithm with and without showed that counting accuracy increased
for each combination with an average increase value of 0.78. RT-DETR also has best performance compared
to another object detection methods in detecting vehicles experiencing motion blur, especially in nighttime
video scenes. In addition, ByteTrack roles in tracking vehicle objects show its robustness to handle occlusion
and vehicle ID switch.

INDEX TERMS Multi-vehicle tracking counting framework, average daily traffic survey, RT-DETR,
ByteTrack, voting algorithm.

I. INTRODUCTION
Roads are vital for human life because they provide
access to economic growth and mobility from one place to
another. However, as time progresses, roads require regular
maintenance and repairs to be optimally used. To determine
how repairs and maintenance are performed, several aspects
must be considered, starting from the condition of the road
itself to the surrounding environment. An average daily traffic
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survey can be used to choose which road sections need repair
and maintenance. [1].

This survey was conducted by installing one or several
Closed-circuit Television (CCTV) cameras next to a road
section for a semi-manual approach. Different from the
annual average daily traffic [2] survey, the purpose of the
average daily traffic survey was to determine how many
vehicles passed a road section during 40 hours instead of
365 days. The installed CCTV is monitored regularly to avoid
adverse events. Twelve types of vehicles must be identified
before counting. These vehicles are classified on the basis of
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the number of wheel axles and their shape. After 40 hours of
CCTV camera recording, the CCTV camera video was taken
for manual counting [3]. However, based on the observation
results, this survey semi-manual approach is not effective or
efficient. Human error factor, such as fatigue can lead to error
in manual vehicle identification and counting.

In addition, some approaches have proposed a vehicle
counting framework as part of the vehicle counting task.
These approaches use a road region of interest [4], a virtual
line [5], [6], [7], [8], a virtual detection zone [9], [10],
[11], [12], or combination of virtual line and virtual
detection zone [13] to count vehicles. However, these existing
aproaches use CCTV camera positions facing the front or
rear of the vehicle. Hence, it is difficult to identify number
of wheel axles on the vehicle. Existing approaches also
focus on freeway settings, whereas the average daily traffic
survey was conducted in a non-freeway setting. Another
approaches propose a vehicle counting framework for an
average daily traffic survey using inception model [14] and
in edge computing device [15]. These studies count vehicles
which appear in each frame; therefore, the same vehicle is
counted as many times as the number of occurences in the
set of video frames. However, this approach is constrained
by partial or complete object occlusion. This approach also
does not provide mitigation for matching similar vehicle
when vehicle disappear then then reappear in several frame
later.

Based on the abovementioned problem, existing studies
have not solved the problems associated to average daily
traffic survey which CCTV camera positions is facing front or
rear view of road, not the side of the road according to average
daily traffic survey manner. In addition, most of the datasets
used for count and track vehicles did not represent vehicle
objects in average daily traffic survey manner, especially
in Indonesia. Existing approaches relevant to average daily
traffic survey also did not address the problems, namely,
repeated counting of same vehicles.

In this article, the contributions are as follows:
1) We introduce a multi-vehicle tracking and counting

framework for the side-view camera position of
CCTV video in a non-freeway setting. We apply RT-
DETR [16] architecture to identify vehicles and Byte-
Track [17] to track and count vehicles in multi-object
manner. The application of RT-DETR architecture in
vehicle tracking and counting framework is proven to
identify vehicle in video conditions during day and
night video scenes.

2) To ease the vehicle counting process and eliminate bias
in vehicle class results, we propose a newmulti-vehicle
voting algorithm to determine the dominant class
appearing in each tracked vehicle. Inspired from [8],
this multi-vehicle voting algorithm triggered only a
vehicle passing through a vehicle counting line. Based
on our ablation study, our proposed multi-vehicle
counting algorithm increased the vehicle counting
accuracy to an average value of 0.78.

3) To test the robustness of our vehicle counting frame-
work, we tested six CCTV camera videos taken in
various settings during the day and night.We also tested
this proposed framework in one extra video scenes
which contains rare vehicle classes. Our experimental
results demonstrate the robustness of the RT-DETR
and ByteTrack method combinations compared with
other method combinations either in optimal condition
or non-optimal condition such as motion blur and
occlusion.

II. RELATED WORKS
Vehicle detection, tracking, and counting are essential tasks,
especially for solving problems in road maintenance and
transportation systems. This section provides an overview of
vehicle detection, tracking, and counting methods.

