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ABSTRACT Genetic algorithm (GA) has been extensively used for solving complex problems. Due to a
high computational burden of finding solutions using GA, acceleration with hardware support has been a
choice. In this paper, a GA accelerator based on the processing-in-memory (PIM)methodology to address the
computational issue of GA is proposed. The proposed GA accelerator has a memristive crossbar array that
can support parallelism with memory and computation combined. For letting the crossover operation for GA
exploit massive parallelism provided by the array, a novel crossover scheme called aligned hybrid crossover
is proposed, in which multiple multi-point crossovers coexist whose crossover bit positions are aligned.
By using the memristive array, the mutation operation can also be done simultaneously for all required
chromosome bits. Moreover, the fitness for weighted-sum computation-based 0-1 knapsack and subset-sum
problems is shown to be evaluated in full parallel for the entire chromosomes in a population. The effects of
memristance variation in the array on the fitness evaluation and the read margin are investigated. According
to performance evaluation, the proposed GA accelerator having a 64 × 64 memristive crossbar array is
found to reduce the clock cycles significantly for performing operations like crossover, mutation, selection,
and fitness evaluation. Specifically, for executing the generational GA with a chromosome population size
of 64 with each chromosome having 64 bits, the total number of clock cycles required per generation is at
least 10 times reduced as compared to conventional designs.

INDEX TERMS Genetic algorithm, crossbar array, memristor, processing-in-memory.

I. INTRODUCTION
Genetic algorithm (GA) [1] is an algorithm for stochastic
optimization that originates from the natural evolution theory
of animals. Since Holland first proposed [2], the GA has
been used successfully to address a wide range of problems.
For example, GA is used for feature selection in machine
learning [3], hybrid deep learning modeling [4], the optimiza-
tion of the multi-channel convolutional neural network [5],
and other problems having lots of parameters. GA has been
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considered a versatile search algorithm that can be used at the
cost of runtime to simultaneously investigate several regions
of a solution space.

Implementation of the GA in hardware is a good approach
to speed up the process. One of the obvious issues in this
algorithm is to fast find the global optimum guided by a
fitness function, which can be running on hardware such as
the von Neumann machine. Many hardware-specific designs
for GA have been developed [6], [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25] to address the issue.Main bottlenecks in a GA hard-
ware implementation are computation and communication.
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They can happen in both the crossover and mutation opera-
tions. In the crossover operation, many bits of chromosomes
need to be transferred from memory, shuffled by a processor,
and written back into the memory. For a mutation operation,
some bits of each chromosomemust be read from thememory
and flipped by the processor, and the resulting bits must
be written into the memory. In a conventional architecture
based on a von Neumann machine, these procedures can
be performed per each chromosome requiring many clock
cycles. Moving data between processor and memory can
require many clock cycles and much energy consumption.
Because the processor and memory are separate from each
other and data must be frequently accessed, the throughput
can be limited due to insufficient data transfer rate between
them. A memristor is a nonlinear two-terminal device refer-
ring to the relationship between electric charge and magnetic
flux, which was postulated and named by Chua in 1971
[26]. Memristors can be configured as a crossbar array for
in-memory computation with massive parallelism. Memris-
tive crossbar arrays are usually considered to be computation-
and energy-efficient, because they can perform both storage
and computation in-situ, potentially eliminating the need for
data transfer between memory and processor.

In this paper, a memristive crossbar array-based hardware
accelerator for providingmassively parallel processing of GA
is presented. The contributions of this paper are summarized
as follows:

1) We pursue removing the distance between the proces-
sor and memory by using a memristive crossbar array for
processing GA performing crossover, mutation, and fitness
evaluation. We reduce the execution time for GA processing
in our processing-in-memory (PIM) methodology, which can
be implemented with simple memristive circuits.

2) To fully exploit the inherent massive parallelism of
the array, crossover operations are done in fully parallel for
all chromosome bits in a segment using a new approach
called aligned hybrid crossover. Mutation operations in each
generation are also done in parallel only in two clock cycles.

3) An efficient way of evaluating fitness for weighted-sum
computation-based 0-1 knapsack and subset-sum problems
using our crossbar array is also proposed, allowing it to be
completed in one or two cycles.

4) The effects of memristance variation in the array on the
fitness evaluation and the read margin are also investigated.

5) For executing the generational GA with a chromosome
population size of 64 with each chromosome having 64 bits
using the proposed crossbar array-based hardware accelera-
tor, the total number of clock cycles required per generation
is substantially reduced as compared to conventional designs.

The remaining sections are organized as follows. Section II
introduces basic concepts of the GA algorithm and pre-
vious works on hardware implementation. In Section III,
the architecture and operation of the proposed GA accel-
erator based on a memristive crossbar array are presented.
Section IV presents the simulation results of our design
using a well-known HP memristor model and describes the

FIGURE 1. Flowchart of genetic algorithm.

comparison results with conventional designs. The conclu-
sions are given in Section V.

