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ABSTRACT Solar power is an important renewable resource in our journey towards a sustainable energy
future; however, integrating it with existing grids, especially in dust-prone environments, presents challenges,
such as power reduction and financial impact. Regular performance assessment is crucial for identifying
issues and maximizing energy production. Therefore, the development of an accurate and reliable predictive
model is essential. Such a model should not only predict photovoltaic (PV) system performance but also offer
insights into various factors influencing system efficiency. In this regard, this study presents the development
of an interpretable deep learning model for the assessment of photovoltaic (PV) system performance.
This model focuses on predicting the essential key performance indicator (KPI) performance ratio, which
is crucial for PV system evaluation. A feedforward neural network (FFNN) architecture enhanced by a
univariate linear regression approach was employed to comprehend the coefficient weights for interpretabil-
ity. To optimize the model, various optimizers were explored during model training. Furthermore, Local
Interpretable Model-agnostic Explanations (LIME) were utilized to determine the influence of specific
factors on each prediction made by the FFNN model, enhancing its explainability. The performance of
the model was evaluated using standard metrics, such as R-squared (R2)(0.9965), Mean Absolute Error
(MAE)(0.0036), Mean Squared Error (MSE)(0.0001), and Root Mean Squared Error (RMSE)(0.0078). The
results indicate that the proposed model outperforms conventional deep-learning models, demonstrating
promising accuracy and interpretability for PV system performance assessments. By providing insights into
the factors affecting PV system performance, our model aims to assist operators and stakeholders in making
informed decisions to optimize solar energy utilization.

INDEX TERMS PV system, performance ratio, machine learning, soiling loss, sustainability.

I. INTRODUCTION
The global energy landscape is undergoing a transforma-
tive shift, with increasing emphasis on the sustainability and
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adoption of renewable energy sources [1], [2], [3]. Gov-
ernments, industries, and communities are aligning their
priorities to reduce the carbon footprint and transition towards
cleaner alternatives [4], [5], [6]. Amid this broader move-
ment, solar energy has emerged as a promising, abundant,
and environmentally friendly power sourcesource [8], [9],
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[10]. The primary aim of all PV systems is to effectively con-
vert sunlight into inexpensive power without wasting energy
[10], which is referred to as the PV system efficiency or
performance. Monitoring the functionality of these systems
is crucial for several reasons. First, it ensures that solar
installations operate optimally, thereby maximizing energy
production and economic returns [11], [12]. Through perfor-
mance evaluation, system owners can pinpoint and rectify
issues, such as equipment malfunctions, shading, or soiling,
which may impede efficiency [13], [14]. The performance of
a solar PV power facility is influenced by various weather
conditions such as solar radiation, temperature, wind speed,
precipitation, humidity, dust accumulation, atmospheric pres-
sure [15], [16], [17], [18], and technical parameters such as
inverter loss and PV array losses [19], [20]. The accumulation
of dust and debris on solar panels, referred to as soiling loss,
is a significant factor influencing solar power generation. The
effect of soiling loss on the solar energy output is substantial,
introducing a dynamic that directly affects the performance of
solar installations. Understanding and mitigating these losses
are essential to ensure the consistent and optimal perfor-
mance of solar energy systems [21], [22], [23]. To recognize
the crucial role of photovoltaic (PV) systems in sustainable
energy production, a growing number of researchers have
focused on evaluating their performance. Recent strides in
artificial intelligence (AI) have expanded its applications
across various domains, positioning AI techniques as highly
promising tools for assessing the performance of PV systems.
By leveraging AI algorithms and machine-learning method-
ologies, researchers aim to enhance the efficiency, reliability,
and overall effectiveness of PV systems. By harnessing the
power of AI, these studies seek to optimize energy output,
mitigate operational inefficiencies, and address maintenance
issues, thereby significantly contributing to the advancement
and widespread adoption of renewable energy technologies
[24], [25], [26], [27]. In recent years, several studies have
been conducted globally to enhance the understanding of
the photovoltaic (PV) system performance under varying
environmental conditions. For instance, a study in Kerala,
India [28] investigated a 2 MW system using an Adaptive
Neuro-Fuzzy Inference System (ANFIS), Artificial Neu-
ral Networks (ANN), and Response Surface Methodology
(RSM), focusing on solar irradiance, wind speed, and ambi-
ent temperature. AI tools have been employed to predict
the power generation and performance ratios in solar PV
systems. The ANFIS model exhibited the highest predictive
efficiency, demonstrating low errors and a robust perfor-
mance for power generation prediction. However, limitations
such as high RMSE values and the black-box nature of
the machine learning models were noted. Another study
in Busan, Korea [29], investigated a hybrid model com-
bining a Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) networks to forecast the PV
power generation of a 2.5 kW system based on qualitative and
quantitative evaluation. Qualitative evaluation assessed the