A. VEHICLE DETECTION
The application of deep learning to vehicle detection
tasks has given rise to various studies that use state-
of-the-art deep learning architectures. Naufal et al. [18]
proposed a method for detecting empty parking spaces using
Mask RCNN [19] architecture on CCTV camera videos.
Because the video background experiences varying light
conditions, an exposure fusion framework was also proposed
to combine contrast result and video exposure to enhance
light conditions. Then Asy’ari [20] applied image stitching
method by using YOLOv5 [21] to detect empty parking
spaces on two overlapping CCTV cameras. Each feature
in the two videos is matched based on the basis of the
object features, and stitching is then performed. Luo et al.
apply image enhancement to reduce the impact of varying
illumination using the Faster R-CNN [22] architecture. This
architecture was modified to improve detection performance
in multiscale and occluded objects using feature enrichment
and architecture search in its backbone [23]. Yang et al. [7]
add attention mechanism in SSD [24] to combine multiscale
features and expand the receptive areas of shallow features.

Meanwhile, transformer-based architecture, namelyDetec-
tion Transformer (DETR) [25] shows promising results when
compared with convolution-based architecture in vehicle
detection tasks [26]. Thanks to its self-attention mechanism,
DETR [25] predicts fixed number of bounding boxes
by pay attention to different parts of images. Then, the
Hungarian Algorithm [27] is used to associate predicted
bounding boxes with ground-truth bounding boxes. However,
this architecture needs a long training epoch to converge
compared with other architectures. Another problem is that
it has poor performance in small object detection because
of the limitation of attention modules in processing image
feature maps.

Zhu et al. [28] tries to overcome these problems
with deformable attention module, which assigns only
small fixed number of keys for each query. This strat-
egy significantly reduces complexity and maintains spatial
resolution for small object detection based on its experiment.
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Zhang et al. [29] modify cross attention module to ease the
matching process between object queries and target features.
this modification makes thr architecture converge faster than
vanilla version of DETR. In the vehicle detection task,
Deshmukh et al. [30] used Swin Transfomer [31] to solve
the multi-scale feature extraction problem while maintaining
its performance. However, the transformer-based architecture
still struggles with its speed when measured using frame-per-
second (FPS) metrics.

To overcome high computational and memory complexity
while maintaining its performance, Lv et al. [16] proposed
Real-Time Detection Transformer (RT-DETR). RT-DETR
uses an efficient hybrid encoder to processmultiscale features
and IoU-aware query selection to overcome the incosistent
distribution of classification score and location confidence.
Experimental results showed that RT-DETR outperfoms real-
time and end-to-end object detector in terms of its average
precision and FPS measurement. Meanwhile, YOLOv9 [32]
proposed concept of programable gradient information in the
YOLO architecture to solve the deep supervision problem in
object detection tasks. Inference results on MS COCO [33]
prove that YOLOv9 beats RT-DETR in terms of accuracy
with fewer parameters.Therefore, we interested in comparing
YOLOv9 with RT-DETR in our proposed vehicle counting
framework, specifically in the vehicle detection phase.

B. VEHICLE TRACKING
The object tracking task is one of the most important parts
of the vehicle calculation framework that assist the vehicle
calculation process in a video frame. One of the object-
tracking approaches is tracking by detection (TBD). TBD
relies heavily on the performance of the object detection
model because the performance of the model determines
the result of the object search. Early examples of this
approach are SORT [34] and Deep-SORT [34]. SORT is a
pioneering TBD approach that utilizes Kalman Filter [35]
in predicting the location of objects in the next frame. This
method also uses Hungarian Matching [27] Algorithm to
perform data association on tracked objects. However, SORT
has the disadvantage of frequent ID switch of same object
and is not resistant to occlusion. Furthermore, Deep-SORT
is proposed by introducing a deep association metric to
handle the weaknesses in SORT. SORT and Deep-SORT-
based approaches have also been applied to vehicle tracking
tasks [13], [36], [37]. Another method that uses the TBD
approach is ByteTrack [17] by utilizing all bounding box
detection results, both high and low values. This method
consists of two stages to perform object matching on
existing frames. This two-stage matching process allows to
minimize occlusion and also differences in object size due
to objects position that move away or approach the camera.
ByteTrack has also been implemented in vehicle tracking
tasks with different detection object models [26]. Based
on the explanation above, our proposed vehicle calculation
framework applies ByteTrack to help calculate vehicles.

