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ABSTRACT Effective and accurate detection of foreign objects in transmission lines plays a crucial role
in achieving intelligent power inspection. However, in the real world, detecting objects that are too far
or too small can lead to inaccurate object detection tasks. Therefore, this article proposes an improved
model based on YOLOv8n to improve detection performance. We introduce attention mechanism into the
YOLOv8n network and add a small object detection module to improve detection accuracy. Considering
the requirements of detection tasks for detection speed and accuracy, after comparing the three attention
mechanisms of CBAM, ECA, and GAM, we chose the backbone network formed by the fusion of YOLOv8n
and ECA attention mechanism, and added a small object detection module in the head section. The results
show that compared to the unimproved YOLOv8n model, this method can effectively improve detection
accuracy and still perform excellently in detection speed and robustness.

INDEX TERMS Transmission line, foreign object detection, YOLOv8n, ECA, small object detection.

I. INTRODUCTION
Object detection is an important task in the field of computer
vision [1], whose main purpose is to correctly recognize
specific objects in an image or video. Nowadays, object
detection is widely used in various fields, including the
electrical field. Electricity is ubiquitous in daily life, and
transmission lines are the key to delivering electricity to every
household. The transmission line network covers a wide
range, usually spanning different terrains and landforms such
as cities, rural areas, and mountainous areas, and usually uses
high-voltage electricity for power transmission. The power
system requires extremely strong stability and reliability. The
presence of foreign objects on transmission lines, such as
kites, balloons, bird nests, etc., may lead to faults such as
short circuits and arc discharges, and even cause fires or
power grid accidents. These safety hazards may affect the
reliability and stability of the power system [3]. In summary,
conducting foreign object detection on transmission lines
is the key to ensuring the safe operation of the power
grid, reducing power losses, improving the efficiency of
power grid operation, and reducing maintenance costs.
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Manual inspection of transmission lines requires a significant
investment of human resources, and line inspectors can
only inspect transmission lines one by one by walking or
using vehicles, which cannot achieve all-weather and all-
round coverage. This leads to lower inspection efficiency
and may result in missed or delayed detection of issues.
In addition, manual inspections require line patrol personnel
to enter the high-voltage power grid work area. Despite safety
measures, there is still a potential risk of accidents occurring.
The combination of deep learning technology and robot
intelligent inspection of transmission lines can effectively
solve the above problems [5], [6], [7].

Kites, balloons, and other foreign objects usually appear at
high places. Due to changes in distance, the detected object
will become small targets. The key to foreign object detection
in power transmission lines is how to effectively identify
these small targets. Although object detection has developed
rapidly in recent years, small object detection remains a
challenging problem.

YOLOv8 adopts anchor free frame object detection, which
has a faster detection speed. YOLOv8 has better detection
accuracy compared to previous versions. Among the multiple
sizes of YOLOv8, n is the smallest size with the least
number of parameters, the lowest complexity, and the fastest
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processing speed. Considering the real-time detection of
power inspection work, edge computing is often used for
actual project deployment, which requires high running
speed, so we choose YOLOv8n as our baseline network.
In order to solve the problem of difficult small target
recognition, we attempted to use attention mechanisms to
strengthen the connection between images in space and
channels, and added a small target detection module to
capture the features of large and small targets. This work has
made good progress and can effectively improve the accuracy
of model detection.At the same time, while ensuring high
accuracy, the size of the model remains at a relatively small
level and has a high operating speed, making it possible to
run at the terminal devices.

II. RELATED WORK
With the rapid development of deep learning technology
and the improvement of computing power, more and more
scholars are applying deep learning technology to various
industries. Many scholars have applied deep learning to the
field of foreign object detection in transmission lines.