model’s ability to reflect real-world trends and fluctuations,
whereas quantitative evaluation measured statistical accuracy
using metrics such as RMSE, MAE, and MAPE. This study
aimed to address the challenges posed by environmental
factors such as solar radiation, temperature, humidity, cloud
cover, and wind speed, which significantly impact PV power
output. The CNN component classifies weather conditions,
whereas the LSTM component learns the power genera-
tion patterns based on these conditions. However, limitations
such as the non-explainable nature of the hybrid model and
the exclusive focus on power generation without incorpo-
rating other performance metrics, such as the performance
ratio or reference yield, were observed. Another study in
Greece focused on a 100 kWp grid-connected PV park [30]
by applying Artificial Neural Networks (ANNs) to handle
the uncertainties associated with solar radiation. This study
highlighted the capability of the ANN model to decouple
the fluctuating effects of PV panel soiling, which interferes
with the efficiency degradation process. This methodology
aims to quantify degradation effects and serves as a fault
diagnosis tool for long-term analysis. Similarly, a study con-
ducted at King Khalid University in Abha, Saudi Arabia [31]
employed various ML algorithms to predict the power out-
puts of residential PV systems. This study utilized data from
a PV system and weather station and applied a backward
feature elimination technique to identify the most relevant
features for accurate prediction. Among the tested models,
the deep-learning-based model provided the lowest predic-
tion errors with a minimal feature set of approximately seven
features.When the feature set exceeded ten features, the poly-
nomial regression model demonstrated superior prediction
performance with minimal errors. Conversely, the linear
regression model exhibited the highest prediction errors.
A notable study in Jordan [32] utilized an ensemble of opti-
mized and diversified Artificial Neural Networks (ANNs)
for 24-hour ahead PV power production predictions. The
key findings indicated that the ensemble approach signif-
icantly outperformed the benchmark models, including a
smart persistence model and a single optimized ANN model,
achieving performance gains of up to 11% in RMSE, 12%
in MAE, and 9% in WMAE. The optimized and diversi-
fied ANNs provided a reduction in prediction errors and a
robust mechanism for handling the variability in the solar
power output. Additionally, a study conducted in Gandhina-
gar, Gujarat, India [33] focused on the long-term seasonal
performance of monocrystalline (m-Si), polycrystalline (p-
Si), and amorphous silicon (a-Si) PVmodules within a 1MW
solar plant. This study utilized key performance indicators
(KPIs) such as daily power generation, final yield (Yf), ref-
erence yield (Yr), total energy loss (TEL), and performance
ratio (PR) to evaluate the modules. The research incorporated
an Explainable AI (XAI) model to predict KPIs and evaluate
the performance of several learning algorithms, using metrics
such as R-value, MAE, iteration count, and execution time.
The Levenberg-Marquardt algorithm achieved prediction
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TABLE 1. Overview of the literature on performance evaluation of PV systems using machine learning methodologies.

accuracies of 98.63% for p-Si, 98.58% for am-Si, and 90.09%
for m-Si. However, despite the use of sophisticated train-
ing algorithms, the model lacks interpretability, making it
difficult to detect biases and provide clear explanations of
individual predictions. It also exhibits high prediction errors

for monocrystalline silicon systems. A summary of the exist-
ing literature on the performance assessment of PV systems
utilizing various machine learning methodologies and param-
eters based on key performance indicators is presented in
Table 1.
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TABLE 2. Location and orientation of PV power plant.

A. CONTRIBUTION AND NOVELTY
The literature presents a consensus on the critical role of
advanced PV power prediction models in facilitating the
integration of solar energy into the grids. The development of
models that can provide reliable forecasts of the PV system
performance is a key area of focus. Multi-source data fusion
andmachine learning techniques are among the strategies that
have been found to improve forecasting performance. Con-
tinuous evolution of these models is essential for optimizing
grid operations and maximizing the use of renewable energy
sources. Despite this progress, several challenges remain to
be overcome. The majority of existing research relies on
‘‘black box’’ models for PV system performance assessment,
lacking transparency in their decision-making processes,
highlighting a significant opportunity to develop interpretable
machine learning models that provide clear explanations for
their predictions, thereby enhancing the understanding of
the factors influencing PV system performance. Addition-
ally, many studies do not employ rigorous feature selection
techniques, potentially overlooking critical parameters that
impact PV system performance and hampering transparency
and the ability to detect multicollinearity, leading to unstable
models and unreliable interpretations. While some stud-
ies have utilized machine learning and XAI models, there
remains the potential to explore advanced, interpretable deep
learning architectures to capture temporal dependencies and
complex relationships within the PV system data, thereby
enhancing assessment accuracy and reliability. Furthermore,
most studies have focused predominantly on weather data,
often neglecting important technical parameters such as
inverter losses, soiling loss factor, array voltage and current,
and generated energy, integrating these parameters could
result in more accurate and comprehensive PV system assess-
ment models. Finally, there has been limited exploration of
advanced optimization algorithms during model training, and
investigating these optimizers could significantly improve
the model performance and convergence. According to the
existing literature review, this study is the first to develop

an explainable deep learning model for PV system perfor-
mance assessment by integrating univariate linear regression
for interpretability and Local Interpretable Model-Agnostic
Explanations (LIME) for explainability within an FFNN
architecture, utilizing the ADAM optimizer for model train-
ing. This integration not only provides accurate predictions,
but also offers unparalleled insights into the underlying
factors affecting PV system performance.

To address the gaps in the existing literature, our study
aimed to achieve the following objectives:

• New Deep Learning-based Architecture: The primary
contribution lies in the development and application of
an explainable deep learning model tailored to assess the
performance of a 5 MW grid-connected PV system in
a dust-prone environment based on environmental and
operating conditions, such as the soiling loss factor and
inverter losses, and provides insights into the impact
of these factors, along with other environmental and
technical factors on the model output, thereby providing
a new methodology for predicting PV system perfor-
mance ratios with high accuracy.