C. VEHICLE COUNTING FRAMEWORK
Researchers have proposed several methods to fulfil the
requirements for vehicle counting task as part of vehicle
counting framework in Intelligent Transportation System
(ITS). This methods are divided into four types based on how
to count vehicles, namely region of interest mehod, virtual
line method, virtual zone method, and object appearance
method. Region of interest method mark some parts of video
to count vehicles with segmentation algorithm. This approach
can be used to count vehicle on the road so vehicle outside the
road will not counted as vehicle [4].
Virtual line method define single or multiple line in

frame to count vehicles. This line can be drawn vertically
or horizontally, depending on the conditions in a frame.
Song et al. [5] proposed vehicle counting system using virtual
line method which use ORB algorithm [38] to track and
count vehicles from YOLOv3 [39] detection results. This
system also applies feature extraction on freeways to limit
area for counting vehicles. Liu et al. [6] aplies weak camera
calibration before track and count process to improve vehicle
counting in each lane of road. Different from above methods,
Yang et al. [7] define state-based vehicle counting with
two virtual line to prevent overtracking and overdetection.
Azimjonov et al. [8] define virtual line manually before
perform vehicle counting system. This system also applies
shake filter to calibrate hanging camera and voting algorithm
to determine dominant vehicle class under same ID in
consecutive frames.

Besides, virtual detection method used polygon area
to track and count vehicle. This method can be drawn
manually by user input or automatically when conduct
vehicle counting system. Virtual detection method can be
used to track and count vehicles from its tracjectory in each
lane [9]. Lin et al. [10] used combination of virtual zone
and Gaussian Mixture Model (GMM) to conduct vehicle
counting. Neupane et al. [11] add transfer learning using
different dataset to solve domain shift problem in vehicle
counting. Virtual zone defined in each lane of a road to
track and count vehicle. Meanwhile, tracking algorithm like
SORT [34] applies in virtual counting zone to solve multiple
ID switch in intersections [12]. Another research tries to
combine virtual zone and virtual line to count vehicle using
SORT [34] and DeepSORT [34] tracking algorithm and
YOLOv4 [40] object detector [13]. Virtual zone used to help
track vehicle in each lane, while virtual line assign vehicle
counting task.

In the meantime, object appearance method carried out to
count vehicle based on tracking algorithm. Using Kalman
Filter and YOLOv5 detector, this method can count vehicles
in occlusion condition [41]. Then, fisheye camera also
used to count vehicles based on the virtual zone that the
vehicle passes thorugh using YOLOv7 [42] and SORT [34]
at road intersections [43]. Vehicle counting using virtual
detection zone also conducted at road intersections using PP-
YOLO [44] and DeepSORT [34] tracking algorithm [45].
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Vehicle counting method also used to set traffic light green
light time using YOLOv3 [39] and DeepSORT tracking
algorithm [34] and can give reccomendation of green light
duration in intersection [46]. Another approach use YOLOv6
[47] with custom backbone to count vehicle in congestion to
solve traffic management problem [48].
However, none of the approaches can solve the vehicle

counting task in an average daily traffic survey, either using
virtual detection method or virtual line method. The average
daily traffic survey itself must conducted at straight road
section with no intersection and also conducted in non-
freeway setting. In addition, all vehicle types used in the
abovemetioned approaches are not as same as the average
daily traffic survey vehicles, especially the vehicles used in
Indonesia.

To solve those problems, Rifai et al. [14] used Incep-
tion [49] model to count vehicle as an average daily traffic
survey manner. Another approach used edge computing and
combination of SSD [24] with Mobilenetv2 [50] to count
vehicle [15]. Another approach attempted to count vehicle
in the same manner as average daily traffic survey using
YOLOv8 [51] and virtual detection zones in each road
lane [52]. However, none of approaches applies occlusion
handling and vehicle counting conducted in every frame so
same vehicle would be count as many as it appearance in
entire video frames. Thus, those approaches lack a tracking
algorithm to help track and count a vehicle based on real-time
conditions, not based on the number of appearances in entire
frames. In addition, those approaches only count vehicles
based on large classes, such as cars, motorcycles, busses, and
trucks, not vehicle types according to the average daily traffic
survey manner.

III. PROPOSED FRAMEWORK
Figure 1 shows how the proposed multi-vehicle tracking
and counting framework works. This illustration contains
three major phases, which will be discussed in separate
subsections: a multi-vehicle detection phase, a multi-vehicle
tracking phase, and a new multi-vehicle voting algorithm
which integrated into the multi-vehicle counting phase.