Zhang et al. improved the RCNN model using RPN
(Region Proposal Network) technology to identify foreign
objects in transmission lines and achieved better results than
Faster RCNN [8]. Hao et al. also used RPN technology
to improve the Faster RCNN model, achieving an mAP
of 95.24% [9]. Chen et al. used MASK RCNN as the
backbone network to detect foreign objects [10]. Liang et al.
used Faster RCNN network to detect foreign objects and
transmission component defects in transmission lines, with
an mAP of 91.11% [11]. Zhu et al. used multi-scale feature
pyramid connections in CNN to fuse multi-level information,
achieving an mAP of 88.1% [12].
Later, many scholars began to introduce the YOLO model

into this field. Li et al. improved the YOLOv3model by using
Mobilenetv2 instead of Darknet-53 as the backbone network
to identify foreign objects in transmission lines [13]. Li et al.
used Atrous Spatial Pyramid Pooling and Convolutional
Block Attention Module to improve the YOLOX model,
resulting in an mAP increase of 4.24% compared to the
baseline YOLOX model [13]. Wu et al. used YOLOv4 as the
baseline model, replaced CSPDarkNet53 with MobileNetV2,
replaced standard convolutions in SPP and PANet modules
with depthwise separable convolution (DSC), and embedded
CBAM into SPP and PANet modules, achieving an mAP
of 96.71% [15]. Wang et al. used YOLOv8m as the
baseline model, integrated the GAM attention module into
the backbone network, replaced the SPPF module with
the SPPCSPC module, and introduced the focus eiou loss
function. The mAP reached 95.5% [2].

III. METHODOLOGY
In this chapter, we will discuss the architecture of YOLOv8n,
modifications to the YOLOv8n model, hyperparameter
settings, image preprocessing methods, dataset preparation,
and model evaluation methods.

A. YOLOv8n
YOLOv8 is the latest version of the object detection model
in the YOLO series proposed by Ultralytics and others. The
letters n/s/m/l/x denote different sizes of the YOLOv8 model,
with the size determining themodel’s complexity and number
of parameters. Different sizes can be used to meet the needs
of different scenarios. Considering the need for foreign object
detection speed on transmission lines, we have chosen the n
size to reduce detection time.

The backbone of YOLOv8 utilizes the CSPDarknet net-
work structure [17], an improved version based on Darknet.
YOLOv8 replaces the C3 module in the YOLOv5 backbone
network with the C2f module and introduces residual
connections to reduce overfitting compared to YOLOv5.

The neck of YOLOv8 adopts the PANet structure, which
consists of a series of feature fusion and upsampling
operations. The feature fusion layer is used to fuse feature
maps from different layers to obtain richer information.
The upsampling layer is used to upsample low-resolution
feature maps to the same size as high-resolution feature maps.
Through upsampling, low-resolution feature maps can be
restored to the original size of the image for better prediction
of target positions.

The head of YOLOv8 uses anchor-free object detection,
which can directly predict the center of the target through
the classifier and regressor. Considering the need for rapid
detection of foreign objects on power transmission lines, the
‘n’ size of YOLOv8, known as YOLOv8n, was chosen to
reduce detection time. The structure of the YOLOv8n model
is illustrated in Figure 1.

FIGURE 1. YOLOv8n model.

B. LOSS FUNCTION
The loss function of YOLOv8 consists of various compo-
nents, including classification loss and regression loss. The
classification loss function adopts VFLLoss [25], also known
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as logarithmic loss, which is a commonly used loss function
in classification problems. It measures the difference between
the probability distribution predicted by the model and the
actual labels, and is used to measure the accuracy of the
model’s predictions. The VFL Loss function formula for
YOLOV8 is as follows:

VFL(p, q) =

{
−q(q(log(p) + (1 − q)log(1 − p)), q > 0
−αpγ log(1 − p), q = 0

(1)

where q represents the intersection and IoU between the
predicted box and the true box, and p represents the
probability. The regression loss function uses CIoULoss [26].
CIoU is a regression loss function used to measure the degree
of deviation between the predicted target box and the true box.
It takes into account factors such as the center point offset of
the target box, the difference in aspect ratio and the size of the
box, making it more accurate than traditional IoU loss. The
formula for CIoU Loss is as follows:

LCIoU = 1 − IoU +
ρ(p, pgt )

c2
+ αυ. (2)

υ =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2. (3)

α =
υ

(1 − IoU ) + υ
. (4)

where ρ2(p,pgt) represents the square of the predicted box
center point and the true box center point, and c2 represents
the square of the diagonal length of the minimum bounding
rectangle between the two rectangles. αυ is a parameter that
measures the aspect ratio.w and h represent the width and
height of the ground truth. wgt and hgt represent the width
and height of the predicted box.