II. BACKGROUND AND OVERVIEW
A. GENETIC ALGORITHM
Figure 1 shows a flowchart representing the execution pro-
cedure of a genetic algorithm. The initial population is first
prepared, and the fitness of each chromosome is calculated.
After criteria are examined, the selection operator picks the
best chromosomes as parents. Then, to generate a new pop-
ulation, child chromosomes are produced by crossover and
mutation. The crossover combines the genetic information
of parents by concatenating partial bit strings of both par-
ents. The mutation selects chromosomes randomly and flips
some bits in a predefined probability. The worst part of the
population is replaced by newly created offspring in each
generation. The termination criterion might be the maxi-
mum number of generations or a satisfactory fitness value.
In genetic algorithms, two population control methods are
popular: generational and steady-state [27]. In a generational
GA, the entire population gets replaced each generation. In a
steady-state GA, only a few individuals are replaced. In our
architecture, the generational GA has been used. Compared
to the steady-state GA, the generational GA has an advantage
of reducing the number of generations required to find a
solution. On the other hand, it can have a disadvantage of
taking longer time and consuming more energy to prepare
child chromosomes. In our design, these long time and large
energy issues are addressed by using a memristive crossbar
array having massive parallelism.

B. MEMRISTIVE CROSSBAR ARRAY
A variety of applications can be found for use of mem-
ristive crossbar array architecture. For instance, the array
architecture can be used for computations related to the
feature selection in image processing [28], multiply-and-
accumulation [29], artificial intelligence and neuromorphic
computing [30], and many others. It is possible to construct
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memristive interconnections in a nano-scaled space for con-
figuring a large-scale crossbar array, which can combine
the memory power of memristors and the parallel process-
ing of the array. The electrical resistance of a memristor
is not constant but depends on the history of the current
that has been flowing through the device. After the titanium
dioxide (TiO2) memristor device was developed by HP in
2008 [31], the models are being improved by the invention of
various device fabrication technologies. The array composed
of these memristors can be considered a promising solu-
tion for next-generation computing systems because of their
non-volatility, fast programming, low power consumption,
nano-scale device dimension, and high on/off ratio.

C. RELATED WORKS
Since the amount of computations for performing GA is
huge as mentioned earlier, hardware-specific designs can be
used for speeding up the process. During the last decades,
hardware architectures for accelerating these operations on
FPGA [6], [8], [11], [15], [16], [17], [18], [21], [22]
and ASIC [7], [9], [10], [12], [13], [14], [19], [20] have
been introduced. Recently, architectures utilizing memristive
arrays [23], [24], [25] have also been proposed. ASIC, FPGA,
and memristive implementations for this purpose have bene-
fits and drawbacks. ASIC implementations are more efficient
in terms of power consumption because they can use fewer
chip resources and occupy less silicon area but have less
flexibility in terms of customizing parameters. FPGA imple-
mentations are more flexible to customize GA parameters but
use more resources and consume more power. Memristive
implementations can take advantage of inherent massive par-
allelism in a crossbar array, speeding up computation in an
energy-efficient way. One demerit of this approach is a lim-
ited selection of memristive devices. Since many new devices
are being developed recently, faster andmore energy-efficient
GA accelerations are in vision.

The first GA implementation on the hardware used Xilinx
FPGA with a modular design approach by using behav-
ioral VHDL [6]. In the implementation, the chromosome bit
length and population size were limited to 5 and 16, respec-
tively, making it unsuitable for solving real-world problems.
Another GA implantation used pipelining to improve the
performance on six FPGA chips for performing selection,
crossover, mutation, and fitness evaluation [11]. The popula-
tion in each generation was generated by the steady-state GA,
and all modules were described by VHDL. In this imple-
mentation, when the chromosome bit length increases, the
number of clock cycles required for performing the crossover
operation increases linearly, causing unsuitability for han-
dling GAs having chromosomes with a large number of
bits. In [15], users can generate a GA IP core for an Altera
FPGA chip by special software called SmartGA. It is flex-
ible to change parameter values such as chromosome bit
length and population size. For implementing a fitness func-
tion, it uses a lookup table but consumes a lot of resources
and chip area that can cause much power consumption.

FIGURE 2. GA accelerator with memristive crossbar array.

A VLSI hardware design was proposed in [9], which uses
a multi-processor technique for executing GA operations in
parallel and distributed modes. However, due to the com-
munication overhead between processors, convergence takes
a long time. The design in [17] provided a GA IP core
that allowed for more flexibility in setting parameters. How-
ever, because the fitness function module is external and
requires communication between the GA core and the fit-
ness module, the number of clock cycles required in each
generation is large. Reference [19] designed a chip having
chromosomes whose bit length is 32 and used steady-state
GA in a foundry CMOS technology. The system is also
capable of connecting chips in a chain to expand the chromo-
some bit length, which is called genetic algorithm processors
(GAPs). In this architecture, when the chromosome bit length
is greater than 32, the communication between GAPs is
required, resulting in a considerable increase on the number
of clock cycle. Recently, a few research results handling
computations related to GA using memristive arrays have
been published [23], [24], [25]. In [23], a memristive network
was used for detecting the edge of an image. The genetic
algorithm was utilized to iteratively detect edges, in which
memristors with a low resistance value were considered as
edge pixels in the image. In [24], a crossbar array with mem-
ristors having analogmulti-level conductance was used for an
image classification task. The research investigated the effect
of the failure rate of memristors in the crossbar array by com-
paring two training algorithms (GA and Local Update). The
design in [25] performed GA operations including selection,
crossover, andmutation by usingmatrix calculations based on
a matrix-friendly genetic algorithm (MGA). The matrix cal-
culations were performed in a set of memristive vectors and
arrays in a pipelined manner to process the genetic algorithm.
No fitness evaluation was supported in this method.