• Enhanced Interpretability and explainability: Inter-
pretability and explainability are two key features
achieved through specific methodologies. Univariate
linear regression was used to understand the weights
of each input, thereby enhancing interpretability. Addi-
tionally, the application of LIME analysis allows us to
comprehend the effect of each input on the model’s
predictions, thereby enhancing explainability.

• Model Optimization: Through a thorough analysis of
various training algorithms, we identified the ADAM
optimizer as the most suitable model for predicting the
Performance Ratio of the PV system. This selection
was based on the final test score loss and the iteration
time.

• Superior Performance: We compared the performance
metrics of our explainable deep learning model with
those of conventional deep learning models. The
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FIGURE 1. Simplified sketch of the grid connected PV system.

results clearly demonstrate that our proposed model not
only offers enhanced explainability but also achieves
superior accuracy. This comparison demonstrated the
effectiveness and practical benefits of the proposed
approach, highlighting its potential for real-world appli-
cations.

• Real-world Applicability: By providing detailed insights
into the factors affecting PV system performance, our
model assists operators and stakeholders in making
informed decisions to optimize solar energy utilization
in challenging environments.

II. SYSTEM DESCRIPTION AND PARAMETERS
Riyadh, the capital city of Saudi Arabia, was the proposed site
for installing the solar system. It is located at approximately
24.7136◦ N latitude and 46.8◦ E longitude at an altitude of
approximately 612 m above sea level. These geographical
coordinates make Riyadh well suited for solar energy capture
because of its ample sunlight throughout the year. To optimize
the efficiency of the solar panels, they were positioned at
specific angles. The azimuth angle, set at 180◦ (facing south),
ensured that the panels faced the path of the sun directly. The
tilt angle was adjusted to approximately 27◦, allowing for
maximum exposure to sunlight and efficient energy gener-
ation from the panels. This configuration resulted in a yearly
transposition factor of 1.1% and a yearly global irradiation
of 2461 kW/m 2 on the collector, as shown in Table 2. These
figures indicate the effectiveness of the solar power system
in Riyadh, where geographical conditions are conducive to
efficiently harnessing solar energy.

A standard grid-connected PV system with a 5 MW capac-
ity was used for the simulation, as depicted in Figure 1.
The PV system, composed of Swiss Solar’s IBEX-144MHC-
Cosmos-455Wp-144 cell modules, consists of 10,985 units
with a combined nominal output of 4998 kWp, spanning an
area of 24,441 square meters. These high-efficiency monosil-
icon modules were arranged in 845 strings, with each string
comprising 13 modules, to optimize power generation. Oper-
ating at 50◦C, this configuration delivered a total power of

4552 kWp at 493 volts and 9232 A. Its functionality was
enhanced by five Danfoss QLX 1000 inverters individually
rated at 1000 kWac, providing a collective capacity of
5000 kWac. These inverters directly converted the DC power
from the modules to AC power, while maintaining a nom-
inal ratio of 1.00. Operating within a voltage range of
450-950 volts, this system demonstrates efficient energy con-
version, resulting in an impressive annual energy injection of
8.31 GWh into the grid.

Riyadh experiences a desert climate, classified as BWh,
according to the Köppen-Geiger climate classification [40].
The city’s climate is characterized by extremely hot summers
and mild winters, with very low precipitation throughout the
year. The city also experiences dust storms, particularly dur-
ing the transitional periods. The soiling loss factor in Riyadh
varies throughout the year. During dusty and windy seasons,
typically from March to September, the soiling loss factor
can result in performance reduction ranging from 5% to as
high as 40% per month, which is equivalent to approximately
0.17%–1.33% of power drop per day. These months saw the
highest soiling rates, owing to the increased dust and sand
in the air. In contrast, during less dusty months, such as
October to February, the soiling loss factor may decrease to
approximately 2%–5% per month or approximately 0.07%–
0.17% per day. This variation in soiling loss corresponds
to seasonal changes in dust levels and wind intensity
[41], [42] [43].

Table 3 shows the percentage ofmonthly soiling loss values
induced in this study. These values represent the percentage
of efficiency reduction in the photovoltaic (PV) system owing
to accumulated dust and dirt on the solar panels, resulting
in a corresponding loss in the energy generated. Figure 2
shows the differences in power generation with and without
soiling loss. Power generation was calculated hourly for an
entire year, resulting in 8,760 samples for both scenarios.
The data illustrate that the average soiling loss fraction over
the year was 24.2%. This average was influenced by varying
soiling rates across different months. For instance, in January
and February, the soiling losses were relatively low at 5.0%
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TABLE 3. Monthly soiling loss induced in the system.

and 10.0%, respectively. However, as the year progressed
into the dustier months from March to August, soiling losses
increased significantly, reaching peaks in September at 50.0%
and August at 40.0%. This resulted in a noticeable dip in the
energy generation graph, indicating a corresponding decrease
in energy injected into the grid. These months typically expe-
rience higher levels of dust and sand in the air, leading to a
notable decrease in PV efficiency. As the year transitioned
to less dusty conditions from October to December, soiling
losses decreased to 25.0%, 20.0%, and 15.0%, respectively,
resulting in improved energy generation.

