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ABSTRACT This study presents a preliminary investigation of a new strategy for detecting and classifying
road hazards, such as potholes and bumps, based on rack force estimation of electric power steering (EPS)
systems. The numerous studies on road hazard detection have primarily focused on computer-vision systems,
including cameras or light detection, and ranging and vertical vibration signals measured by accelerometers
mounted on suspension systems. However, conventional methods are prone to reduced accuracy owing to
their susceptibility to vibrations transmitted from road surfaces to vehicles. Accordingly, considerable room
for detection accuracy improvement remains. Herein, we explore a novel approach that leverages the steering
rack force generated in the EPS system, considering that potholes and bumps induce vertical and lateral forces
on the tire’s contact patch, resulting in a net force generated by such tire moments on the vehicle steering
rack. We propose an algorithm that uses an improved Kalman filter (KF) with an unknown input, combining
the capabilities of a conventional KF with a disturbance observer. This algorithm aims to estimate the rack
force by utilizing measurements of the steering torque and angle inputs. The estimated rack force provides
features that serve as the basis for classifying road hazards. The classification performance was evaluated
using metrics calculated from confusion matrix, such as accuracy, precision, recall, and F1. The proposed
road hazard detection and classification algorithm was not only rigorously simulated using SIMULINK®

with CarSim® software, but also is experimentally validated through in-vehicle tests.

INDEX TERMS Rack force, electric power steering system, road hazard, Kalman filter with unknown input,
support vector machine, in-vehicle test.

I. INTRODUCTION
Road hazards encompass various dangers encountered while
driving: unexpected potholes, illegal speed bumps, road
imperfections, manhole covers, etc. Road hazard detection
and classification that distinguishes road hazards from nor-
mal roads has drawn considerable research interest in recent
years because road hazard detection and classification plays a
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key role in vehicle chassis control and vehicle driving safety,
including autonomous vehicle technology [1]. Accordingly,
road hazard detection and classification technology has been
the emerging subject of recent research to obtain valuable
information on road conditions (i.e., road databases for
cloud server systems). In particular, potholes are dangerous
road hazards resulting from uneven road wear and transient
weather conditions, and have consistently posed a significant
risk to drivers over the last few decades [2]. The impact
of potholes induces an unequal adhesion between the two
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sides of a wheel, causing path deviation and roll instability.
This discrepancy often leads to tire failure and compromises
key automotive components such as suspension systems [3].
Therefore, the timely detection of potholes is imperative to
enhance both the comfort and safety of vehicles.

Typically, potholes are detected using three-dimensional
(3D) image processing technology, which involves analyzing
the depth and width of these road defects. This process con-
verts the road surface into a 3D image using a stereo vision-
based camera and laser scanners [4], and is called active
safety (preemptive measures to reduce the probability of
damage). Conversely, a two-dimensional (2D) image-based
detection method recognizes the textures and characteristics
of potholes based on road surface images acquired using only
a camera. This method can prevent or mitigate potentially
dangerous situations [5]. However, conventional image-based
methods are prone to reduced accuracy owing to their
susceptibility to vibrations transmitted from road surfaces
to vehicles [6]. In addition, incorporating cameras and
light detection and ranging (LiDAR) sensors increases the
algorithmic complexity and computational cost, especially
when their functionality is extended to include pothole
detection. Furthermore, while vision-based methods excel
at distinguishing and locating potholes, they cannot extract
physical information, such as disturbance force, moments,
which are essential for vehicle control systems to respond
effectively when encountering potholes.

By contrast, vibration-signal-basedmethods employ accel-
eration sensors to detect potholes by directly sensing the
vehicle’s impact response; this is called passive safety
(reactive measures to reduce the severity of damage).
Numerous studies have utilized accelerometers mounted on
the sprung mass of vehicle suspension systems, aiming not
only to detect potholes but also to classify and distinguish
them from other potential hazards, including illegal speed
bumps [7]. Threshold-based approaches aim to identify
and categorize road irregularities by examining instances
in which the signals obtained from inertial sensors exhibit
significant alterations in the amplitude, root mean square
(RMS), or crest factor and surpass predefined thresholds [8].
Other extended studies focusing on detecting and classify-

ing road surface anomalies have endeavored to extract time or
frequency-domain features from accelerometer or gyroscopic
data. These features are then integrated with learning-
based methods, including support vector machine (SVM),
decision trees, and multilayer perceptron models [9]. Such
learning-based techniques, in combination with time-domain
features extracted from acceleration data, can considerably
reduce the computational burdens in model generation
and validation processes compared to deep learning-based
methods without feature extraction. However, a critical
drawback is the substantial influence of road roughness
profiles on the acceleration of the sprung mass, as illustrated
in Figure 1 (b).
This poses a challenge in capturing signature signals

and establishing suitable thresholds for pothole detection.