III. GA ACCELERATOR BASED ON MEMRISTIVE
CROSSBAR ARRAY
A. OVERALL ARCHITECTURE
Figure 2 shows the overall architecture of the proposed GA
accelerator consisting of the memristive crossbar array and
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peripheral circuits including row and column voltage drivers,
a readout circuit, and a fitness evaluation circuit. The cross-
bar array is composed of memristors at the cross points of
horizontal and vertical lines. Memristive devices at cross
points establish a required connectivity. In the array, each row
corresponds to a chromosome and each column corresponds
to a collection of bits at the same position in all chromosomes.
Respective rows are labeled as horizontal lines (H1 ∼ HP)
and respective columns as vertical lines (V1 ∼ VN ), where
subscripts P and N indicate the population size and chromo-
some bit length, respectively. Each memristor in the array is
indexed byMij, where i and j denote the ith horizontal and jth

vertical lines, respectively. For GA operations, the row and
column voltage drivers generate and drive required voltage
levels like VW , VR, or GND to row and column lines, respec-
tively. The fitness values of chromosomes are evaluated, and
the best chromosomes are selected by the fitness evaluation
circuit. If required, chromosome bits can be read out from
the array by the readout circuit. Table 1 summarizes a list of
parameters defined for the accelerator.

Figure 3 shows the schematic symbol of a memristor used
in our array, in which the black square represents the positive
terminal. As shown in the left drawing in Figure 3 when the
programming voltage (VW ) is applied to the positive terminal,
the resistance switches to RON (SET operation). When VW
is applied to the negative terminal, the resistance switches
to ROFF (RESET operation), as seen by the drawing in the
middle. To read a memristive resistance, the read voltage
(VR) can be applied to either the positive or negative terminal
with the other terminal connected to GND through a resistor
(RS ), by which the memristive current can be converted into
a voltage. When the memristor to read is in the ROFF state
the voltage across RS will be very small, otherwise, it will
be quite large. Using the RS is a simple method for reading
the state of the memristor. There are a variety of methods for
reading the memristor state. In our case, the virtual ground
method is used to reduce the amount of sneak path current,
which will be elaborated more in Section IV. In our imple-
mentation, the ROFF state is considered as logic ‘0’ and the
RON state as logic ‘1’.

B. PARALLEL ALIGNED HYBRID CROSSOVER
In our GA accelerator, the crossover operation is done in
parallel in the memristive crossbar array. In general, a single-
or multi-point crossover scheme can be utilized, in which sin-
gle or multiple crossover points are used, respectively. Since
these conventional crossover schemes cannot allow enough
parallelism in our array, a novel crossover scheme called
aligned hybrid crossover is used in our design. Figure 4 shows
the procedure for generating six child chromosomes from
two parent chromosomes based on our crossover scheme.
In the figure, each row represents a chromosome, whose bit
values indicate the memristive states. The first two rows (Pr1
and Pr2) are the chromosomes to store parents (Parent1 and
Parent2) selected as the best in the previous generation. The
other six rows (Ch1∼Ch6) are the chromosomes to store new

TABLE 1. Parameters for memristive crossbar array-based GA accelerator.

FIGURE 3. Schematic symbol of the memristor.

children to be generated. Parent1 (Parent2) bit values to be
written into Pr1 (Pr2) are shown in the dotted box above
the first row in Figure 4(a) (Figure 4(b)). Before starting
the crossover operation, all chromosome bits are assumed to
be at ROFF . Crossover points are randomly selected at two
different bit positions, as seen in Figure 4(a). Then, in the first
clock cycle (cycle #1), logic ‘1’ bits in the first segment (left
eight bits) of Parent1 are copied into Pr1, and a selected half
of child chromosomes (Ch1, Ch3, and Ch5) simultaneously.
In the second clock cycle (cycle #2), logic ‘1’ bits in the sec-
ond segment (middle ten bits) are copied into Pr1 and another
selected half of the child chromosomes (Ch2, Ch3, and Ch6).
Similarly, in the third clock cycle (cycle #3), the third segment
(right twelve bits) is copied into corresponding chromosomes
in the array. Then, all the bits in Parent1 are copied into Pr1
and into the required bit positions of Ch1∼Ch6 in just three
clock cycles, whose resulting memristive states are indicated
by red-colored regions in Figure 4(a). Figure 4(b) shows the
memristive states (indicated by green-colored regions) after
the next three cycles (clock #4∼clock #6) to copy Parent2
into Pr2 and Ch1∼Ch6.

From the description above, it can be recognized that some
chromosomes are generated by the single-point crossover
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FIGURE 4. Conceptual procedure for array-based crossover operation: (a) copying parent1 into array, (b) copying parent2 into array.

while others are generated by the two-point crossover.
Specifically, as shown in Figure 4(b) depicting the final
chromosome bit patterns, child chromosomes Ch3 ∼ Ch6
are obtained by the single-point crossover at one of the
crossover points, whereas Ch1 and Ch2 are generated by
the two-point crossover at two different crossover points.
In a situation where we have more than three crossover-
points, three- or four-point crossover can also be possible.
Hence, our crossover scheme is a combination of the single-
and multi-point crossovers for the given crossover bit posi-
tions. That’s why the proposed crossover scheme is hybrid,
implying that multiple multi-point crossovers coexist. On top
of this, note that all crossover points in Figure 4 are
aligned among chromosomes. Specifically, the crossover
point of child chromosomes Ch3 and Ch4 generated by the
single-point crossover is aligned. The crossover point of
Ch5 ∼ Ch6 is also aligned at a different position from that
of Ch3 and Ch4. Moreover, Ch1 and Ch2 generated by the
two-point crossover again have their crossover points aligned
to each other and to those in the single-point crossover.
Therefore, the proposed crossover scheme supports vari-
ous multi-point crossovers with its crossover bit positions
aligned, thereby the aligned hybridcrossover. By so doing,
the total number of clock cycles for completing the crossover
operation can be reduced by exploiting more parallelism
provided by the array. When the number of chromosomes
increases, the number of crossover points will also increase,
which means that the proposed crossover scheme will be a

combination ofmany crossover schemes having single-, two-,
and three-point, etc.