The careful selection of input variables for this study
was conducted with rigorous attention to detail, focusing
on environmental factors essential for understanding photo-
voltaic (PV) power plant performance, as well as technical
parameters of the PV system that can impact its efficiency.
Various environmental factors were chosen to provide a com-
prehensive overview of the external conditions affecting PV
plant efficiency. These factors include the wind speed, which
influences the cooling of PV modules, and their temperature
coefficients; solar irradiance, a critical determinant of avail-
able sunlight for energy conversion; ambient temperature,
which directly affects the efficiency of both PV modules
and inverters; and soiling loss factors, which account for
the gradual accumulation of dirt and debris on PV surfaces,
resulting in a significant reduction in the output over time.
The technical parameters include inverter losses that occur
during energy conversion from DC to AC, array output,
and the energy generated. Incorporating these variables into
the study enables a holistic understanding of the complex
relationship between environmental conditions and PV plant
performance, which is essential for precise modeling and
analysis. Table 4 presents the selected features, along with
the minimum and maximum value ranges for all variables.

III. METHODOLOGY
The methodology for this research project aims to develop
an explainable deep-learning model for predicting the perfor-
mance of photovoltaic (PV) systems. The process involved
two main steps: first, identifying the key performance indica-
tor (KPI) essential for evaluating the PV system performance,
which included the Performance Ratio (PR). Second, a trans-
parent framework was constructed using a feed-forward
neural network (FFNN) architecture to predict the identi-
fied KPI by incorporating meteorological, environmental,
and technical parameters. The methodology encompassed the
collection of PV output power data, followed by extensive
pre-processing to handle missing values and standardize the
dataset. Feature selection and extraction techniques were
employed to refine the dataset for interpretability. The
refined dataset was trained using five different optimizers
(Stochastic Gradient Descent, ADAM, AdaGrad, RMSProp,
ADAdelta) to determine the best learning rate. Local Inter-
pretable Model-agnostic Explanations (LIME) were utilized
to enhance model explainability, allowing for the determina-
tion of each input’s contribution to the prediction. Finally,
a comparative analysis was conducted against three conven-
tional deep learning techniques (CNN, RNN, and LSTM)
based on the performance metrics, thereby demonstrating the
superior predictive capabilities of the proposed model for PR.
The key steps involved in implementing this methodology for
predicting PV system performance are illustrated in Figure 3,
providing a visual representation of the sequential processes.

A. IDENTIFYING KPI TO EVALUATE THE PERFORMANCE
OF PV SYSTEM
When designing an effective power system, it is critical to
ensure that system performance is reliably and accurately
assessed. The performance of a photovoltaic (PV) system is
an important benchmark for determining the soundness of its
design and reliable integration of PV components. According
to the criteria proposed by the International Electrotechnical
Commission (IEC) Standard 61724, the specified perfor-
mance parameters for PV-powered systems play a critical
role in ensuring increased system efficiency. Based on the
investigations conducted in [44], the Performance Ratio (PR)
was selected to assess a solar PV power system in this study.

The performance ratio (PR) is a key metric used to assess
the efficiency of a solar PV system by comparing its actual
energy output with the Reference Yield. It was calculated as
the ratio of the actual energy produced (Final Yield) to the
expected energy output (Reference Yield) under the optimal
conditions. A higher PR indicates that the system operates
more efficiently with less energy loss owing to factors such
as shading, soiling, or equipment degradation.Monitoring the
PR over time helps identify any deviations from the expected
performance and allows targeted maintenance or optimiza-
tion efforts to improve the system’s overall efficiency and
output. In Figure 4, which shows the initial 1000 instances
of the calculated PR for the study, the PR remained relatively
stable between 70% and 90%. However, occasional dips in
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FIGURE 2. Energy generated with and without soiling loss.

TABLE 4. Descriptive statistics of parameters.

the PR are noticeable, which are likely attributed to low solar
irradiance during cloudy or rainy weather, soiling losses,
or system inefficiencies including inverter losses.

B. MODEL DEVELOPMENT FOR PREDICTING PV SYSTEM
PERFORMANCE INDICATORS
The process of constructing an interpretable deep learn-
ing model to predict performance metrics for a 5 MW
grid-connected solar power plant involved several key steps.

These steps include data collection, data preparation, param-
eter selection, and model development and evaluation. The
dataset created to evaluate the performance of the 5 MW
solar plant was characterized by its nonlinear and complex
nature. This complexity has led us to explore different deep
learning techniques. FFNNs are beneficial for predicting PV
system performance in dusty environments because of their
ability to capture nonlinear relationships, learn relevant fea-
tures, handle noise, model complex interactions, adapt to
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FIGURE 3. Workflow diagram of the proposed methodology.

changing conditions, and enable performance optimization
strategies. This technique was carefully evaluated for its
ability to predict the unique characteristics of solar plant
data.

C. DATA COLLECTION AND ANALYSIS
The data for all parameters were gathered from a 5 MW
simulated solar power plant, comprising mainly meteorolog-
ical, environmental, and technical factors used as input, and
the performance ratio was used as the target variable. The
simulation was conducted using PVSYST, a widely recog-
nized commercial software known for its effectiveness in PV
system design, using real-time meteorological data from the
Meteonom database. The proposed model was implemented
using Python code in a Google Colab environment. This
dataset spans from January 2021 to December 2021, covering
a full year. The data for these parameters were recorded
hourly throughout the year for the power plant, resulting in a
total of 8760 samples. This extensive dataset provides a thor-
ough and representative basis for comprehensive analysis.