A. MULTI-VEHICLE DETECTION
Before performing the multi-vehicle detection phase, a vehi-
clemodel first needs to be generated as illustrated by Figure 2.
After going through the training phase with RT-DETR, the
final result of training phase is a RT-DETR model that will
be used in multi-vehicle detection phase.

The multi-vehicle detection phase starts with obtained
CCTV video from a road section was split into a collection
of video frames. This collection was then detected by an
object detector. RT-DETR was then used as object detector
because of its robustness in many aspects. The frame is
detected by RT-DETR and produces a set of bounding
boxes, class predictions, and prediction scores of the objects.
Figure 3 illustrate RT-DETR architecture based on its original

FIGURE 1. Illustration of the proposed multi-vehicle tracking and
counting framework.

FIGURE 2. Illustration of vehicle model generation phase.

paper [16]. RT-DETR consists of a ResNet [53] backbone,
an encoder, and a transformer decoder.

First, an image is fed into the Resnet backbone and
the extracted output features of the last three stages of
backbone (denoted as S3, S4, S5) are used as input to the
efficient hybrid encoder. This encoder plays an important role
in transforming features from backbone. Intrascale feature
interaction (AIFI) reduces computational redundacy, which
only performs intrascale interaction of backbone stage S5.
Then, the Cross-scale Feature-fusion (CCFF) module based
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FIGURE 3. RT-DETR architecture adopted from its original paper [16].

FIGURE 4. RT-DETR fusion block from its original paper [16].

on CNN inserts several fusion blocks into the fusion path.
Figure 4 illustrate fusion block inside this module. Fusion
block tasked to fuse adjancent feature into a new feature.

The Hybrid encoder produces an output sequence that
is taken into Uncertainty-minimal Query Selection. This
module selects a fixed number of image features as input
of the transformer decoder. Finally, a transformer decoder
with auxiliary prediction heads generates bounding boxes,
confidence scores, and class predictions by iteratively
optimizing its object queries.

B. MULTI-VEHICLE TRACKING
After obtaining a set of object bounding boxes, scores,
and class predictions from the object detection phase, this
information is entered into the tracking module to track all
objects in the entire frame. Figure 5 shows how tracking
module works in the proposed framework using ByteTrack
inspired by the original paper pseudocode [17] and ByteTrack
illustration from [54]. Firstly, a set of object information from
each frame is divided into two types based on the bounding
box confidence score. If the confidence score is higher than
the threshold, this bounding box is categorized as a high
confidence score bounding box; otherwise, it is categorized
as a low confidence score bounding box.

Kalman filter is adopted to predict new location of each
object track in current frame. First data association was also
performed between high confidence score bounding box and
all tracks in each frame (whether active or lost tracks). This
association computes similarity between high confidence
score bounding box and predicted tracks from kalman filter
using IoU distance. For matched tracks will be updated using
kalman filter and taken into list of active tracks. Unmatched
measurement from first association treated as initialization of
new track and taken into list of active tracks. Then, unmatched
tracks from the first association go to second data association,
which computes the similarity between unmatched tracks
from first association and low confidence score of bounding
box. Matched track from second data association updated
using kalman filter and taken into list of active tracks.

While unmatched tracks from second data association
taken into list of lost tracks. After n number of consecutives
frame, this list of lost tracks is removed. Finally, list of
active tracks produces output tracks that contain information
about object bounding box, object ID, and object label. This
information is fed as input of a new multi-vehicle voting
algorithm to determine dominant object class label.

C. MULTI-VEHICLE COUNTING
All tracked vehicles must pass through a counting line to
be listed in vehicles counting result. The line is positioned
vertically at the middle of the frame. The purpose of this
counting line is to identify which vehicle ID centroid that
passes through the counting line. If one or more vehicles
pass through the counting line, the framework determines the
location of the intersection point between the vehicle centroid
tracking line and the counting line. If the location of this
intersection point is obtained, the vehicle is moved to the
multi-vehicle voting algorithm tho determine the dominant
class of the vehicle. It is noteworthy that tracking algorithm
must maintain their tracking line from each vehicle ID to be
counted by the proposed framework.

D. MULTI-VEHICLE VOTING ALGORITHM
Inspired from [8], we propose a new multi-vehicle voting
algorithm to determine the dominant class of vehicles
which passing through the counting line. Different from [8]
approach which initiates voting algorithm after 30 consec-
utive frames, the proposed multi-vehicle voting algorithm
initiates when one or more vehicles pass through the counting
line.