The number of crossover points (NCP) required in this
scheme for a given population size (P) can be written as

NCP ≥ log2 (P) −1 (1)

NCK = (NCP + 1) × 2 (2)

The minimum number of crossover points for a given popu-
lation size can be chosen by the condition in (1). The number
of clock cycles (NCK ) required to complete all crossover
operations in a generation for a given number of crossover
points can be found using (2). It is important to note that
the number of clock cycles required does not increase as
the number of bits in a chromosome increases since all the
memristors in a segment update their states simultaneously.
Note that this interesting feature originates from a combina-
tion of the proposed aligned hybrid crossover and an inherent
parallelism provided by the crossbar array.

Figure 5 depicts the memristive crossbar array and periph-
eral circuits to explain the crossover operation in more detail.
To generate four children from two parents, two equidistant
crossover points is used for simplicity in this example (in
Figure 4 the crossover points were chosen at random bit
positions). The timing diagrams on the top and left showwhat
voltage levels are to be driven to the vertical and horizon-
tal lines in each clock cycle, respectively. As shown in the
upper left corner in Figure 5(a), Parent1 (6 bits) stored in

VOLUME 12, 2024 122441



M. Baghbanmanesh, B.-S. Kong: Genetic Algorithm Accelerator Based on Memristive Crossbar Array

FIGURE 5. Hardware structure and operation for crossover: (a) copy Parent1 into array chromosomes, and (b) copy Parent2 into
array chromosome.

DFF1 is selected by MX2. (Relevant signals and circuits are
highlighted in red). A group of multiplexers (MX1) driving
the vertical lines from the top, whose selection signals come
from MX2, choose Xi for logic ‘1’ bits in Parent1 and VIM
for logic ‘0’ bits as the line voltages. Intermediate voltage
VIM is used to avoid unintended updates of neighboring
memristors, whose voltage level can be appropriately chosen
for minimizing the current through half-selected memristors.
The timing diagram at the top depicts cycle-based voltage
levels of Xi to be used as vertical line voltages. With this
configuration, in the first clock cycle (cycle #1), left two bits
of Parent1 are to be copied into the same positions of Pr1
and two selected child chromosomes (Ch1 andCh2). For this,
X1/X2 and X3/X4/X5/X6 (inputs to mux MX1) are driven with
VW and VIM , respectively. Then, considering the left two bits
of Parent1 are ‘01’ (see the bit pattern at the output ofDFF1),
only the second vertical line (V2) is driven with VW , and all
other vertical lines are driven with VIM . At the same time,
horizontal lines, H1, H3, and H4 are driven to GND whereas
H2, H5, and H6 are driven to VIM , as seen by the timing
diagram on the left. Then, only the second bit of Parent1
is copied into the same bit positions of Pr1, Ch1, and Ch2,
letting memristors M12, M32, and M42 change their states to
RON . In the second clock cycle (cycle #2), only X3 and X4
are driven to VW , and H1, H3, and H6 are driven to GND to
copy the middle two bits in Parent1 into the corresponding
columns of Pr1, Ch1, and Ch4. In this case, considering that
the corresponding Parent1 bits are ‘00’, no memristors will
change their states. In the third clock cycle (cycle #3), by the
same procedure, memristors M15, M16, M55, M56, M65, and
M66 change their states to RON . In Figure 5(a), the resulting
memristor bit values copied from Parent1 are highlighted in

TABLE 2. Cycle-based control voltages for horizontal and vertical lines to
generate a new population by crossover.

red. Figure 5(b) shows the procedure for copying Parent2
into Pr2 and the corresponding bit positions in child chromo-
somes during the next three clock cycles (cycles #4 to #6),
whose results in the array are highlighted green. In summary,
all chromosomes in a segment in the array update their bit
values simultaneously in a single clock cycle, resulting in
the crossover operation completed only in six clock cycles
in this example. Table 2 shows a list of cycle-based control
voltages to the horizontal and vertical lines to prepare six
chromosomes as a new population.

C. PARALLEL MULTI-BIT MUTATION
As mentioned earlier, the mutation operation allows some
randomly selected chromosome bits to be flipped in each
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FIGURE 6. Parallel multi-bit mutation: (a) resetting, and (b) setting chromosome bits.