By including data from the entire year, various weather con-
ditions were accounted for, creating a robust dataset that
encompasses the full range of environmental fluctuations and
their effects on the PV system performance. To develop the
model, data collected at night were disregarded, because there
was no solar production during these hours. Therefore, only
data from 7 a.m. to 4 p.m. were considered, resulting in
a total of 3689 samples for model development. Following
data collection, data cleansing techniques were employed for
preprocessing and normalization to improve data quality in
anticipation of developing the prediction model. The fea-
tures were normalized using the min-max scaling method to
bring them within the range of 0-1. The Interquartile Range
(IQR) method was used to detect the outliers. The IQR for
each feature representing the middle 50% of the data values
was calculated. Outliers were identified using the threshold
defined by Equation 1 as the lower bound, and Equation 2 as
the upper bound.

Lower threshold = Q1 − 1.5 × IQR (1)

Upper threshold = Q3 + 1.5 × IQR (2)
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FIGURE 4. Calculated PR first 1000 instances.

In Figure 5, a visualization is crafted to pinpoint outliers
within the dataset, which are data points that deviate from
the norm. These outliers are highlighted in a line plot illus-
trating various parameters. The outliers of each parameter
are marked with different colors. The provided outlier data
exemplify instances in which these parameters deviate from
the norm. However, it is important to note that most data
points lie within the norm, and the identified deviations are
not noise but actual data points. Therefore, these deviations
do not require any further manipulation, and visualization
serves as a valuable tool for spotting noteworthy anomalies
in the dataset.

D. FEATURE SELECTION
The process of condensing a significant volume of data into a
concise set of closely interconnected elements is commonly
referred to as feature extraction. Feature selection, however,
entails the selection of a subset of relevant features to be
incorporated into statistical and machine learning models.

This strategy of reducing data volume expedites machine
learning processes and streamlines model development with
reduced complexity. Within the scope of this study, univariate
linear regression was employed as a feature-selection tech-
nique. Univariate linear regression serves as a statistical tool
for modeling the relationship between the single indepen-
dent variable and a single dependent variable. This assists
in identifying the most influential independent variables
(features), which substantially affect the prediction of the
dependent variable (target). The algorithm initially postulates
a linear relationship between the independent and dependent
variables.

The primary objective was to ascertain the coefficients
(weights) associated with each independent variable to
minimize the disparity between the predicted and actual
observed values. Mathematically, the univariate linear regres-
sion model is represented by Equation (3).

y = β0 + β1x + E (3)

where y is the dependent variable; β0 is the intercept; β1
the coefficients (weights) associated with the independent
variables; x is the independent variable (features); and ε rep-
resents the error term accounting for unexplained variability.

The dataset was efficiently refined through the effective
application of univariate linear regression, resulting in a more
manageable selection of variables for the target variable. The
selected variables are identified based on their computed
weights, as shown in Figure 6. In the context of PR, Array
Voltage emerged as the most influential parameter, with a
coefficient of 0.732723, suggesting its significant impact on
PR. Following closely are The Soiling Loss Factor and Ambi-
ent Temperature, each with coefficients above 0.4, indicate
their considerable roles in PR determination. The inverter
Losses, Array Output, and Generated Energy were also rel-
evant, although to a slightly lesser extent, with coefficients
ranging from 0.3 - 0.4.

E. MODEL OPTIMIZATION
Optimizers play a crucial role in ensuring convergence and
efficiency of the training process in machine learning and
neural network training. These algorithms are designed to
modify the attributes of the neural network, such as the
weights and learning rates, to minimize the error between the
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FIGURE 5. Variable outliers.

FIGURE 6. Univariate linear regression coefficient weights.

predicted and actual outputs during training. In our proposed
model training, we employed a range of optimizers including
Adam, Adagrad, RMSprop, and Adadelta. This diverse set
of optimizers can potentially enhance the convergence speed,
stability, and performance of a model. The following is a
concise definition of each optimizer.

1) STOCHASTIC GRADIENT DESCENT (SGD)
This is one of the most fundamental optimizers. The model
parameters are updated in the direction opposite the gradient

of the loss function with respect to the parameters. SGD is
known for its simplicity, but it can be sensitive to the choice
of the learning rate [45].

2) ADAPTIVE MOMENT ESTIMATION(ADAM)
Adam is an algorithm for adaptive learning rate optimization.
It estimates the first and second moments of the gradients,
and uses these values to construct individual adaptive learning
rates for various parameters. This approach is effective in
many applications and computationally efficient [46].
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3) ADAPTIVE GRADIENT ALGORITHM(ADAGRAD)
Adagrad adapts the learning rate to the parameters by per-
forming larger updates for infrequent parameters and smaller
updates for frequent parameters. This method is particularly
effective when dealing with sparse data [47].

4) ROOT MEAN SQUARE PROPAGATION (RMSPROP)
RMSprop is an adaptive learning rate optimization algorithm
that divides the learning rate by an exponentially decaying
average of squared gradients. This helps to scale the learning
rate differently for each parameter, often leading to better
convergence in deep neural networks [48].