Multi-vehicle voting algorithm is necessary because an
object detector may produce incorrect detection results in
vehicle class prediction. Sometimes, object detector produce
different vehicle class prediction when an object appear
in video frames. First, an object is detected as the light
truck class, but when near the counting line, it detected
as the medium truck class. To the best of our knowledge,
previous approaches of vehicle counting based on a virtual
counting line did not mention about filtering dominant
objects from entire video frames, except the approach
from [8]. Algorithm 1 shown pseudo-code of proposed multi-
vehicle voting algorithm.

When one or more objects pass through the counting
line, the framework retrieves class prediction information of
objects that pass through the counting line based on object
ID. This information is stored in a temporary list, and the
list searches for most class prediction results. After obtaining
the most class prediction result based on object ID, object ID
information was updated with new class prediction based on
multi-vehicle voting algorithm result and counted as vehicle.

At the end of the video frame, the framework will produce
a file in pdf format that contains all counting results from
each vehicle class in the video that has been processed before.
In addition to counting results, this file contains timestamps
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FIGURE 5. ByteTrack tracking algorithm adopted from [17] and [54].

Algorithm 1 Pseudocode of Multi-Vehicle Voting
Algorithm for Filter Dominant Vehicle Class Label
for Vehicle Pass-Through Counting Line
Input: Vehicle object info array Ol , vehicle object id

intersect Od i
Output: Dominant class of vehicle object Cd
begin

temp← [];
for key = 0 and val = 0 to items of 0l do

for i = 0 to len of val do
if Ol[i][2] = Od i then

temp← temp ∪ Ol[i][3]
end

end
end
search max value of temp;
Cd ← max value of temp;

end

of the counting process and FPS results for every video that
has been processed before.

IV. EXPERIMENTS AND RESULTS
In this section, the average daily traffic survey dataset used
in this study is briefly explained, and the experiment settings
for training the object detection model and hyperparameters

used in the tracking module are described. This section also
describes the evaluation results using various object detector
in the vehicle detection task and vehicle counting results
each video scenario. Therefore, this section is divided into
sub-sections average daily traffic survey dataset, experiment
settings, vehicle detection results, and vehicle tracking and
counting results.

A. AVERAGE DAILY TRAFFIC SURVEY DATASET
This study used a dataset of average daily traffic survey [3]
which contains 12 vehicle classes. The division of these
vehicle classes is based on vehicle shape and number of wheel
axles. Figure 6 illustrate of each vehicle class in this dataset.
It is worth noting that 6a-light truck class is slightly different
with 6b-medium truck. The difference between these two
classes is located in its rear wheel shape, which if we look
closely 6a-light truck has only one pair rear wheel axle while
6b-medium truck has two pair rear wheel axle. This dataset
was obtained from various video of a CCTV camera placed
on the side of a road section and taken both during the day
and night.

All videos recorded in this dataset were placed only in
a relatively straight road because the average daily survey
focused only on one section of road. This setup also explains
that all videos were recorded not at intersection or on
highways. The background condition of the road were limited
to only during daytime and nighttime condition using a
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FIGURE 6. Example of each vehicle class in proposed framework.

TABLE 1. Number of objects in dataset of average daily traffic survey.

CCTV camera installed on a straight pole. This dataset
not included extreme condition such as extreme weather
condition or vehicle backlight which, difficult to identify the
vehicle that passes through the videos.

These videos were divided into frames, and the division
result generated 46,610 frames. These generated frames then
annotated on the basis of their vehicle class. Table 1 described
annotation result from each class of dataset in general.
After dataset annotation phase, this dataset was divided into
training set and evaluation set with percentage of 80% and
20%, respectively.

B. EXPERIMENT SETTINGS
This experiment was conducted with a single NVIDIA
GeForce RTX 4070 12GB GPU graphics, an Intel Core
I5-13600K CPU, and 32 GB RAM. This experiment used
three object detection models namely RT-DETR [16],
YOLOX [55], andYOLOv9 [32]. To train the object detection
model, this experiment used 36 epochs, 8 batch size, and
video frame resized to 640*640. Other hyperparameters,
including the augmentation setups, follow default recipe from
the original paper. For the tracking module, this experiment
used two tracking algorithms namely ByteTrack [17] and
SORT [34].

FIGURE 7. Video scenes used for testing the proposed framework.