generation to increase population diversity. In general, many
clock cycles are required for performing mutation operations
to a group of chromosomes stored in memory because chro-
mosome bits to be mutated must be read to identify their
state values, and the flipped values should be written back
into the chromosomes in memory. In our design, the timing
overhead for doing these operations can be avoided by letting
mutation operations be done on site where chromosomes are
stored in a full-parallel manner. Figure 6 shows an example of
how it can be done in our memristive array. In the first clock
cycle (Figure 6(a)), some horizontal (H2,H3,H4, andH6) and
vertical (V1 and V4) lines randomly selected according to a
given mutation rate are driven to VW and GND, respectively.
To avoid unintended state changes for other memristors and
to minimize the sneak current, all unselected horizontal and
vertical lines are driven toVIM . Then, the states of the selected
memristors will stay at or switch toROFF (RESET operation).
As shown in Figure 6(a), eight memristors in dotted blue
circles are selected for mutation. MemristorsM21,M31,M34,
M61, and M64 are flipped to ROFF since they were in RON ,
and memristorsM24,M41, andM44 are not flipped since they
were already inROFF . In the second clock cycle (Figure 6(b)),
horizontal (H1 and H6) and vertical (V2 and V6) lines are
selected and driven to GND and VW , respectively. As above,
all unselected horizontal and vertical lines are again set to
VIM . Then, memristors M12 and M16 change their states
to RON (SET operation) with the state of memristors M62
and M66 unchanged. In summary, by letting some selected
chromosome bits be reset to ROFF in the first clock cycle,
and some other selected chromosome bits to be set to RON
in the second clock cycle, the whole mutation operations in a
generation can be done in just two clock cycles. Considering
that not all selected memristors are flipped in each clock
cycle, it would be better to use a higher mutation rate than
in an ordinary case. Table 3 explains cycle-based control

TABLE 3. Control voltages to perform mutation operation.

voltages driven to horizontal and vertical lines for mutation
in a generation.

D. PARALLEL FITNESS EVALUATION AND SELECTION
As mentioned earlier, the fitness evaluation is a computation-
ally intensive function in a genetic algorithm. To show the
computational capability of our memristive crossbar array,
two well-known weighted sum computation-based problems
(0-1 knapsack and subset-sum problems [32]) are employed
as fitness functions. The 0-1 knapsack problem is a combina-
torial (discrete) optimization, in which the sum of the values
(Vi’s) of items in a knapsack is maximized without letting the
sum of the weights (Wi’s) for the items exceed the capacity
(C). The 0-1 knapsack problem can be described as

Maximize
N∑
i=1

Vi× Xi;

Subject to
N∑
i=1

Wi× Xi ≤ C;

Xi ∈ {0, 1} ; i = 1, . . . ,N (3)
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FIGURE 7. Memristive array-based fitness evaluation and parent selection.

where N is the number of single-bit items whose ith item
is indexed by Xi. Vi and Wi are the value and weight of Xi,
respectively. When Xi=1, the ith item is in the knapsack.
The 0-1 knapsack problem is to find the best way to pack
a knapsack with a subset of a given collection of items. The
best packing then is one in which the weight-sum of the items
in the knapsack is less than or equal to a given capacity and
the value-sum of the items in the knapsack is maximized.
One variation of this optimization is the subset-sum problem,
in which the weight equals the value [32]. The expressions
for the subset-sum problem can be written as

Max

(
N∑
i=1

Wi× Xi

)
≤ C;

Xi ∈ {0, 1} ; i = 1, . . . ,N (4)

Given N single-bit items (Xi’s) with positive integer weights
(Wi’s) and a capacity ofC , the problem finds a subset of items
whose total weight can be maximized without exceeding the
capacity. Both problems are NP-complete in combinatorial
optimization, and finding the optimum value through an
exhaustive search will take exponential time (O(kn)), where
k is constant and n is the input size of the problem.
Eq’s. (3) and (4) above indicate that, for calculating the

fitness for the 0-1 knapsack and subset-sum problems, a lot of
multiplication and addition operations are required to obtain
products between items and weights and the sum of these
products, respectively. In our design, evaluating the fitness
values of all chromosomes and selecting the best two chro-
mosomes among them can be done in parallel in two or three
clock cycles. Detailed procedures for doing these operations
are explained below.

1) SUBSET-SUM FITNESS EVALUATION AND SELECTION
Figure 7 shows how the fitness values for the subset-
sum problem can be evaluated in the crossbar array. Four

memristors in each chromosome are considered as four items
(Xi’s), where the memristive state RON is regarded as the
corresponding item in the knapsack (Xi=1). The array has
a set of op-amps as the peripheral circuit. Horizontal lines
(H1 ∼ H4) behave as virtual grounds since through switches
S1 they are connected to the inverting inputs to op-amps
(op-amps A) having negative feedback. In the first cycle, the
vertical lines are driven with weight voltages (Wi’s) by the
column voltage driver at the top. Each horizontal line then
has a current proportional to the weighted sum of vertical
line voltages (as weights) and memristor states (as items in
the knapsack). Assuming negligible currents through mem-
ristors having the ROFF state (Xi=0), only the memristors in
the RON state (Xi=1) are considered in the summation. The
weight-sum current of each chromosome on its horizontal
line and the resulting fitness voltage at the output of each
op-amp (op-amp B) can be written as

Ij =

4∑
i=1

Wi × Xi (5)

FV j =
(
−RFA × Ij

)
×

(
−
RFB
RIN

)
(6)

where i is chromosome bit index, and j is chromosome index.
Note that calculating the fitness this way has a time com-
plexity of O(1). Then, as the selection operation the index
of the first-best chromosome (Pr1) is identified using the
winner-take-all (WTA) circuit [33] after the check whether
FVj voltages exceed the capacity. That is, one among four
WTA outputs (S1∼S4) is activated, which is associated with
the best chromosome. In the second cycle, the index of the
second-best chromosome (Pr2) is detected similarly.