FIGURE 1. Signal signature comparison at 30 km/h straight driving:
(a) Road roughness (profile) with a sudden pothole, (b) Corresponding
vertical acceleration of the vehicle suspension systems, and (c) Rack force
of the EPS system.

Moreover, other factors, such as roll and pitch motions
during steering maneuvers, and suspension damping, can
further the impact sprung-mass acceleration [10]. Recently,
accelerometers (G-sensor) have been implemented in steering
systems, such as steering columns, rather than suspension
systems, and demonstrated notable advantages for pothole
detection [11]. Despite the enhanced sensitivity, utilizing
acceleration data directly from the steering system presents
difficulties, owing to potential interference from numerous
factors, such as noise and vibrations originating from other
vehicle components [12]. Nevertheless, the steering system
holds promise as a more viable alternative for effective
pothole detection.

Recently, automotive tire manufacturers have attempted
to detect road pothole using smart tire sensor technology.
Road condition information detected by smart tire sensors
can be shared through a cloud server when the lead vehicle
encounters a pothole, as depicted in Figure 2. This approach
seems promising because subsequent vehicles can use this
shared information to navigate and avoid road hazards such
as potholes, potentially reducing computational demands and
enhancing efficiency. Since the tires are the only components
of the vehicle system in direct contact with the road surface,
they inherently possess a high potential for detecting road
hazards. However, smart tire sensors have technical issues.
They typically have low sampling frequencies (e.g., 1 Hz).
Given the vehicle’s velocity (e.g., 14m/s or 50 km/h), this low
sampling frequency is unsuitable for road hazard detection.

Moreover, high-frequency sensors based on smart tires,
developed to address this issue, face challenges in commer-
cialization because of battery-life and durability concerns.
The sensor fusion-based indirect method can be an effective
supplementary system for smart tire sensors or act as a
fail-safe system where smart tire sensors may not function
properly. The sensor fusion-based indirect method functions
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FIGURE 2. Schematic overview of the proposed road pothole detection method using both proof-of-concept smart tire sensor built-in pneumatic
tires (direct) and sensor fusion-based rack force estimation in the EPS system (indirect method).

through the control area network (CAN) bus. It is currently
utilized in various real-time vehicle control systems with a
relatively high sampling frequency (e.g., 1 kHz). This indirect
method can enhance the accuracy of road hazard detection
in situations in which smart tire sensors are limited.

Electric power steering (EPS) systems, also referred to
as motor-driven power steering (MDPS) systems, have been
developed to assist drivers and reduce steering effort [13].
These steering control systems are designed to improve the
vehicle’s ride and handling performance by compensating for
external disturbances, providing drivers with a road feel, and
accommodating irregularities in road surface profiles [14].
Uneven road surfaces exert vertical and lateral forces on
the tire’s contact patch, generating moments around the
kingpin axis [15]. The net force generated by the tire
moments on a steering rack of a vehicle (frequently referred
to as the rack force) encompasses the interaction between
the road surface and the tire, which is heavily influenced
by road profiles [16]. Naturally, rack force estimation is
still useful for detecting road irregularities. Thus, a more
advantageous approach would involve a simpler and more
intuitive solutions. In addition, rack force estimation offers
higher robustness and sensitivity compared to conventional
method, such as computer vision, and it provides better
accuracy by reducing noise contamination compared to smart
tire sensors. Moreover, the proposed method utilizes the
KF-UI based on a dynamic model to accurately estimate
rack force in EPS systems, providing precise and low-
latency compared to the response type such as the use
of accelerometer. Yang et al. [17] previously employed
an extended Kalman filter with an unknown input (EKF-
UI) to estimate unknown earthquake inputs. The EKF-
UI successfully estimated the unknown earthquake input
and state variables under nonlinear structural dynamics.
Similarly, a KF-UI was applied to estimate both state
variables and unknown road roughness inputs for a full-car
vehicle suspension model [18]. This algorithm was modified
and generalized for application to a general linear system
called the KF-UI [19].

Despite the numerous research concerning road hazard
detection, primarily focusing on computer vision systems

including cameras or light detection and ranging and vertical
vibration signals measured from accelerometers mounted
on suspension systems or inertial measurement unit (IMU),
considerable room for detection accuracy improvement
remains. Furthermore, although previous studies have shown
some promising results in detecting road hazards such as
potholes, the following issues should be further considered.