Similar to the object detection model, this tracking
experiment follows the default recipe of hyperparameters
from each original paper. Some modification of the tracking
algorithm need to be conducted specifically for considering
class prediction results from the object detection model.
This experiment used 0.7 as score threshold of bounding
box as the input of tracking algorithm. To count vehicles,
this experiment used six videos taken from various scenes
and different locations. There are four day condition videos
and two night conditions videos. For the night video, this
experiment used video scenes with sufficient light. It is worth
noting that this experiment also conducted in video scenes
with various camera positions but was still able to monitor
wheel axles from each vehicle. In addition, this experiment
was conducted to process 3000 video frames from each video.
Figure 7 shows video scenes used in this experiment. We also
conducted manual vehicle counting as ground-truth for the
proposed framework.

However, we found that these six videos lacks of small
bus, big bus, and double truck vehicle class. Thus, we add an
extra video scene to fulfil ground-truth gap. Figure 8 shows
extra video scene use in this experiment. In addition, Table 2
shows actual counting results from each videos used in this
experiment. These seven videos were different from those
used as the average daily traffic survey dataset.

C. VEHICLE DETECTION RESULT
Table 3 shows comparison of the object detection models in
terms of mean average precision (mAP). Result shows that
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TABLE 2. Actual counting results from video scenes.

FIGURE 8. Extra video scene.

TABLE 3. Mean Average Precision (mAP) from each object detection
model.

RT-DETR ResNet101 outperfoms all variants of YOLOX
and YOLOv9 with an mAP@50-95 score 0.891. RT-DETR
for all variants also outperforms all variants of YOLOX and
YOLOv9 with an mAP@50 score of 0.992. In addition,
wel also calculated F1 score for all object detectors,
and the results are shown in Table 4. Result shows that
RT-DETR Resnet101 outperforms all object detectors in
terms of its Mean Average Recall (mAR) and F1-Score, with
scores of 0.930 and 0.91, respectively. From this point, each
best model type from each object detection model taken
to conduct an experiment in tracking and counting of the
proposed framework. Specifically, the tracking and counting
experiments used RT-DETR with ResNet101 backbone
version, YOLOX-x version, and YOLOv9-e version.

We also conduct analysis of each best models in each
vehicle class to produce average precision result. Table 5
shows each vehicle class average precision results from each
best models. Result shows that YOLOv9-e outperforms all

TABLE 4. F1-score of each object detector.

TABLE 5. Average Precision each vehicle class from the best object
detection model.

models in pickup, bus, and truck classes, while RT-DETR
Resnet101 outperfoms all models in private vehicle classes
such as motorcycle, car, passenger car, and no motor vehicle
classes. This result also shows that RT-DETR Resnet101 has
good performance if the number of objects in dataset plenty
enough, otherwise the result will degraded.

D. VEHICLE TRACKING AND COUNTING RESULT
First, every bounding box was produced by each object
detector rescaled to the original frame size. Information
about the object is fed to the tracking module. Table 6
described counting results from various combination object
detection models and tracking algorithms in addition to the
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combination of RT-DETR with ByteTrack. To show the
robustness of each combination, each counting result was
compared with the actual counting result from table 2
to produce accuracy percentage with equation 1 adopted
from [8], where Acc is the accuracy of counting result, ES
is the object counted by proposed framework, and GT is
the object counting ground-truth. It is worth noting that this
work used equation 1 because sometimes estimated counting
result may sometimes exceed the vehicle counting ground
truth. In another case, the estimated counting result produces
a value of zero, but ground-truth value is not zero.

Acc(GT ,ES) =


100 if GT = ES

(
ES
GT

)× 100 if GT > ES

(
min(GT ,ES)
max(GT ,ES)

)× 100 if GT < ES

(1)

After the accuracy of each video and each combination
of detector and tracking acquired, the average accuracy is
determined using a simple average calculation represented in
equation 2, where Avg is the accuracy of the entire class from
each video and each combination of detector and tracker, and
numclasses is the total number of vehicle classes, which by
default is 12.

Avg =

∑
Acc

numclasses
(2)

Then, each accuracy and average accuracy result plotted in
table 7.