2) 0-1 KNAPSACK FITNESS EVALUATION AND SELECTION
By the comparison between (3) and (4), the difference
between the subset-sum and 0-1 knapsack problems is that
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FIGURE 8. Reading the selected chromosome.

the former uses one parameter (weight) whereas the lat-
ter uses two parameters (weight and value). To handle this
difference and find the fitness value for the 0-1 knapsack
problem, an additional clock cycle is used as explained below.
The operation in the first clock cycle is almost the same as
that of the subset-sum problem. The voltages corresponding
to the weights are provided as the vertical line voltages,
and the weighted-sum voltages are evaluated at the outputs
of the op-amps as before. The difference from the operation
of the subset-sum problem in the first clock cycle is that
the WTA operation is not done because the weighted-sum
voltages are not the fitness as seen in (4). Whether these
voltages exceed the capacity is only checked and saved. In the
second cycle, the fitness values to be used by theWTA circuit
are evaluated. The difference of the second cycle from the
first is that the voltages corresponding to the values (not the
weights) of items are driven to the vertical lines. The resulting
value-sum current on each horizontal line and the fitness
voltage can be written as

Ij =

4∑
i=1

Vi × Xi (7)

FV j =
(
−RFA × Ij

)
×

(
−
RFB
RIN

)
(8)

where i is chromosome bit index, and j is chromosome index
as before. Using the fitness voltages in (8), the first best
chromosome is selected in the same way as in the subset-sum
problem. In the third cycle, the second-best chromosome is
selected.

3) STORING BEST CHROMOSOMES
After the fitness evaluation and selection identify two best
chromosomes, bit patterns of these chromosomes are read
from the array and stored in memory for letting them be used
as parents in the next generation. Figure 8 shows how to read

FIGURE 9. The I-V curve of the HP memristive device [31].

these bit values. By closing switches S2, the vertical lines
are connected to the inverting inputs of the op-amps having
a negative feedback, which is treated as the virtual ground.
In the first clock cycle, assuming the chromosomes on the
first row is read, VR is applied to the associated horizontal
line (H1) and GND to all other horizontal lines. Memristive
currents (arrows in red) are then converted into voltages by
the op-amp circuits and stored in DFF1 as parent1 (Figure 5)
for use in the next generation. The same procedure is done in
the second clock cycle to read the second-best chromosome
bit values to be stored in DFF2 as parent2.

IV. SIMULATION AND EVALUATION
For assessing performance, the proposed GA accelerator with
a 64 × 64 memristive crossbar array was designed, which
means that there are 64 chromosomes each having 64 bits.
CADENCE was used for designing the memristive cross-
bar array, and Verilog-A for designing other parts. The HP
memristor [31] whose electrical behavior was modeled in
Verilog-A was used as each memristor in the array. HSPICE
simulator was used for timing simulation. For the subset-sum
and 0-1 knapsack problems, the weight voltages ranging from

TABLE 4. Summary of simulation parameters.
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FIGURE 10. Simulated waveforms of running GA with 64 × 64 memristive crossbar array for (a) subset-sum and (b) 0-1 knapsack
problems.

0.1 V to 0.9 V and the capacities of 1.8 V and 1.4 V, were
used, respectively.

Figure 9 depicts the I-V curve of the HP memristor [31]
that can be modeled as

v (t) =

(
RON

w (t)
D

+ ROFF

(
1 −

w (t)
D

))
.i (t) (9)

f (w)
dw
dt

= µv
RON
D

i (t) (10)

whereD is the device length andw(t) is the state variable indi-
cating the length of the doped region. RON is the resistance
when w(t)=D and indicates a low resistive state, ROFF is the
resistance when w(t)=0 and indicates a high resistive state,
andµv is the ion mobility of the device. In order to avoid w(t)
growing beyond the physical size of the device, the derivative

of it is multiplied by window function f (w) defined as

f (w) = 1 −

(
2
(w
D

)
− 1

)2Pw
(11)

where Pw is a positive integer. The parameters of the mem-
ristor model used in our simulation are set to be Pw=2,
RON=1K�, and ROFF=1M�. Table 4 shows a list of param-
eter values used in our simulation.

Figure 10(a) shows the simulated waveforms for solving
the subset-sum problem in 20 generations. The waveforms
depicted from the top are clock input and fitness voltages of
the first and second best chromosomes (chromosome indexes
in each generation can change), respectively. Figure 10(b)
shows simulated waveforms for the weight-sum and value-
sum (fitness) voltages of the two best chromosomes of the
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FIGURE 11. Fitness convergence for (a) subset-sum and (b) 0-1 Knapsack
problems with nominal resistance of RON and ROFF.

0-1 knapsack problem for 20 generations. In these wave-
forms, the fitness voltage of parents increases generation
after generation and eventually reaches the global optimum.
Since the best chromosomes are always kept across genera-
tions, each fitness voltage can never go down during running.
The weight-sum voltages for the 0-1 knapsack problem
(Figure 10(b)) can sometimes go down when new chromo-
somes selected as the best have a lower weight-sum value.
Figure 11(a) and Figure 11(b) depict the fitness convergence
with random initial chromosome bit values for solving the
subset-sum and 0-1 knapsack problems, respectively. In all
trials for each problem, the fitness converges to the same
optimal level regardless of the initial condition. For the
subset-sum problem, the fitness voltage converges to 1.8 V as
the capacity of the knapsack. For the 0-1 knapsack problem,
it converges to 2.8 V.

To see the effect of memristance variation on fitness con-
vergence, the migration of fitness values was obtained by a
crossbar array in which each memristance has up to 20%
variation. For using a realistic memristance variation, the
lognormal probability density function [34] is used, in which
the distributions of RON and ROFF values are represented by

RON = Lognormal
(
µRON , σRON

)

FIGURE 12. Fitness convergence for (a) subset-sum and (b ) 0-1
Knapsack problems with 20% memristance variation.