• Although computer vision-based active methods using
a camera module and a LiDAR are preemptive mea-
sures to reduce the probability of damage, they entail
a substantial computational burden owing to image
processing demands. In addition, they are still highly
sensitive to weather and lighting conditions, necessi-
tating the deployment of high-performance cameras,
which costs to obtain detailed road surface information
including road hazards.

• Because conventional methods based on vehicle accel-
eration signals suffer from the substantial influence of
road roughness profiles, as illustrated in Figure 1 (b), this
disadvantage poses a challenge in capturing signature
signals and establishing suitable thresholds for road
hazard (e.g. potholes) detection. The excitation effects of
normal road surface characteristics (texture wavelength,
10 mm ∼ 100 mm) should be removed or minimized for
robust detection of road hazards.

To overcome abovementioned drawbacks, we explore a novel
approach leveraging the steering rack force generated in
the EPS system considering that potholes and speed bumps
induce both vertical and lateral force on the tire’s contact
patch, resulting in a net force generated by such tire moments
on the steering rack of a vehicle. Because this rack force acts
in the lateral direction, our approach can minimize the effects
of normal road surface characteristics (vertical excitation).
Although some studies have shown that it is possible to
achieve the new method for the rack force estimation [14],
there were no reports that rack force estimation responses
can be used to signature signals for road hazard classification.
For road hazard classification, the classification accuracy also
should be considered. However, most previous study on the
road hazard classification have shown the highest accuracy of
88.8 % [9].
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Therefore, the objective of this study is to develop a
new road hazard detection and classification method based
on rack force estimation insensitive to normal road surface
characteristics, and combines with learning-based SVM
model to achieve the enhanced accuracy of 90 % (research
goal). SVM classifier model will use key features extracted
from an estimated rack force (unknown disturbance input)
produced in an EPS system. The use of SVMmodel leverages
its advantages in handling high-dimensional data, preventing
overfitting, and performing nonlinear classification. The
remainder of this paper is organized as follows. Section II
outlines the KF-UI algorithm designed to estimate the
unknown rack force input, and the SVM model for road
hazard classification. Section III presents the experimental
validation of the proposed method using in-vehicle test
with SVM-based classification. Section IV presents our
conclusions and future work.

II. DESIGN OF RACK FORCE ESTIMATOR
A. TIRE AND ROAD MODELS
All the input data utilized for the simulation and training
were simulated from a sedan vehicle model at a driving speed
of 40 km/h using CarSim®(V 9.0) [20]. Properly selecting
the tire model is important for accurately estimating the
rack force because it substantially influences the tire force
generation. For this preliminary investigation, the empirical
Pacejka tire model (often called the magic formula) was
employed with standardized model coefficients to represent
the visco-elastic properties of the tires [21]. The tire
forces and moments were derived from kinematic variables,
including the lateral slip angle, longitudinal slip ratio,
inclination angle, and tire vertical deflection defined by the
spatial relationship between the wheel and contact centers
under steady-state conditions. Notably, the static relationship
between the tire vertical deflection of the tire and the vertical
load (force) is nonlinear because the matrix of a pneumatic
tire is a polymer (i.e., rubber), as shown in Figure 3 (b). This
static tire model is then extended to include transient behavior
using a separate filter to account for tire lag [28].

FIGURE 3. Characteristics of the Pacejka tire model (a) Slip angle vs.
lateral tire force (b) Vertical load vs. tire deflection curve.

A parallel-track road model was used to synthesize the
road elevation (i.e., road roughness and profile) on the left
and right tracks for the road-roughness model. The data
regarding the vehicle responses to the synthesized road input
were continuously collected. The road elevation was modeled

FIGURE 4. Road roughness and its corresponding PSD curve for (a), (b) an
A-class road (smooth) and (c), (d) a C-class road (rough).

based on the ISO 8608 standard where the international
roughness index classifies roads based on the different levels
of their power spectral density (PSD) functions [22]. This
study synthesized the road roughness for both A-class and
C-class roads, as illustrated in Figure 4. The calculated PSD
function, determined using Welch’s method, revealed linear
regression with slopes of −2.0345 and −2.0755 respectively,
close to the ISO-defined value of −2 (ideal). Potholes are
typical road defects that can be classified based on shape
and size. The most representative mathematical model of the
pothole was implemented in the simulation, as showcased in
Figure 5. The potholes can bemodeled as a square wave pulse
which can be represented as.

r (θ) =


−α |θ | ≤

β

2

0 |θ | >
β

2

(1)

where α(0.2 m) and β(50 mm) represent the pothole depth
and width respectively [23].

FIGURE 5. Geometric model of the pothole (α = 20mm, β = 0.5m) (a) 3D
view (b) Cross-sectional view.