5) ADADELTA
Adadelta is an extension of Adagrad that seeks to reduce its
aggressive monotonically decreasing learning rate. It uses a
moving window for the RMS of parameter updates, allowing
it to converge smoothly to an optimal solution [49].

F. PERFORMANCE METRICS
To evaluate the effectiveness of our model, we employed a
comprehensive set of performance metrics: Mean Squared
Error (MSE), Mean Absolute Error (MAE), Root Mean
Squared Error (RMSE), and R-squared (R2). MSE provides
an average of the squared differences between the predicted
and actual values, placing more emphasis on larger errors
and making it particularly sensitive to outliers. MAE, on the
other hand, calculates the average of the absolute differences,
offers a clearer understanding of the error in the same unit
as the target variable, and is less affected by the outliers.
The RMSE, which is the square root of the MSE, provides a
more interpretable measure of error, aiding direct comparison
with the original data. Finally, R2 assesses goodness of fit
by determining the proportion of variance in the dependent
variable accounted for by the independent variables, with a
perfect fit indicated by an R2 value of 1. These metrics col-
lectively offer a robust evaluation of the performance of the
proposed models for prediction tasks. Equations 4–6 present
the formulae for the performance indices:

MSE =
1
n

n∑
i=1

(Yi− Yp)2 (4)

RMSE =

√∑n
i=1 (Yi− Yp)2

n
(5)

MAE =
1
n

×

∑n

i=1
|Yi− Yp| (6)

G. LIME FOR ENHANCING MODEL TRANSPARENCY
To enhance the interpretability of our prediction model,
we integrated Local Interpretable Model-agnostic Expla-
nations (LIME) into our analysis. Although several inter-
pretability models are available, such as SHAP, Partial
Dependence Plots (PDP), and traditional Feature Importance
techniques, LIME was chosen because of its specific advan-
tages in our study. The selection of LIME was based on

its ability to provide local interpretability, which is crucial
for understanding the influence on individual predictions
in our deep-learning-based PV system performance model.
Unlike SHAP, which can be computationally intensive and
focused on the overall model behavior, LIME’s model-
agnostic approach allows us to seamlessly apply it to our
complex deep -learning model. Additionally, its simplicity
and intuitive explanations make it easier to communicate
and comprehend the effects of various input features on
predictions. By utilizing the LIME, we were able to gain
deeper insights into the specific attributes driving our PV
system performance forecasts, thereby enhancing the overall
transparency and trustworthiness of our results [50].

IV. RESULTS AND DISCUSSION
The Results and Discussion section provides a detailed
analysis of the findings of the study, focusing on the per-
formance of the proposed Explainable Artificial Intelligence
(XAI) model for predicting the Performance Ratio (PR) of
a grid-connected photovoltaic (PV) system. Additionally,
it discusses LIME analysis, which highlights the factors that
positively and negatively impact the prediction model. This
section also discusses the implications and significance of the
study’s findings.

A. MODEL EVALUATION
To evaluate the system performance, the PRwas calculated on
an hourly basis over the course of one year using operational
data. The developed XAI model aims to interpret the ‘‘black-
box’’ machine learning model, specifically the Feedforward
Neural Network (FFNN), which serves as the base model for
this study.

The FFNN model was trained using the training data
described in the previous section, and its hyperparameters
were carefully tuned to achieve maximum accuracy. The
hyperparameters of the FFNN model play a critical role in
determining its structure and optimization strategy. With two
hidden layers, ReLU activation for the hidden layers and
linear activation for the output layer, the model controls the
flow of information and introduces nonlinearity. The number
of hidden units in each layer (128 for the first hidden layer
and 64 for the second) defines the complexity and capacity
of the model to learn from data. In this study, five optimizers
were employed to train the FFNNmodel: Stochastic Gradient
Descent (SGD), Adam, Adagrad, RMSprop, and AdaDelta.
The final test loss and iteration time were calculated for
each optimizer. The scores for the iteration time and final
test loss for all five optimizers are shown in Figure 7. The
best-performing optimizer was selected based on the final test
loss, providing insight into which optimization strategy was
the most effective for predicting the PR of the PV system.
Based on these results, the Adam optimizer emerged as the
most effective choice for training the FFNN model to predict
the PR of the PV systems. The combination of a low final test
loss (0.0001) and reasonable iteration time (4.63 s) makes it
a suitable optimizer for this application. The FFNN model
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FIGURE 7. Final test loss score of each optimizer.

trained with Adam as the optimizer demonstrated an out-
standing performance in predicting the PR of the PV system.
The low MSE(0.0001), MAE(0.0036), and RMSE(.0078)
values, coupled with the high R^2 (0.9965) score, confirmed
the model’s accuracy and ability to generalize well to unseen
data.

These results validate the effectiveness of the FFNNmodel
with the Adam optimizer for PR prediction in PV systems.
Figure 8 illustrates the performance metrics and predicted PR
outcomes resulting from optimal optimizer selection.

B. LIME ANALYSIS
The application of LIME analysis to our deep learning model
provided a valuable layer of transparency and explainability
for our findings. In Figures 9-DCLfiglabel12, we present the
local explanations for two distinct days: the 7th and 13th hour,
and the 8th and 12th hour of 1st January and 4th January
respectively. Each figure illustrates three key components of
the LIME results.