V. DISCUSSION
To provide a brief insight from the proposed framework test
videos as shown in Figure 7 and from an extra video as
shown in Figure 8, each video case can be listed as follows.
Video 1 is located in a non-crowded area with two-lane roads.
The vehicle that pass by in this video are quite varied and
are dominated by motorcycle and car classes. Some vehicles
belonging to the pickup class can be seen in this video. The
trucks class in the video is dominated by light and medium
trucks. Video 2 captures the relatively slow vehicle traffic due
to the small road and the slow speed of truck in video. Video
3 has almost the same conditions as video 1, except that in
this video, the heavy truck class can be found occasionally
passing through the road. In video 4, there is a slight challenge
in that the visibility of the camera is obstructed by other
objects; therefore, the proposed framework cannot detect
vehicles in a long-distance manner. Video 5 is set on a busy
road with truck classes often found here. However, in this
video, the passing vehicles experience motion blur because of
high speed, which is challenging for the proposed framework.
This also happens in video 6, although the road conditions
in video 6 are relatively not crowd than in video 5. Finally,
video 7 had the same settings as video 5. The difference is
video 7 was recorded in the daytime setting while video 5 was
recorded in the nightime setting. In addition, all vehicles in

video 7 did not experience motion blur, as observed in video
5 and 6. Thus, it can be concluded that motion blur occurs
only in nighttime scenes.

Based on the experimental results, CCTV camera video
must be clear and has sufficient light to track and count
vehicles, especially during night conditions. Camera CCTV
position also plays an important role in the robustness of
the proposed framework, such as the height of camera from
the road section until the field of view. However, CCTV
camera sometimes experience object motion blur caused by
the velocity of object, especially in nighttime video scene.
This phenomenon leads to RT-DETR ResNet 101 rarely
failed to identify objects. Compared with YOLOX-x and
YOLOv9-e,RT-DETR ResNet 101 has better performance in
the detection of motion blur objects.

Figure 9 shows the robustness of RT-DETR ResNet 101 in
the detection of motion blur objects. It can be seen that RT-
DETRwith ResNet 101 as the backbone can detect accurately
three objects in the scene, while YOLOX-x cannot detect
white car object and YOLOv9-e failed to detect all objects in
the scene. RT-DETR ResNet 101 also can detect small object
correctly even though it does not provide stable bounding
box location during frame changes. However, one-to-one
assignment in transformer architecture affects RT-DETR
ResNet 101 performancee speed in processing each frame
of video so RT-DETR ResNet 101 not suitable for real-time
video object detection task.

From the average accuracy result for each variant, both
RT-DETR ResNet 101 and YOLOX-x have the best perfor-
mance in some videos. However, YOLOX-x suffers from a
combination of crowded fast moving objects, which leads to
degraded performance in predicting bounding-box location,
as shown in video 5. While RT-DETR ResNet 101 has
better performance when crowded fast moving objects appear
in the scene. Then, RT-DETR ResNet 101 and ByteTrack
combination is more resistant to ID switch than other variants
because ByteTrack employs a two-stage association method
that is resistant to short-term occlusion. While RT-DETR
ResNet 101 give more stable detection in each frame, it can
improve ByteTrack tracking robustness.

YOLOv9-e is not sufficiently stable in detecting objects
in all videos scenes, and this phenomenon leads to degraded
performance of the tracking module. Another disadvantage
of YOLOv9-e is that it often experiencing misprediction in
clear objects. Figure 10 shows object detector performance in
daytime scenes, which is the best condition for experiment.
Although YOLOX-x has the best FPS among all object
detectors, it is sometimes not resistant to ID switching
when an object experiences short-term occlusion. Another
weakness of YOLOX is that it sometimes gives false class
prediction for some objects. Figure 11 shows comparison
between all object detectors with ByteTrack as the tracking
module when experiencing short-term occlusion. It can be
seen that when an object motorcycle experiences ID switch in
both YOLOX-x and YOLOv9-e, while in RT-DETR ResNet
101 it can maintain the same ID after short-term occlusion.
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FIGURE 9. Comparison of object detectors when experiencing motion blur.

FIGURE 10. Comparison of object detector performance in daytime video scene.

FIGURE 11. Comparison of ByteTrack with different object detector in short-term occlusion.

For the tracking module, ByteTrack clearly outperfoms
SORT in terms of tracking robustness. While ByteTrack
can maintain the same ID when the object detector is not
sufficiently enough in predicting object location, SORT
performance would be degraded when this phenomenon
occurs. This is because SORT does not rely on appearance
feature but only on the association matrix. Thanks to the Byte
algorithm, ByteTrack can produce fewer IDs and resistant to
short-term occlusion compared to SORT.

Besides ByteTrack robustness against SORT in constantly
tracking object and when handling object short-term occlu-
sion, there are several limitations from ByteTrack, which are

described as follows: (1) When objects experience motion
blur, sometimes ByteTrack experiences ID switch for the
same object due to blurred appearance of objects. (2) While
its robustness proved in short-term occlusion, sometimes
ByteTrack gives a new ID to same object when experiencing
long-term occlusion, this phenomenon depicted in Figure 12.