C. MODIFICATIONS
Although YOLOv8n has demonstrated its powerful perfor-
mance in many fields, there is still room for optimization
when applied to foreign object detection in transmission lines.
We enhanced the accuracy of the model for small object
detection by introducing an attention mechanism and adding
a small object detection layer. Modifying the model will lead
to an increase in the number of parameters, which will result
in an increase in detection time, but this is acceptable.

D. ECA
ECA (Efficient Channel Attention) is a channel attention
mechanism proposed by Wang et al. [19]. This refers to a
lightweight channel attention mechanism that employs a 1D
convolution for non-dimension-reducing local cross-channel
interaction strategies, as depicted in Figure 2. Their experi-
ments have shown that ECA can bring significant gains with
a small number of parameters.

The ECA module, which only emphasizes inter-channel
relationships and not spatial ones, has proven to be more
significant in detecting foreign objects on power trans-
mission lines. Testing three attention modules: ECA [19],

FIGURE 2. Diagram of ECA module.

GAM [20], and CBAM [21]. ECA showed superior perfor-
mance, despite GAM and CBAM employing both spatial
and channel attention mechanisms. Wang et al. introduced
the GAM module in the YOLOv8m model [2], applying it
before the SPPF layer. In contrast, our experiments involved
incorporating an ECAmodule after each C2f module, leading
to enhanced accuracy. However, usingmultiple ECAmodules
did not synergize well with the small object detectionmodule.
After thorough comparison, we chose to integrate a single
ECAmodule before the SPPFmodule, combined with a small
object detection module. Due to ECA’s lightweight design,
this approach maintained processing speed even with the
additional detection module.

E. SMALL OBJECT DETECTION MODULE
Due to distance, foreign objects on power lines become small
targets in images. Chen et al. [22] and others define small
objects as those whose bounding box area is between 0.08%
and 0.58% of the image area. Other common definitions
include a bounding box width and height to image width
and height ratio less than a certain value for example such
as 0.01 or the square root of the bounding box area to image
area ratio being less than a certain value such as 0.03. TheMS
COCOdataset defines small objects as those with a resolution
smaller than 32 × 32 pixels. After multiple convolutions in
YOLOv8, small object features become less distinct, signifi-
cantly impacting detection accuracy. Upsampling can enlarge
feature maps for better recognition. Wang et al. summarized
three common upsampling methods: Interpolation, Decon-
volution, unPooling [23], and also proposed the lightweight
upsampling operator CARAFE [24] in 2019. In YOLOv8n,
the original upsampling layer used interpolation, which we
continued to use without modification.

We have added an additional small object detectionmodule
in the neck section, which includes an upsampling layer,
a fully connected layer, and a C2F module. The upsampling
layer uses the nearest neighbor upsampling method and
concatenates it with the feature map obtained from the
previous backbone to obtain a new feature map for detection.
The advantage of this is that the new feature map obtained is
magnified to twice the original size. We then perform three
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more C2f operations to pass the feature map down. In the
end, we will also obtain another feature map that has been
magnified twice.

The new feature map allows us to obtain a larger receptive
field, enlarge the features of the target, and improve the
accuracy of small object detection. Through experiments,
it has been proven that this improvement is very effective.

The revised structure of the model, incorporating these
improvements, is depicted in Figure 3.

FIGURE 3. improved model with ECA and small object detection layer
based on YOLOv8n.

F. HYPERPARAMETER SETTINGS
The hyperparameters are crucial for the training effectiveness
of the model. Under the existing conditions, we have
adjusted the hyperparameters to the best training setting.
To ensure comparability of the results, we used the same
hyperparameters when conducting control experiments using
other attention mechanisms. In order to simulate the actual
situation and address hardware limitations during the inspec-
tion process, all of our training, validation, and inference
processes are run on NVIDIA GeForce RTX 2080Ti. The
specific hyperparameter settings for the model are detailed
in Table 1.

TABLE 1. Training hyperparameters.