ROFF = Lognormal
(
µROFF , σROFF

)
(12)

where the lognormal function is defined as

fx (x; µ, σ) =
1

xσ
√
2π

e(−
(ln x/µ)2

2σ2
)
,x > 0 (13)

x is a random variable sampled from the resistance of the
memristor for both RON and ROFF states.µON and σON (µOFF
and σOFF) are the mean and standard deviation of the distribu-
tion of RON (ROFF ), respectively. Figure 12(a) and (b) show
the fitness convergence for solving the subset-sum and 0-1
knapsack problems, respectively, where the memristors used
have a distribution of variations governed by (12). To see the
effect of the memristance variation only, identical initial val-
ues of memristors are used in all trials. In both cases, fitness
values converge well to target values with their shapes similar
to those in Figure 11(a) and (b) having no memristance
variation, which indicates that the variation in memristance
values gives a negligible difference in fitness convergence.
This result can be attributed to the fact that GA inherently has
a large randomness during crossover and mutation operations
so additional randomness by memristance variation plays
almost no additional role.
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FIGURE 13. Read output voltage versus the number of rows or the
number of chromosomes.

Figure 13 shows the simulated output voltage versus the
number of rows or the number of chromosomes when the
circuit in Figure 8 reads the bit values of a chromosome. Here,
each bit value in the chromosome to be read is at either RON
or ROFF with all other unselected memristors on the same
vertical line being at RON (the worst case) or ROFF (the best
case). For all curves, dashed lines indicate the output voltages
for the extreme memristance values (±10% from the nominal
value). The gain of the op-amps in Figure 8 is assumed to be
1000, and the feedback resistor (RF ) has ten times larger resis-
tance value than the nominal RON of the memristor. When the
number of rows are 100, the output voltage for reading the
RON state in the worst case where all other memristors are at
the RON state is 441 mV as seen in Figure 13. The worst-case
read margin will be almost the same as this value because the
output voltage for reading theROFF state is around 1000 times
smaller. Note that, considering the fact that a read voltage as
low as 300 mV can be easily detected using an ordinary sense
amplifier, the size of the memristive crossbar array can be
made too large even with memristance variations.

The sneak path current referring to unintended current
through unselected memristors can be an issue in the mem-
ristive crossbar array. In our case, there is no sneak current
issue during the fitness evaluation in Figure 7 because all
the memristive currents to be summed are valid. There is
also no sneak path current during the read for the selected
chromosome because the virtual ground method is used to
read the states ofmemristors, as seen in Figure 8. There can be
sneak currents during the crossover and mutation operations
shown in Figure 5 and 6. Since these are write operations,
the sneak path current causes no functional issue and just
increases the power overhead. Using a selector transistor in
each memristor cell can eliminate the sneak path current
although the approach will increase the array size, resulting
in a trade-off between power and area [35].
Figure 14 compares in a log scale the total number of

clock cycles for completing the operations of crossover,
mutation, and selection in a generation as chromosome bit

FIGURE 14. Number of clock cycles vs. chromosome bit length (N) for
completing selection, crossover, and mutation operations in a generation
for a fixed population (P) of 16.

length (N ) increases for constant population size (P = 16)
with conventional ASIC-based [9], [19], FPGA-based [11],
[15], memristor-based [25], and proposed GA accelerators.
All curves start from N = 4 because it is not possible to
generate 16 chromosomes having different bit patterns if the
chromosome bit length is less than four. For the ASIC-based
accelerator in [19], four clock cycles are needed for crossover
per a pair of chromosomes when the chromosome bit length
is less than 32, requiring 32 (= 4× (16/2)) total clock cycles.
When the chromosome bit length is larger than 32, multi-
genetic algorithm processors (multi-GAP) whose number is
equal to ⌈N/32⌉ should be used, which are connected in a
chain via SPI ports, resulting in 16 clock cycles for gener-
ating a pair of chromosomes. So, the total number of clock
cycles increases step-wise (16 × (P/2) × (⌈N/32⌉ − 1)) for
N > 32. For the selection and replacement, it takes 7× (P/2)
additional clock cycles per two chromosomes. For the ASIC
design in [9], three clock cycles are needed to do crossover
per chromosome whose bit length is up to 64, resulting in
48 clock cycles (=3 × 16) for generating 16 chromosomes,
and a total of 11×P clock cycles are required to perform all
GA operations. In [15], three clock cycles are required for
generating a pair of chromosomes by crossover, requiring 24
(= 3×(16/2)) total clock cycles. For mutation, selection, and
replacement, require additional 5×P clock cycles. In [11], the
number of clock cycles for completing crossover per chro-
mosome has a linear relationship with the bit length (2+N)
because multiplexers selecting parent bits are controlled by a
serial shift register, resulting in 144 (= (2+N )×(P/2)) clock
cycles when the chromosome bit length is 16 and the popu-
lation size is 16. The number of clock cycles required for the
mutation is equal to the number of clock cycles needed for the
crossover, and additional 2×P clock cycles are required for
selection and replacement. In [25], before a GA generation
starts, whole selection matrix values should be written into its
memristive array that takes P cycles. The number of forward
passes in a generation is equal to the number of columns
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TABLE 5. Performance comparison of GA accelerators.