B. DYNAMIC MODEL OF THE EPS SYSTEM
In this study, a rack-type EPS system is represented as a
reduced-order model with two degrees of freedom (DOF),
as shown in Figure 6. The EPS system can be represented
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FIGURE 6. Schematic illustration depicting the EPS system (R-MDPS type).

by two lumped inertias: the steering wheel column and the
rack combined with pinion and the electric motor. These
two inertias are connected by a stiff torsion bar spring that
facilitates the movement of the system as a whole [24].
Although an actual steering system possesses a complex
kinematic linkage structure, the proposed model effectively
captures its dynamic behavior and has been experimentally
validated in numerous studies. To maintain the model
simplicity associated with the algorithm design, the assistant
torque was assumed to be negligible for this study, given
its easy measurement and straightforward incorporation into
the model by merely adding the corresponding amount of
assist torque. The governing equations of the EPS system are
formulated as follows [25]:

Jsθ̈s + Ks

(
θs −

xr
rp

)
+ dsθ̇s = Ts (2)

Mr ẍr + dr ẋr =
G
rp
Ks

(
θs −

xr
rp

)
+ Fr (3)

where θs represents the steering-wheel angle, xr denotes the
lateral displacement of the rack; and Ts and Fr represent the
steering torque and rack force respectively.

The steering-wheel torque applied by the driver is transmit-
ted through a torsional bar that connects the steering column
to the rack and pinion module which has an equivalent mass
and damping coefficient dr . G represents the transmission
ratio of the reduction mechanism and rn denotes the radius of
the steering pinion. Eq. 3 (the rack module) can be simplified
and reformulated by assuming a linear relationship between
the rack displacement and steering angle:

Jr θ̈s + Dr θ̇s = GTs + rpFr . (4)

The state equation can then be expressed as follows:

ẋ = Acx+ Bcu+ B∗
cu

∗, (5)

where

Ac =

[
0 1
0 −

Dr
Jr

]
Bc =

[
0
G
rpJr

]
B∗
c =

[
0
1
Jr

]
(6)

TABLE 1. Parameters for the EPS model.

x =
[
θs θ̇s

]T
, u = Ts , u∗

= Fr . (7)

To design the KF-UI, a continuous-time system model
(Eq. (5)) was discretized using Euler’s method, as follows:

xk+1 = (I + tsAc)xk + tsBcu+ tsB∗
cu

∗

= Axk + Bu+ B∗u∗ (8)

where ts is the sampling time (10 ms in this study); the
asterisk (∗) represents the unknown input. The measurement
equation is expressed as follows:

zk = Cxk + Duk + D∗u∗
k , (9)

where

C =

[
1 0
0 −

Dr
Jr

]
D =

[
0
G
rpJr

]
D∗

=

[
0
1
Jr

]
(10)

zk =
[
θs θ̈s

]T (11)

The steering wheel angle and torque controlled by the
driver can be measured by a torque angle sensor mounted
on contemporary EPS systems. In Eq. (11), the angular
acceleration is obtained by taking the second derivative of
the steering wheel angle. The physical parameters of the EPS
system model used in the simulation are listed in Table 1.

C. KF-UI
This section introduces the KF-UI algorithm for an EPS
system, which simultaneously estimates the unknown rack
force and state variables. The state-space model expressed in
Eqs. (5) and (9) can be rewritten as

xk+1 = Axk+Buk + B∗u∗k + wk
zk = Cxk + Duk + D∗u∗k + vk , (12)

where wk represents a system-noise vector, and vk denotes
the measurement-noise vector. Upon solving the optimization
problem and conducting linear algebra operations, the
recursive solution of the KF-UI is derived as follows [19]:

1) INITIAL ESTIMATION

x̂ 0|0 = E [x0] , û∗

0 = E
[
u∗

0
]

P 0|0 = E
[
(x0 − x̂ 0|0)(x0 − x̂ 0|0)T

]
S0 = E

[
(u∗

0 − û∗

0)(u
∗

0 − û∗

0)
T
]

(13)
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2) PREDICTION

x̂ k+1|k = Ax̂ k+1|k + Buk + B∗û∗k
P k+1|k = AP k|kAT + Q (14)

3) KALMAN-GAIN CALCULATION

Kk+1 = CTP k+1|k (CP k+1|kCT
+ R)−1 (15)

4) UNKNOWN INPUT ESTIMATION

Sk+1 = [D∗TR−1(I − CKk+1)D∗]−1

û∗k+1 = Sk+1D∗TR−1(I − CKk+1)(zk+1 − C x̂ k+1|k − Duk )

(16)