G. IMAGE PREPROCESSING METHODS
In order to enhance the robustness of the model, we prepro-
cessed and enhanced the images before training. YOLOv8
itself also includes the process of image enhancement.
YOLOv8 adopts the Mosaic data augmentation method,
which was first proposed in the YOLOv4 model [17]. The
Mosaic data augmentation method randomly crops four
images and then concatenates them into one image for
training. The order of the first image is in the top left, the
second image is in the bottom left, the third image is in
the bottom right, and the fourth image is in the top right is
shown in Figure 4. This enriches the background of the image
and greatly enhances the robustness of the model. During
training, YOLOv8nwill fix the size of the image to 640 * 640.
In addition, we also use the following methods to enhance
the data:

Image rotation: Rotate the image at different angles to
simulate different shooting angles during the inspection
process.

Image scaling: Enlarge and reduce the size of the image to
enhance the recognition of small targets.

Bluring: Bluring the image, considering that rain, snow,
and haze may occur during the actual detection process,
blurring the image can simulate this situation.

FIGURE 4. Mosaic data augmentation method.

H. DATASET
Our dataset comes from our own field collection and
collaboration with laboratory units. The annotated dataset
is divided into four categories: Bird’s Nest, Balloon, Kite,
and Garbage. The dataset consists of three parts: training
set, validation set, and testing set. The training set contains
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3116 images. The validation set contains 610 images. The
test set contains 791 images. Small targets are prone to exist
among the four types, which will also be the focus of our
detection. In Figure 5, we present some small target data used
in our training set.

I. THE EVALUATION METHOD OF THE MODEL
We choose mAP as our metric for evaluating model accuracy,
and processing time as our metric for evaluating model speed.

FIGURE 5. small object and its enlarged image.

1) mAP
mAP (mean average precision) is a commonly used metric in
object detection tasks, used to measure the accuracy of model
localization and classification in different categories. Firstly,
calculate the P-R (Precision Recall) curves for each category

at different IoU (Intersection over Union) thresholds. Then
calculate the AP (Average Precision) for each category,
that is, calculate the area under the P-R curve. The averageAP
value for all categories is mAP. The formulas for calculating
the P-R curve and AP value are showed below.

IoU =
AreaofOverlap
AreaofUnion

. (5)

this is a standard for measuring the accuracy of detecting
corresponding objects in a specific dataset.

Precision =
TP

TP+ FP
. (6)

TP represents a positive example of correct partitioning
and FP represents a positive example of incorrect partitioning.

Recall =
TP

TP+ FN
. (7)

FN represents the counterexample of incorrect partitioning.

2) PROCESSING TIME
Processing time is an indicator used to evaluate the model’s
ability to detect and classify input images. Includes image
preprocessing time, inference time, loss function calculation
time, and post-processing time. In order to improve the
efficiency of detection, we should try to reduce processing
time as much as possible.

IV. RESULT
A. TRAINING COMPARISON
To verify the effectiveness of the transmission line foreign
object detection model, we conducted multiple training
and testing on the transmission line foreign object dataset.
We trained using CBAM, ECA,GAM, andYOLOv8nmodels
separately, and tested models with only one layer of attention
module and models with multiple layers of attention modules
added. Finally, compared with the baseline YOLOv8nmodel,
the final results are shown in Table 2. Due to the crucial
importance of transmission line safety, any safety accidents
can have a significant impact. So in the task of detecting
foreign objects in transmission lines, wewould rather mistake
some images without foreign objects for images with foreign
objects, rather than let any image with foreign objects not
be recognized. So, besides focusing on the mAP50 value,
we also pay more attention to the Recall value.

The two improved models using CBAM and GAM have
better accuracy than the unmodified YOLOv8n model. The
mAP and Recall of the YOLOv8n + GAM model reached
the highest, reaching 92.861% and 87.652%, respectively.
However, the improved model using the ECA module
did not demonstrate good accuracy, even worse than the
baseline model. Through this comparison, we can find that
the introduction of attention mechanism can enhance the
accuracy of model detection, which also allows us to conduct
subsequent experiments.

After testing the test set, we found that the detection
accuracy was improved after using the attention mechanism,
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TABLE 2. Model accuracy metrics.

TABLE 3. The accuracy metrics of using attention mechanisms and SODM (small object detection modul).

TABLE 4. The accuracy metrics of using different times of ECA module.

but the detection of small targets is still not satisfactory.
We have added a small object detection module for this.
Considering that the small object detection module achieves
different effects on different attention mechanisms, we added
small object detection modules to all three attention mecha-
nisms for experimentation. The specific results are shown in
Table 3

We found that the small object detection module had a
good response to the ECA attention mechanism. The model
with the addition of the ECA attention mechanism showed a
1.9% improvement in mAP50 after adding the small object
detection module, reaching the highest accuracy of 93.987%,
far higher than the accuracy of the other two attention
mechanisms and the small object detection module. Recall
also reached 87.798%, ranking second.