in the population matrix. Before each forward pass starts,
a single column from the mutation and crossover matrices
should be written into respective memristive vectors. So, N
cycles are required to process all the columns in crossover and
mutation matrices per generation. Because, in each forward
pass, a single column in the population matrix is applied
to the memristive network as the input vector, the number
of clock cycles proportional to N is needed to update the
whole population matrix. Therefore, preparing a new popu-
lation in each generation requires a total of P+(2×N ) clock
cycles. Meanwhile, in our design, the number of clock cycles
required for completing the crossover in a generation is as
low as eight (log2(16)×2 as seen in (1) and (2)). The number
of clock cycles here does not increase with increase of the
chromosome bit length for a fixed population size, which
is because child chromosomes in the array update their bit
values segment by segment in parallel as explained earlier.
Considering additional 6 clock cycles to do mutation and
selection operations and reading the selected chromosomes,

15 clock cycles are required independent of chromosome bit
length, as seen in Figure 14.

Figure 15 compares in a log scale the total number of
clock cycles needed to complete the crossover, mutation, and
selection operations in a generation as the population size
(P) increases when the chromosome bit length is constant
(N = 16). The clock cycles required to do these operations
have a linear relationship to Pwith different slopes for ASIC-
based [9], [19] and FPGA-based [11], [15] designs. For the
memristive array-based design in [25], the total clock cycles
for completing these operations in a generation are P+(2×N )
as seen previously. For the proposed accelerator, the number
of clock cycles for crossover has a logarithmic relationship to
the population size (log2 (P)×2). Considering four additional
cycles for mutation and selection, two cycles for reading two
best chromosomes, and one cycle to reset the memristors,
a total of 19 clock cycles (without considering fitness evalua-
tion) are required for a population of 64 chromosomes, which
is increasing logarithmically, as seen in Figure 15.
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FIGURE 15. Number of clock cycles vs. population size (P ) for completing
selection, crossover, and mutation operations in a generation for a fixed
chromosome bit length (N ) of 16.

Table 5 compares the performance of various GA accel-
erators in terms of clock cycles required for completing
operations such as crossover, mutation, selection, replace-
ment, and fitness evaluation in a generation. The first two
columns indicate the number of clock cycles for the crossover
and mutation operations, respectively. In [27], they designed
a custom hardware in which both crossover and mutation are
done in one module. According to relevant equations in the
paper, four clock cycles are needed for both crossover and
mutation when the chromosome bit length is less than 32. For
chromosomes whose bit lengths are longer than 32, multiple
GAPs are required so the number of clock cycles increases
due to the communication overhead between GAPs. In other
conventional designs, the number of clock cycles for perform-
ing crossover and mutation are proportional either only to
population size (P) or both to population size and chromo-
some bit length (N ). Meanwhile, in our design, the number of
clock cycles required for crossover has no relationship with
chromosome bit length and a logarithmic relationship with
population size. Moreover, the number of clock cycles for
mutation is constant regardless of population size and chro-
mosome bit length. For fitness evaluation, all conventional
works were reported to rely on either external hardware or
custom IP core with no mention of detail. It can be expected
that they will require multiple clock cycles. Meanwhile,
as explained earlier, the proposed accelerator can finish the
subset-sum and 0-1 knapsack fitness evaluation in just one
and two clock cycles, respectively, taking advantage of the
inherently massive parallelism of the memristive crossbar
array. The number of clock cycles required to do the selection
for almost all conventional works depends on population size
(P), whereas in our design it can be done in just up to four
clock cycles depending on the type of fitness function. In the
proposed GA accelerator, the memristance values change as
desired during the crossover operation, so no explicit replace-
ment operation is needed. Table 5 also shows the expressions
for total clock cycles required for doing whole operations

in a generation as a function of population size (P) and
chromosome bit length (N ). Note that, for each conventional
work, the number of clock cycles for fitness evaluation is not
included since it is not available. As an example, comparison,
the total number of clock cycles required for operations with
a chromosome bit length of 64 and a population size of
either 32 or 64 are listed, in which our design takes only
19 clock cycles including the 0-1 knapsack fitness evaluation.
For conventional designs, the clock cycles required are in a
range between 416 and 4800 without considering the fitness
evaluation.

V. CONCLUSION
This paper proposes a memristive crossbar array-based
hardware accelerator for fast processing the generic GA
operations like crossover, mutation, selection, and fitness
evaluation. The proposed architecture takes advantage of the
inherent massive parallelism provided by the crossbar array to
surpass conventional von Neumann-based GA accelerators.
The crossover and mutation in GA are known to be compu-
tationally intensive due to a lot of computations relevant to
chromosomes and many data movements between memory
and processor. To address the issue, the crossover operation
is done in parallel for the chromosome bits in a segment in
the array. Specifically, we used a new method for the GA
crossover operation called aligned hybrid crossover. We also
performed the mutation per generation in only two clock
cycles. Since evaluating the fitness values of chromosomes
is another computationally intensive task, an efficient way of
evaluating the fitness functions using our memristive cross-
bar array is proposed, allowing the fitness function to be
evaluated inside the memristor crossbar array in only one
cycle. The effects of memristance variation in the array on the
fitness evaluation and the read margin are also investigated.
The performance of our GA accelerator based on a 64 ×

64memristive crossbar array indicating that there are 64 chro-
mosomes having 64 bits each was evaluated. It showed that
over 10 times reduced number of clock cycles for completing
the entire GA operations in a generation was achieved, which
indicates that the proposed GA accelerator is considerably
more efficient than previous designs.
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