5) CORRECTION

x̂ k+1|k+1= x̂ k+1|k+Kk+1(zk+1−Cx̂ k+1|k −Duk −D∗û∗k+1)

P k+1|k+1= (I+Kk+1D∗Sk+1D∗TR−1C)(I − Kk+1C)P k+1|k

(17)

At k = 0, the filter is initialized with the initial condition
expressed in Eq. (13), wherein E[·] represents the ensemble
average of a random variable. At the k th step, a priori
state estimate x̂ and a priori covariance matrix P k+1|k are
predicted from the system model using Eq. (14). The optimal
Kalman gain Kk+1 is then calculated using Eq. (15).
Next, the unknown input û∗k+1 and its covariance Sk+1

are estimated based on the measurement zk through Eq.
(16). Finally, a posteriori state estimate x̂ k+1|k+1 and its
covariance matrix P k+1|k+1 are corrected using Eq. (17)
by employing the measurement information. The results
computed at the k th step are reused, as the KF-UI recursively
estimates the next step. The KF-UI and conventional KF
algorithms share the same structure during the prediction
and Kalman-gain calculation stages, as shown in Eqs.
(14) and (15). This implies that unknown inputs do not
influence the a priori estimation or Kalman gain. However,
while an unknown-input estimation stage exists in the KF-UI,
it is absent in the conventional KF. This is because the KF-
UI algorithm can estimate the unknown input, introducing a
difference during the correction stage. The additional term
(I + Kk+1D∗Sk+1D∗TR−1C) represents the results of the
unknown input. It is multiplied when estimating a posteriori
covariance matrix P k+1|k+1 in the KF-UI algorithm, not
in the conventional KF algorithm. The following two
conditions should be satisfied in the system to ensure the
successful estimation of both the unknown input and state
variables:

B∗
̸= 0 , D∗

̸= 0 (18)

m > q. (19)

Equation (18) implies that the state-measurement equation
represented by Eq. (12) necessitates the inclusion of an
unknown input, û∗k . Because D∗

̸= 0 signifies that the
measurement equation should include the unknown input

FIGURE 7. Comprehensive flowchart depicting the rack force estimation.

û∗k , it can serve as a constraint when selecting sensors
for implementing the KF-UI algorithm. This condition can
be fulfilled by obtaining the steering angle acceleration,
a non- critical factor in the steering system. Additionally,
the second condition (Eq. (19)) indicates that the number
of measurements (m) must exceed the number of unknown
inputs (q). Failure to satisfy this condition makes the
system unobservable, preventing the KF-UI from estimating
unknown inputs.

In addition to these two conditions, ensuring the system’s
observability is crucial when designing the measurement
equation. In the rack force estimation problem, an absolute
angle (e. g., steering angle or rack displacement) is required
to satisfy the observability condition. In other words, the
observability matrix must have full rank because the rack
force estimation fails unless the system is observable. This
is also significant for road roughness and state estimation
based on the KF-UI. Consequently, a careful selection
of the measurements (Eq. (11)), particularly the sprung
mass displacement, is essential for the KF-UI algorithm
to operate properly. The system-noise covariance matrix
Q and measurement-noise covariance matrix R in Eqs.
(14) and (15), respectively, can be defined as{

E[wk ] = 0
E[wkwTk ] = Q

,

{
E[vk ] = 0
E[vkvTk ] = R

(20)

where wk and vk are zero-mean white Gaussian noise
with covariance Q and R, respectively. These two
equations hold for both the conventional KF and KF-UI.
Therefore, the Q and R matrices of the KF-UI can
be designed for a conventional KF. The overall flowchart
of the adaptive extended KF-UI (AEKF-UI) algorithm is
illustrated in Figure 7. Using CarSim software [20], the
typical simulation results for straight and sinusoidal driving
scenario using are compared and illustrated in Figure 8.
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FIGURE 8. Comparison of simulated and estimated rack force responses (30km/h) (a) and (b) Straight driving,
and (c) and (b) Sinusoidal, (a) and (c) A-class road, (b), (d) C-class road.

Notably, the rack force estimation using KF-UI (simulated)
successfully tracked the CarSim model. The distinct peaks
attributed to potholes are easily reflected in features derived
from the rack force response. This feature set was capable
of capturing the variations between different types of road
anomalies and normal roads.

FIGURE 9. (a) Pothole (b) 760 × 730 mm, depth = 20 mm, (c) 760 ×

730 mm depth = 40 mm, (d) bump 2000 × 2000 mm, depth = 75 mm.