VI. ABLATION ANALYSIS
We compared the robustness of each detector and tracking
algorithm combination on vehicle counting accuracy based
on Table 7 results to obtain average results from all video
scenes. Table 8 shows counting accuracy results of each
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FIGURE 12. Long-term occlusion problem in video scene. Condition before the object car experiencing long-term occlusion (left), when long-term
occlusion occurs (middle), and ID change after long-term occlusion (right).

TABLE 8. Counting accuracy results of each combination from all video
scenes including extra video scene.

combination from all video scenes including an extra video.
From table 8 can be concluded that ByteTrack outperforms
SORT in all video scenes including extra video scene for
the tracking module with an average accuracy above 83%.
Meanwhile, YOLOX-x outperforms all object detector in
terms of frame-per-second (FPS) in all video scenes including
extra video scene. Self-attention inside RT-DETR encoder
and decoder makes RT-DETR has the lowest FPS compared
to other detectors because self-attention itself has a huge
computational cost compared to convolution.

The counting accuracy of each video from all combinations
of detectors and trackers is shown in Table 9. It can be
concluded that video 2 (Day) has highest counting accuracy
among all video scenes. Video 2 (Day) had non-crowded
traffic, and also occlusion rarely occured in this video
scene. Occlusion occurs in this scene categorized as short-
term occlusion; thus, the TBD approach can handle this
phenomenon with good results.

To demonstrate the impact of using the multi-vehicle
voting algorithm, we compared the effects of enabling and
obstructing the multi-vehicle voting algorithm in terms of
counting accuracy. The proposed framework only uses a
previous neighbor video frame information to determine
vehicle labels for not using multi-vehicle voting algorithm.
The result of this comparison depicted in Table 10. It can
be clearly seen that the addition of multi-vehicle voting
algorithm increase counting accuracy with average value of
0.78. Multi-vehicle voting algorithm also can filter confusion
for vehicle labels decision. Occasionally, objects which first
detected in frame not have same vehicle label compared when
object near counting line. This happen due to object detector
confusion for predicting vehicle object. If object detector not

TABLE 9. Counting accuracy results of each video from all combination of
detectors and trackers.

TABLE 10. The effect of using multi-vehicle voting algorithm.

robust enough, it can lead to false detection when reaching
counting line.

VII. CONCLUSION AND FUTURE WORK
An average daily traffic survey framework for tracking
and counting vehicles was proposed in this work. RT-
DETR with ByteTrack was used as the core process for
tracking and counting vehicle. The experimental result
shows that RT-DETR ResNet 101 combination achieves high
accuracy compared to all object detector variants with an
mAP@50-95 value of 0.891. In addition, RT-DETR ResNet
101 outperfomed all object detectors in terms of the F1-Score
(0.91). The average precision result for each vehicle class
shows that RT-DETR ResNet 101 achieve the best results
in motorcycle, car, passenger car, and non-motor vehicle
classes, while YOLOv9-e achieve best results in pickup, all
bus variant, and all truck variant classes.

This study also demonstrate the effect of a multi-vehicle
voting algorithm that increases counting accuracy by approx-
imately 0.78 compared to using only the first previous
frame information. The result also shows that the proposed
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multi-vehicle voting algorithm can eliminate misclassified
object detector when predicting vehicle object labels.

Despite YOLOX-x variant outperform RT-DETR ResNet
101 in several video scenes and in processing speed measured
by FPS, it can be seen from discussion that RT-DETR
ResNet 101 has better performance in detecting each vehicle,
especially in nighttime scene videos when motion blur
occurs. RT-DETRResNet 101 also detect objects more stable
than YOLOX and YOLOv9, which leads to robustness of
the tracking module in counting vehicles. For the tracking
and counting vehicle task, ByteTrack outperforms SORT
in all video scenes with an average accuracy value above
75%. It can also be seen that ByteTrack is more resistant to
occlusion, which sometimes occurs during the processing of
video frames, than SORT. In addition, SORT rejects some
object bounding box, which leads to ID switch on same object
whether occlusion happen or not.

This work also shows that the proposed multi-vehicle
tracking and counting framework can solve previous problem
in average daily traffic survey, which is still conducted using a
manual or a semi-manual approach. Based on these findings,
we are excited to improve this framework capability in
counting vehicle when long-term occlusion occurs. Another
future work is to improve the speed of RT-DETR ResNet
101 when processing each video frame.
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