Prediction Probabilities: The left part of each figure dis-
plays the prediction probabilities for PR prediction focusing
on a binary classification problemwith ‘‘PR’’ and ‘‘NOTPR’’
classes. The ‘‘Prediction probabilities’’ section indicates the
model’s confidence scores for each class.

LIME Explanation: The middle part of the figures presents
the LIME explanations of the selected features.

Feature Importance: The right side of the figures shows the
original feature values ranging from 0 to 1, where 0 represents
the minimal effect and 1 represents the highest effect.

Across four instances of lime analysis on January 1st and 4,
2021, the model consistently predicted the probability of
‘‘PR’’ values with varying degrees of confidence at different

times. On January 1st, at 7:00 AM, the model predicted a
‘‘PR’’ with a probability of 0.83, closely matching the actual
predicted value of 0.8265. The Lime analysis highlighted
that features such as ‘‘soiling loss factor,’’ ‘‘array voltage,’’
‘‘generated energy,’’ and ‘‘array output’’ positively influ-
enced this prediction, with importance scores of 0.89, 0.74,
0.82, and 0.82, respectively. However, ambient temperature
(−0.27) and inverter losses (−0.71) had a significant negative
effect, indicating its decrease in influence towards a ‘‘PR’’
prediction. At 1:00 PM on the same day, the model predicted
a ‘‘PR’’ with a probability of 0.81, aligning closely with
the actual value of 0.8064. Similar features were observed,
with ‘‘soiling loss factor,’’ array voltage, ‘‘generated energy,’’
and ‘‘array output, which play significant roles, whereas
inverter losses and ambient temperature have a negative influ-
ence. On January 4th, at 8:00 AM, the model predicted
a ‘‘PR’’ with a probability of 0.88, closely matching the
actual predicted value of 0.8794. The Lime analysis indicated
strong positive impacts from the ‘‘soiling loss factor,’’ array
voltage, ‘‘generated energy,’’ and ‘‘array output,’’ whereas
‘‘ambient temperature’’ had a less negative effect (−0.25).
Finally, at 12:00 PM on the same day, the model predicted
a ‘‘PR’’ with a probability of 0.72, closely matching the
actual predicted value of 0.7187. The Lime analysis high-
lighted the positive effects of ‘‘soiling loss factor,’’ ‘‘array
voltage,’’ and ‘‘generated energy,’’ while ‘‘ambient tem-
perature’’ had a more significant negative impact (−0.52)
where as inverter losses had relatively lesser (−0.38) negative
impact. These Lime analyses collectively demonstrate how
various features contribute to a model’s predictions, with
certain factors consistently showing importance in various
instances.
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FIGURE 8. Performance metrics and predicted PR.

FIGURE 9. Lime analysis for hour 7 of a day.

FIGURE 10. Lime Analysis for hour 13 of a day.

C. STUDY FINDINGS AND IMPLICATIONS
• This study introduced a deep learning model to pre-
dict the Performance Ratio (PR) of PV systems and
provide interpretability through eXplainable Artificial
Intelligence (XAI) techniques. XAI aids in understand-
ing the significance and impact of different features

on the output of the system. It assigns weights to the
features, indicating their importance in determining the
performance of the system and identifying the condi-
tions that lead to significant performance degradation.

• The LIME explainer was used to analyze how individual
features contributed to the PR. The results showed that
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FIGURE 11. Lime analysis for hour 8 of a day.

FIGURE 12. Lime analysis for hour 12 of a day.

factors such as the soiling loss factor, array voltage, array
current, and generated energy had a positive impact,
whereas the ambient temperature and inverter losses had
a negative impact.

• These findings, consistent with previous research,
emphasize that temperature and inverter losses nega-
tively affect PR, whereas factors such as the soiling
loss factor, array voltage, current, and generated energy
positively impact the performance. This underlines the
importance of using XAI methods to understand the
relationships between the input variables and system
performance.

• Identifying key features and their effects can lead to
improved decision making and optimization of the per-
formance of solar PV systems. The highweighting of the
soiling loss factor, as indicated in this study, underscores
the importance of regular cleaning schedules in areas
prone to dust accumulation, which leads to enhanced
performance. Additionally, scheduling the regular mon-
itoring of inverters for faults can decrease losses and
improve the system efficiency. Additionally, the nega-
tive impact of ambient temperature on the predictions
aligns with the observations of seasonal variations influ-
encing dust accumulation. Recognizing these seasonal
patterns, as highlighted in Lime analysis, is crucial for
developing adaptive cleaning schedules to maintain the
long-term efficiency of PV systems. These insights can
contribute to enhancing the overall system efficiency
and performance management.