III. PERFORMANCE VALIDATION
A. IN-VEHICLE TEST SET-UP
The in-vehicle test system, depicted in Figure 9, was
designed to validate the proposed algorithm. It comprises a
ground electric vehicle (model: Hyunndai IONIQ5) and data
acquisition devices. The on-board sensor signals are acquired
from the controller area network flexible data-rate (CAN
FD) communication bus. To facilitate this communication
protocol, a compact CAN FD interface device (model:
Kvaser) and CANoe software (Vector Informatik GmbH)
are used. The vehicle was driven straight at three different
speeds: 20, 30, and 40 km/h. Additionally, bumps with
heights of 75 mm and potholes with depths of 20, 30,

and 40 mm were included. Various load conditions and
tire pressures were also considered, resulting in a total of
155 driving scenarios for in-vehicle tests. The only two
measurement signals (steering angle generated by the driver
and steering torque input) were extracted and post-processed
(resampling).

B. SYSTEM IDENTIFICATION OF THE EPS MODEL
In this study, the recursive least squares estimator (RLSE)
was adopted to identify unknown parameters in the vehicle’s
EPS system. Because the performance of the rack force
estimator largely depends on the accuracy of the model
parameters, an offline system identification process was
required. To design the RLSE, the steering system model
(Eqs. (4) and (5)) is reformulated in matrix form as

yk = hTk θk + vk (21)

where

yk = TshTk =
[
θ̈s θ̇s

]
θk =

[
Jr Dr

]T
, (22)

The system is represented by a linear model in the form
of Eq. (21), where yk denotes the output vector, and hTk
represents the measurement matrix; these are known values
that can be obtained by processing sensor signals. θk denotes
the unknown parameter vector to be estimated. It includes
Jr and Br , which represent the moment of inertia of the
steering rack and the damping coefficient respectively. vk
signifies measurement noise. The numerical values for yk and
hTk were directly measured using the CAN data. To complete
the measurement matrix (Eq. (11)), the steering angular
acceleration θ̈s was estimated via simple Kalman filtering
of the measured steering angle θs without direct low-pass
filtering and double differentiation [30]. The RLSE was then
designed as follows [31]:
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TABLE 2. Identified system parameters of steering rack.

1) INITIAL ESTIMATES

θ̂0 = E [θ ] (23)

P0 = E
[(

θ − θ̂0

) (
θ − θ̂0

)T]
(24)

2) KALMAN-GAIN CALCULATION

Kk+1 = Pkhk+1

(
hTk+1Pkhk+1 + w−1

k+1

)−1
(25)

3) PARAMETER UPDATE

θ̂k+1 = θ̂k + Kk+1

(
yk+1 − hTk+1θ̂k

)
(26)

4) COVARIANCE UPDATE

Pk+1 =

(
I − Kk+1hTk+1

)
Pk (27)

In the first step, the estimated parameter and its covariance are
initialized to arbitrary values as they are usually unknown.
The estimated parameter vector is then calculated by Eqs.
(24), (25), and (26), updating each time step in a recursive
manner. Compared to second differentiation of steering angle
signal to obtain angular acceleration, simple Kalman filtering
provides an excellent estimation of the angular acceleration
from the measured steering angle, as shown in Figure 10.
The two parameters converging over time to a certain
finite steady-state were successfully estimated, as shown in
Figure 11, and are listed in Table 2.

C. RACK FORCE ESTIMATION
The typical rack force estimation responses to potholes
and speed bumps were shown in Figures 12 and 13.
Similar to simulation results, oscillating transient peaks were
observed in all rack force estimation responses. From these
experimental observations, KF-UI algorithm can effectively
capture the transient peak response caused by potholes and
speed bumps in the straight steering scenarios. Although the
estimated rack force responses for speed bumps are lower
than those for the potholes, they exhibited consistent patterns.
However, peak detection method such as z-scores method
must be ineffective to detect potholes (spikes) from rack force
estimation because of the time-varying characteristics of rack
force estimation responses, as shown in Figure 12 and 13 [24].

D. ROAD HAZARD CLASSIFICATION
In this study, rack force responses under different road
conditions presented in Section III-C were utilized as a pre-
trained classification model for a support vector machine

FIGURE 10. Kalman filtering of steering angle signal: (a) Steering angle,
(b) Angular velocity, and (c) Angular acceleration.

FIGURE 11. System identification results for system model (R-MDPS,
IONIQ5). (a) Moment of inertia of steering rack, (b) Damping coefficient
of steering rack.