In terms of running speed, due to the fact that the ECA
attention module only has channel attention mechanism and
the overall parameter quantity is small, it runs faster. The
speed of YOLOv8n + ECA + small object detection module
is slightly faster than the other two improved models, with a
single image processing speed of 31.1ms, but still slower than
the baseline model YOLOv8n.

After obtaining the above results, we consider whether
using the ECA attention mechanism multiple times in
the model will further improve accuracy. We conducted
experiments on this. We have added ECA attention mech-
anism after each C2f module in the backbone network,
and also added a small object detection module. With the
same Hyperparameters and dataset, we obtained the results
in Table 4.

Without adding a small object detection module, using the
ECA attention module multiple times increased mAP50 by
approximately 1.3% compared to using it only once, and the
Recall value also reached 87.139%. But after adding a small
object detection module, mAP50 decreased by about 1.9%
and the Recall value decreased by about 1.6%.

Based on the above experiment, we ultimately chose a
model consisting of YOLOv8n + ECA (one-time use) +

small object detection module as our final model to complete
the task of foreign object detection in transmission lines.

Our model’s GFLOPs are also much lower than the model
proposed by Wang et al., whose model is improved based on
YOLOv8m, with a GFLOPs of 98.9 [2], which is much higher
than our 12.4. This enables our model to be deployed at the
edge to better complete tasks

Figure 6 and Figure 7 are some data from our final model
training process, Figure 6 is the P-R Curve and Figure 7
including cls loss and dfl loss.

FIGURE 6. Final model’s training P-R Curve.

B. COMPARISON WITH OTHER ADVANCED MODELS
As shown in the above table 5, our model has a higher
mAP, which means our model has a higher detection accu-
racy. Moreover, while achieving higher detection accuracy,
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FIGURE 7. Final model’s training cls loss and dfl loss.

TABLE 5. Comparison with other advanced models.

FIGURE 8. Comparison between baseline model and final model.

our model also has a faster running speed. Compared to the
two-stage model, our model is much more faster. Compared
to the baseline model and other one-stage models, it only
increased by 2-5ms.

C. SMALL FOREIGN OBJECT DETECTION RESULT
Our model demonstrates high accuracy and fast running
speed. Although the addition of attention mechanism and
small object detection module resulted in longer processing
time, it is still within an acceptable range. Figure 8 shows
some of the results of our final model after inference. Pictures
on the left are detected by the baseline model YOLOv8n. Two
of them are not detected out and one of them is incorrectly
detected.

Through comparison, it can be found that after our
improvement, the final model is more accurate in recognizing
small targets, and can recognize bird nests that the baseline
model has not recognized. These bird nests are usually
displayed very small in the picture due to distance. Even with
the human eyes, it is difficult to recognize it immediately.
In addition, through comparison, it can be found that our
model also reduces the possibility of false alarms. The
baseline model sometimes mistakenly identifies insulators as
bird nests, while our model does not. This will also reduce
the probability of false alarms during daily inspections.

V. CONCLUSION
In this article, we propose an improved YOLOv8n model to
complete the task of detecting foreign objects in transmission
lines. This model effectively improves the accuracy of
detection and maintains a fast detection speed.

We have made two key improvements to the baseline
model this time: firstly, we have introduced ECA attention
mechanism into the model and added attention mechanism
to each feature map of different sizes to improve the
dependency relationship between channels. Secondly, a small
object detection layer has been added to the detection head,
enhancing the model’s ability to recognize small targets and
reducing the impact of shooting distance on the detection
task. The improved YOLOv8n model significantly enhances
its performance on this task, with improvedmAP compared to
the baseline YOLOv8n model. Reached. The detection speed
still maintains a high level, and the inference time for each
image is. Compared to the baseline YOLOv8 model, there is
no significant decrease.

This work has broad application scenarios, which can
greatly improve the efficiency of foreign object detection in
transmission lines, and can be applied to other aspects of
power inspection through transfer learning.
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