V. COMPARISON OF THE PROPOSED XAI MODEL WITH
CONVENTIONAL DEEP LEARNING MODELS
To evaluate the accuracy and robustness of the model, the
proposed XAI model was compared with several well-known
conventional deep learning models, such as CNN, RNN, and
LSTM, chosen for their distinct advantages and widespread
use in various predictive modeling tasks. CNNs were selected
for their ability to excel in spatial data interpretation, mak-
ing them a strong baseline for performance comparisons.
RNNs were included because of their proficiency in handling
sequential data, which is critical for time-series analysis, such
as PV system performance. LSTMs, an advanced variant
of RNNs, were chosen for their capability to manage long-
term dependencies, thus addressing some of the limitations
of standard RNNs. The proposed Explainable Deep learning
model demonstrated superior performance based on several
metrics compared with the CNN, RNN, and LSTM models
as shown in Figure 13. The Mean Squared Error (MSE)
of the XAI model was 0.0001, indicating that it had the
lowest average squared difference between the predicted and
actual values among the models. The Mean Absolute Error
(MAE) was 0.0036, indicating that it had the smallest average
absolute difference between the predicted and actual values.
The Root Mean Squared Error (RMSE) was 0.0078, signi-
fying that the XAI model’s predictions were closest to the
actual values on average compared to those of the CNN,
RNN, and LSTM models. The R2 score of 0.9965 for the
XAI model highlights its exceptional explanatory power,
which is nearly perfect for capturing variance in the data.
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FIGURE 13. Performance metrics of the proposed and conventional deep learning models.

In comparison, the CNN, RNN, and LSTM models had
higher MSE, MAE, and RMSE values and lower R2 scores,
indicating that they were less accurate and less effective at
explaining the variability in the PV system data. Specifi-
cally, the CNN model has an MSE of 0.000196, MAE of
0.010116, RMSE of 0.013988, and R2 score of 0.988642; the
RNN model has an MSE of 0.000247, MAE of 0.009162,
RMSE of 0.015715, and R2 score of 0.985665; and the
LSTM model has an MSE of 0.000202, MAE of 0.007285,
RMSE of 0.014224, and R2 score of 0.988256. Collectively,
these metrics underscore the superior performance of the
proposed XAI model. This performance enhancement of
the proposed model is driven by optimized training using a
variety of optimizers, such as Stochastic Gradient Descent
(SGD), Adaptive Moment Estimation (Adam), Adaptive
Gradient Algorithm (Adagrad), Root Mean Square Propa-
gation (RMSprop), and Adadelta. This optimization ensured
effective model convergence and improved the performance
metrics. Additionally, feature selection via univariate linear
regression significantly enhanced prediction accuracy, pro-
viding a clear understanding of the impact of each feature
on the performance ratio (PR). The model’s enhanced inter-
pretability, achieved through univariate linear regression to
analyze coefficient weights, further contributes to its ability
to explain the factors that influence performance. In contrast,
conventional models have limitations that hinder their per-
formance on this task. RNNs often struggle with vanishing
and exploding gradients, which makes them less effective for
long-term dependencies and continuous data. CNNs, while
excelling in spatial data interpretation, are not inherently
designed for time-series data or continuous inputs, which
are crucial for PV system performance assessment. Although
LSTMs are better at handling long-term dependencies than

RNNs, they can be computationally intensive and require a
significant training time. Furthermore, without proper inter-
pretability mechanisms, LSTM predictions can be perceived
as black-box outputs, making it difficult to gain insight into
the influencing factors. The proposed model not only excels
in accuracy but also provides real-time, interpretable insights
into the factors influencing PV system performance, which
is essential for timely decision-making and system optimiza-
tion. By integrating advanced optimization techniques and
rigorous feature selection, this model has emerged as an
invaluable tool for optimizing PV system performance and
guiding decisions.

VI. CONCLUSION
Grid-connected solar PV system performance assessment is
a formidable challenge, particularly in environments prone
to dust, where factors such as temperature, soiling loss, and
solar irradiation, along with technical parameters such as
the array output and inverter losses, play significant roles.
Therefore, understanding these factors and their impacts on
performance requires careful consideration. The proposed
work addresses this challenge by offering an AI-based solu-
tion for the evaluation of PV system performance, providing
an alternative to labor-intensive human analysis. Using data
from a 5 MW grid-connected solar PV system, we simulated
the Performance Ratio based on a diverse set of environmen-
tal and technical parameters. The Performance Ratio was then
predicted using an explainable deep learning model. With a
remarkable regression score of 0.9968, the Feedforward Neu-
ral Network (FFNN) was chosen for explainability through
LIME analysis. This study is versatile and can be applied
to both grid-connected and off-grid systems by leveraging
AI power. Our approach offers real-time insights supported
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by explanations provided by univariate linear regression, the
ADAM optimizer, and LIME local surrogacy for each data
instance in the dataset. Through feature identification, the
proposed method aids the enhancement and management
of solar PV system maintenance. The AI model achieved
an R2-score of 0.9968, indicating an exceptional fit to the
data with the ability to accurately predict PV system per-
formance. This was reinforced by the low Mean Absolute
Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) values, thereby validating the effec-
tiveness of the model in this critical domain. The proposed
AI model not only offers high predictive accuracy, but also
provides insights into the influential factors driving PV sys-
tem performance, making it a valuable tool for solar energy
management and maintenance. In the future, expanding the
dataset to include a wider range of environmental conditions
and technical parameters could enhance the robustness and
applicability of the model. Furthermore, investigating the
scalability of the model to larger PV systems and its adapt-
ability to varying geographical locations would be beneficial
for broader implementations. Continuous refinement of the
AI model, perhaps through ensemble learning techniques
or hybrid models, can lead to more accurate and reliable
predictions, thereby improving the efficiency and longevity
of the PV systems. Additionally, integrating the model into
user-friendly software platforms can facilitate its adoption by
technicians and engineers in the field, thereby streamlining
the PV system evaluation and maintenance processes.
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