(SVM) to distinguish potholes from other road hazards.
The SVM, a supervised machine learning algorithm widely
used for various classification and regression applications,
was used to classify the road hazards where accuracy is
critical because of its memory efficiency andbecause it could
handle high-dimensional computations with minimal risk of
malfunction, and generate hyperplanes (decision planes) with
the largest margin [32]. In addition, the SVM can efficiently
handle non-linear decision boundaries using a kernel trick.
Typically, the SVM algorithm maps the input data into a
high dimensional space using a kernel function, enabling the
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FIGURE 12. Comparison of rack force estimation (straight steering) for pothole (depth 40 mm) (a) 40 km/h,
(b) 20 km/h.

FIGURE 13. Comparison of rack force estimation (straight steering) for speed bump (a) 20 km/h, (b) 40 km/h.

algorithm to learn an optimal decision boundary (hyperplane)
separating the training data into distinct multiple classes.
Common kernel functions include linear, polynomial, radial
basis, and sigmoid. Gaussian kernels have recently gained
popularity and are often deemedmore suitable for SVMs, and
are defined as [33].

K (xi, xn) = exp

(
−

∥xi − xn∥2

2σ 2

)
(28)

The MATLAB/Simulink® Statistics and Machine Learning
Toolbox was used for the SVM classification [34]. The
SVM aims to find the hyperplane that maximizes the margin
among the classes. The SVM can also classify with non-
linear decisions using kernel functions, including linear,
polynomial, and radial basis function (RBF) [35]. The total
number of 423 datasets was partitioned into training and
validation sets in the ratio of 9:1. The SVMmodel was trained

FIGURE 14. An example of feature for SVM model (kurtosis of rack force
responses).

to employ an RBF kernel function under CPU (14th Gen
Intel®Core™i7-14700F) and aGPU (NVIDIAGeForce RTX

VOLUME 12, 2024 122163



H.-B. Lee et al.: New Road Hazard Classification Enabled by Rack Force Estimation of EPS Systems

FIGURE 15. Road hazard classification results using confusion matrix (a) 2-D hyperplane
depicting for 3-features SVM, (b) Confusion matrix for linear SVM (3-features) (c) Confusion
matrix for nonlinear SVM (4-features), (d) Confusion matrix for nonlinear SVM (5-features).

4070). SVM has two hyper-parameters which are C and γ . C
is a hyper-parameter to control error in SVM. When low C
means low error, and large C means large error. γ decided
that how much curvature we want in a boundary. When γ

is high, there is more curvature in hyperplane. When γ is
low, there is less curvature hyperplane. To find the best hyper
parameters, a grid search with cross-validation was used,
resulting in C = 1 and γ = 10. Before applying a machine-
learning algorithm to build classification models, the data
were preprocessed through feature extraction and road
hazards labeling. This feature set was capable of capturing
the variations between different types of road anomalies
and normal roads. Road anomalies can be characterized by
the mean, deviation, variance, standard deviation, root mean
square, range of rack force, etc. These features facilitate
the SVM model in identifying and distinguishing potholes
from other road hazards. The characteristics of the rack
force estimation responses (i.e. Figure 12 and 13) were
qualitatively analyzed to extract the features for the classifier
input. Although the rack force estimation performance was
not directly evaluated by installing force sensors on the
vehicle owing to hardware limitations, a similarity between
the profile of the estimated rack force and the actual measured
values for specific scenario scenarios was observed based on
findings from previous studies [36]. The selection of effective
feature from time domain and frequency domain by fast
Fourier transform (FFT) was facilitated using a correlation-
based feature selection technique [8]. Three features are
then extracted as a baselined feature (standard deviation,

kurtosis, and FFT energy ratio - low band). For three
different cases; baseline, four (skewness is added), and
five features (skewness and total power are added); were
compared because the classification can be improved by
increasing the number of features (dimension). As shown
in Figure 14, kurtosis can roughly distinguish three road
conditions. Typically, the window size can help to determine
the granularity or resolution of an SVM, and influences
the computational complexity of the SVM. In real-time
monitoring systems, a smaller window size may be preferred
to detect and respond to rapid changes or anomalies promptly.
Accordingly, the window size was set to be 0.5 s for the in-
vehicle test.

The datasets were collected until the end of the time
required to train the SVM model by computing the features
for every 50 rows. Four well-known performance scores were
used in the evaluation process: recall, precision, F1 score, and
accuracy. The calculation formula is shown as follows:

Recall =
TP

TP+ FN
(29)

Precision =
TP

TP+ FP
(30)

F1 Score =
2 × Recall × Precision
Recall + Precision

(31)

Accuracy =
TPnormal + TPpothole + TPbump

Number of Test sets
(32)

The linear SVM classifier exhibited an accuracy of 0.7974,
precision of 0.7703, recall of 0.7215, and F1 score of
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FIGURE 16. A ROC curve for nonlinear SVM (4-features).

0.7451 for the bumps. It obtained a 0.8257 precision,
0.8504 recall, and 0.8379 F1 score for normal roads.
Finally, it obtained a 0.7273 precision, 0.7059 recall, and
0.7164 F1 score for the potholes. Figure 15 (c) shows
the highest classification metrics of the nonlinear SVM
classifier with four features, exhibiting a0.9186 accuracies,
0.9103 precision, 0.8987 recall, and 0.9045 F1 score for
bumps. A precision of 0.9397, recall of 0.9316, and F1 score
of 0.9356 were obtained for normal roads. Finally, it obtained
a 0.8592 precision, 0.8971 recall, and 0.8777 F1 score for the
potholes. Figure 15 (d) shows the nonlinear SVM classifier
with five features, showing a 0.8766 detection accuracy,
0.8824 precision, 0.7595 recall, and 0.8169 F1 score for
bumps, and a 0.8821 precision, 0.9274 recall, and 0.9041 F1
score for normal roads. Finally, it obtained a 0.8507 precision,
0.8382 recall, and 0.8444 F1 score for the potholes. The
classification performance of the SVM model with five
features was inferior to that of the SVM model with four
features. A receiver operating characteristic (ROC) curve,
a visual graph showing the performance of a classification
model at all classification threshold, was also used to further
evaluate the classification performance. For example, the
ROC curves for nonlinear SVM (4-features) converged closer
to 1, and the area under the curve (AUC) also approached 1,
as shown in Figure 16, indicating that the model did not
overfitting. The algorithm also demonstrated low latency
suitable for real-time applications. The processing speed
was sufficient to detect and classify road hazards promptly,
ensuring timely responses during the demonstration. The
average success of classification was also scored by 90%
for validation data sets. The proposed SVM model demon-
strates high accuracy in classifying normal road surfaces,
potholes and speed bumps, indicating the potential for further
accuracy improvement, particularly for speed bumps via
additional data acquisition and training. Future work will
focus on precisely quantifying the latency to provide a
more detailed analysis of the real-time performance. Our
new road hazard classification system coded into Python
language will be advanced for real time road hazard infor-
mation system and integrated with built-in fleet management
service (FMS).

IV. CONCLUSION
In this study, we have successfully developed a new passive
type indirect road hazard detection and classification method
based on rack force estimation of EPS systems. The main
contributions are summarized as follows:

• The proposed road hazard classification method is
advantageous over conventional response methods (e.g.,
G-sensors in suspension systems) because the signal
signature obtained from estimated rack force responses
is more prominent and insensitive to normal road surface
characteristics.

• Combining the proposed method with cloud comput-
ing exhibits a high potential for improved accuracy.
Additional training data can be accumulated over time
using the cloud computing system to store road hazard
information.

• Another advantage of the proposed method using an
estimator (KF-UI) compared with conventional methods
(response type) is that only two pieces of sensor
information (steering torque and angle) are employed
via the CAN bus, and the response time is relatively fast.

However, the robustness of the proposed algorithm needs
further improvement against noise and parametric uncer-
tainties. In future studies, we plan to address some of
these ongoing issues. For example, we will consider the
nonlinearity arising from factors such as pneumatic tire,
geometric error etc. In particular, it is necessary to analyze
the robustness of the SVM model against uncertainties. Our
future work will focus on advancing road hazard detection
and classification algorithms by incorporating additional data
from smart tire sensors. This will improve the reliability
and robustness of the proposed method based on the EPS
system. Although our study demonstrated that the SVM
model is promising to classify road hazards, some technical
limitations are expected and should be further investigated.
First of all, the SVM classification model may lead to
degraded performance when it fits an actual response
variable outside the ranges (e.g. different vehicle speeds)
because most neural network-based learning models are fit
to a response variable within a trained range. Therefore,
the extrapolation capability of the SVM model should be
accordingly further examined and improved by using more
advanced classification algorithms. Next, this initial study
presented a preliminary investigation on a classification
method aimed at distinguishing road hazard (rectangular-
shaped potholes) from normal and standard bump. However,
road hazards encompass various dangers encountered while
driving: irregular-shaped potholes, illegal speed bumps, road
imperfections such as cracks. Accordingly, the SVM model
fitted to a response variable within a trained range by only
rectangular-shaped potholes may lead to degraded classifi-
cation performance when it fits a different response variable
outside the ranges by different road hazards such as irregular-
shaped potholes. In the same context, the extrapolation
capability of the SVM model should be accordingly further
examined. Although our results indicate that the SVMmodel
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is promising to classify road hazards, possible reasons remain
to be discovered and could be improved by using more
advanced classification algorithms.
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